Typesetting math: 100%

Decay rates for 1d heat-wave planar networks

  • Received: 01 December 2015 Revised: 01 May 2016
  • Primary: 35B40, 35B07, 93B07; Secondary: 35M10, 93D20.

  • The large time decay rates of a transmission problem coupling heat and wave equations on a planar network is discussed.
        When all edges evolve according to the heat equation, the uniform exponential decay holds. By the contrary, we show the lack of uniform stability, based on a Geometric Optics high frequency asymptotic expansion, whenever the network involves at least one wave equation.
        The (slow) decay rate of this system is further discussed for star-shaped networks. When only one wave equation is present in the network, by the frequency domain approach together with multipliers, we derive a sharp polynomial decay rate. When the network involves more than one wave equation, a weakened observability estimate is obtained, based on which, polynomial and logarithmic decay rates are deduced for smooth initial conditions under certain irrationality conditions on the lengths of the strings entering in the network. These decay rates are intrinsically determined by the wave equations entering in the system and are independent on the heat equations.

    Citation: Zhong-Jie Han, Enrique Zuazua. Decay rates for 1d heat-wave planar networks[J]. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013

    Related Papers:

    [1] Zhong-Jie Han, Enrique Zuazua . Decay rates for heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013
    [2] Zhong-Jie Han, Enrique Zuazua . Decay rates for elastic-thermoelastic star-shaped networks. Networks and Heterogeneous Media, 2017, 12(3): 461-488. doi: 10.3934/nhm.2017020
    [3] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
    [4] Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425
    [5] Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299
    [6] Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005
    [7] Wen Dong, Dongling Wang . Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations. Networks and Heterogeneous Media, 2023, 18(3): 946-956. doi: 10.3934/nhm.2023041
    [8] Marek Fila, John R. King . Grow up and slow decay in the critical Sobolev case. Networks and Heterogeneous Media, 2012, 7(4): 661-671. doi: 10.3934/nhm.2012.7.661
    [9] Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger . Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19
    [10] Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723
  • The large time decay rates of a transmission problem coupling heat and wave equations on a planar network is discussed.
        When all edges evolve according to the heat equation, the uniform exponential decay holds. By the contrary, we show the lack of uniform stability, based on a Geometric Optics high frequency asymptotic expansion, whenever the network involves at least one wave equation.
        The (slow) decay rate of this system is further discussed for star-shaped networks. When only one wave equation is present in the network, by the frequency domain approach together with multipliers, we derive a sharp polynomial decay rate. When the network involves more than one wave equation, a weakened observability estimate is obtained, based on which, polynomial and logarithmic decay rates are deduced for smooth initial conditions under certain irrationality conditions on the lengths of the strings entering in the network. These decay rates are intrinsically determined by the wave equations entering in the system and are independent on the heat equations.


    [1] K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differential and Integral Equations, 17 (2004), 1395-1410.
    [2] K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings, Applications of Mathematics, 52 (2007), 327-343. doi: 10.1007/s10492-007-0018-1
    [3] K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM J. Control Optim., 39 (2000), 1160-1181. doi: 10.1137/S0363012998349315
    [4] M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (2014), 345-365. doi: 10.1137/130923233
    [5] V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations, in Partial Differential Equations V, Encyclopedia of Mathematical Sciences, Springer-Verlag, Berlin/New York, 34 (1999), 91-131, 241-247. doi: 10.1007/978-3-642-58423-7_3
    [6] J. von Below, A characteristic equation associated to an eigenvalue problem on C2-networks, Linear Algebra Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7
    [7] J. von Below, Classical solvability of linear parabolic equations on networks, J. Differ. Equations, 72 (1988), 316-337. doi: 10.1016/0022-0396(88)90158-1
    [8] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0
    [9] R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Mathématiques et Applications 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3
    [10] C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95-114. doi: 10.1016/S0045-7825(97)00216-8
    [11] Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings, Acta Appl. Math., 110 (2010), 511-533. doi: 10.1007/s10440-009-9459-8
    [12] Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks, Networks and Heterogeneous Media, 5 (2010), 315-334. doi: 10.3934/nhm.2010.5.315
    [13] Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs, Netw. Heterog. Media, 6 (2011), 297-327. doi: 10.3934/nhm.2011.6.297
    [14] J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159. doi: 10.1007/s00033-012-0274-0
    [15] J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures, in Systems & Control: Foundations & Applications, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-0273-8
    [16] Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4
    [17] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, CRC Research Notes in Mathematics, vol. 398, Chapman and Hall/CRC, Boca Raton, 1999.
    [18] R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, Int. J. Numer. Meth. Fluids, 46 (2004), 533-544.
    [19] Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.
    [20] D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams, Journal of Mathematical Analysis and Applications, 337 (2008), 174-196. doi: 10.1016/j.jmaa.2007.03.080
    [21] F. Ali Mehmeti, A characterization of a generalized C-notion on nets, Integr. Equat. Oper. Th, 9 (1986), 753-766. doi: 10.1007/BF01202515
    [22] H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods, Wiley, New York, 1995.
    [23] S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Networks and Heterogeneous Media, 2 (2007), 425-479. doi: 10.3934/nhm.2007.2.425
    [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1
    [25] J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system, J. Math. Pures Appl., 84 (2005), 407-470. doi: 10.1016/j.matpur.2004.09.006
    [26] M. E. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981.
    [27] J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks, SIAM J. Contr. Optim, 48 (2009), 2771-2797. doi: 10.1137/080733590
    [28] G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings, SIAM J. Control Optim., 47 (2008), 1762-1784. doi: 10.1137/060649367
    [29] X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, J. Differ. Equations, 204 (2004), 380-438. doi: 10.1016/j.jde.2004.02.004
    [30] X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system, C. R. Acad. Sci. Paris, Ser. I, 336 (2003), 823-828. doi: 10.1016/S1631-073X(03)00204-8
    [31] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Ration. Mech. An., 184 (2007), 49-120. doi: 10.1007/s00205-006-0020-x
    [32] E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type, in Optimal Control and Partial Differential Equations, J. L. Menaldi et al., eds., IOS Press, 2001, 198-210.
  • This article has been cited by:

    1. Xue-Lian Jin, Yan Li, Fu Zheng, Spectrum and Stability of a 1-d Heat-Wave Coupled System with Dynamical Boundary Control, 2019, 2019, 1024-123X, 1, 10.1155/2019/5716729
    2. Zhong-Jie Han, Han-Qi Song, Kai Yu, Sharp decay rates of degenerate hyperbolic-parabolic coupled system: Rectangular domain vs one-dimensional domain, 2023, 349, 00220396, 53, 10.1016/j.jde.2022.12.005
    3. Zhong-Jie Han, Enrique Zuazua, Slow Decay and Turnpike for Infinite-Horizon Hyperbolic Linear Quadratic Problems, 2022, 60, 0363-0129, 2440, 10.1137/21M1441985
    4. Ya-Xuan Zhang, Zhong-Jie Han, Gen-Qi Xu, Stability and Spectral Properties of General Tree-Shaped Wave Networks with Variable Coefficients, 2019, 164, 0167-8019, 219, 10.1007/s10440-018-00236-y
    5. Jan Rozendaal, David Seifert, Reinhard Stahn, Optimal rates of decay for operator semigroups on Hilbert spaces, 2019, 346, 00018708, 359, 10.1016/j.aim.2019.02.007
    6. Filippo Gazzola, Abdelaziz Soufyane, Long-time behavior of partially damped systems modeling degenerate plates with piers, 2021, 34, 0951-7715, 7705, 10.1088/1361-6544/ac24e2
    7. Farhat Shel, Thermoelastic stability of a composite material, 2020, 269, 00220396, 9348, 10.1016/j.jde.2020.06.055
    8. Kaïs Ammari, Farhat Shel, 2022, Chapter 4, 978-3-030-86350-0, 57, 10.1007/978-3-030-86351-7_4
    9. Serge Nicaise, Lassi Paunonen, David Seifert, Stability of abstract coupled systems, 2025, 00221236, 110909, 10.1016/j.jfa.2025.110909
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5218) PDF downloads(236) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog