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Abstract. The large time decay rates of a transmission problem coupling heat

and wave equations on a planar network is discussed.
When all edges evolve according to the heat equation, the uniform expo-

nential decay holds. By the contrary, we show the lack of uniform stability,

based on a Geometric Optics high frequency asymptotic expansion, whenever
the network involves at least one wave equation.

The (slow) decay rate of this system is further discussed for star-shaped
networks. When only one wave equation is present in the network, by the

frequency domain approach together with multipliers, we derive a sharp poly-

nomial decay rate. When the network involves more than one wave equation, a
weakened observability estimate is obtained, based on which, polynomial and

logarithmic decay rates are deduced for smooth initial conditions under certain

irrationality conditions on the lengths of the strings entering in the network.
These decay rates are intrinsically determined by the wave equations entering

in the system and are independent on the heat equations.

1. Introduction. In recent years, hyperbolic-parabolic coupled models have been
studied extensively due to their applications in analyzing fluid-structure interac-
tions, which are crucial in many scientific and engineering areas, such as airflow
along the aircraft, deformation of heart valves, the process of mixing and so on (see
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[22], [18], [10]). The simplest model in this context is constituted by a 1 − d wave
equation coupled with a 1− d heat equation at a point interface (see Fig. 1):


θt(x, t)− θxx(x, t) = 0, x ∈ (−1, 0), t > 0,
utt(x, t)− uxx(x, t) = 0, x ∈ (0, 1), t > 0,
θ(−1, t) = u(1, t) = 0, t > 0,
θ(0, t) = u(0, t), θx(0, t) = ux(0, t), t > 0.

(1)

In system above, the heat and wave components are coupled at x = 0 through trans-

−1 0 1Heat Wave

Figure 1. A simple hyperbolic-parabolic model

mission conditions ensuring continuity. Two different types of PDEs are coupled
only at one point, making the analysis of the qualitative properties of the system
like decay rates or controllability delicate to analyze. Zuazua in [32] proved the null
controllability of this system with boundary control acting through the wave equa-
tion at x = 1 by the sidewise method for wave part and Carleman estimate for heat
part. Zhang and Zuazua in [29] got the sharp polynomial decay rate for system (1),
and further obtained the null controllability with control acting through the heat
part at x = −1 by the spectral properties. We also refer to [30] for heat-wave system
with another transmission condition and [25], [31] for multi-dimensional ones.

The results above on system (1) explain the heat-wave interaction through one
single transmission point. The same issues then arise along networks in which
various wave and heat equations interact through some joint nodes along a planar
network (see Fig. 2 for example). It can be considered as a simplified dynamical
model for the interaction of 1-d multi-connected fluids and elastic structures via the
interfaces (common nodes).

The main purpose of this paper is to analyze the long time behavior of this kind
of networks to explain to which extent the heat components induce decay properties
of the energy of the system and how it depends on the topology of the network,
the number theoretical conditions of the lengths of the segments, and the location
of the heat components. We shall especially focus on the star-shaped heat-wave
networks as in Fig. 2. But more general networks will also be discussed.

Firstly, let us describe the transmission problem on star-shaped network in detail.
Denote by ej , j = 1, 2, · · · , N the curves with the interval (0, `j), `j > 0. Assume
that the heat equations arise on the intervals (0, `k), k = 1, 2, · · · , N1, 1 ≤ N1 < N
in the network with state θk, respectively; the wave equations hold on the intervals
(0, `j), j = N1 + 1, N1 + 2, · · · , N with state (uj , uj,t). Assume that the Dirichlet
conditions are fulfilled at the exterior nodes and the geometrical continuity is sat-
isfied at the common node of the network. Then we get the following heat-wave
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Figure 2. Star-shaped network: heat equations (grey), wave
equations (black)

system on star-shaped network:

θk,t(x, t)− θk,xx(x, t) = 0, x ∈ (0, `k), k = 1, 2, · · · , N1, t > 0,
uj,tt(x, t)− uj,xx(x, t) = 0, x ∈ (0, `j), j = N1 + 1, N1 + 2, ...N, t > 0,
θk(`k, t)=uj(`j , t)=0, k = 1, 2,· · ·, N1, j = N1 + 1, N1 + 2, · · · , N, t > 0,
θk(0, t) = uj(0, t), ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N,

N∑
j=N1+1

uj,x(0, t) +
N1∑
k=1

θk,x(0, t) = 0, t > 0,

θk(t = 0) = θ0
k, k = 1, 2, · · · , N1,

uj(t = 0) = u0
j , uj,t(t = 0) = u1

j , j = N1 + 1, N2 + 2, · · · , N,

(2)

where ((θ0
k)N1

k=1, (u
0
j )
N
k=N1+1, (u

1
j )
N
k=N1+1) is the given initial state.

Remark 1. We can see that system (1) mentioned above can be considered as
a special case of this network (2), that is, if N1 = 1, N = 2, then the network
becomes (1).

System (2) can be rewritten as an abstract Cauchy problem in some appropriate
Hilbert space H as we will see later:{

dU(t)
dt = AU(t), t > 0,

U(0) = U0,
(3)

where U(t) = (θ, u, ut)
T and U(0) = (θ(0), u(0), u(1))T ∈ H is given. It can be

proved easily that A generates a C0 semigroup by the classic semigroup theory.
The energy of system (2) is defined as follows:

E(t) =
1

2

N1∑
k=1

∫ `k

0

|θk,x|2dx+
1

2

N∑
j=N1+1

∫ `j

0

(|uj,x|2 + |uj,t|2)dx. (4)

It satisfies

dE(t)

dt
= −

N1∑
k=1

∫ `k

0

|θk,t|2dx ≤ 0, (5)

and therefore the energy is decreasing.
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Based on the dissipation law (5), a sufficient and necessary condition for the
strong asymptotic stability of system (2) is given in this work. Moreover, from (5),
we also find that the dissipative mechanism only acts on the heat components of
the network, and affects the wave parts through the common node. This inspires
us to further analyze that whether or not the more heat equations are present the
networks can lead to the better decay rate of system (2), especially the exponential
decay rate, i.e., whether there exist constants C > 0 and β > 0 satisfying

E(t) ≤ CE(0)e−βt, ∀t > 0,

for all solution to (2).
Note however that, due to the fact that the exponential decay rate fails to hold

even in the simplest case of system (1), it is not expected to occur for more general
networks either. In fact, the main results of the paper show that this exponential
decay rate never occurs. Accordingly, our analysis will be devoted to prove slow
decay properties for smooth solutions.

In recent years, there has been an extensive literature on the controllability and
decay rate for PDEs’ networks with boundary controls, such as wave networks, para-
bolic networks and so on. We refer, for instance, [9] for the boundary controllability
of many kinds of general wave networks by the HUM method; [1], [2], [15] for the
explicit decay rates with star and tree shape structures based on the observability
estimates; [6], [11], [12], [20] and [28] for the spectral properties of wave and beam
networks; [7] for solvability of parabolic networks; and [23], [13] where the stabil-
ity is discussed for the networks with boundary time delay inputs. Nevertheless,
heat-wave networks are different from the pure hyperbolic or parabolic ones because
of the heat-wave coupling at joint nodes. Especially, the techniques developed to
analyze the observability of pure wave or heat networks, usually can not deal with
both of them in a unified way. As far as the authors know, at present, there is no
result considering the long time behavior of the heat-wave system on networks.

The first topic we address in this work is to show the non-uniform decay of heat-
wave networks, no matter what shapes the networks are, as long as at least one
wave equations is involved in the networks. We mainly prove it by building a local
approximate ray-like solutions, by means of a careful analysis on the interaction of
the wave and heat-like solutions at the joint nodes. Our method is based on the
high frequency asymptotic expansion in Geometric Optics (see [25]). We get that
the energy of such ray-like solutions is mainly concentrated in the wave parts of
the networks and almost completely reflected back to wave parts at the joint nodes,
which implies that the norm of the semigroup S(t) corresponding to the heat-wave
networks always equal to 1 for any given t > 0; and hence uniform decay rate fails.
Moreover, this kind of ray-like solutions can be built independent of the topology of
the graph, which is in agreement with what is known for the coupling of one single
wave equation with one single heat equation.

In view of the negative result on exponential decay, it is natural to further address
whether or not the dissipative mechanism in heat-wave networks can produce some
slow decay rates, such as polynomial and logarithmical decay under smooth initial
conditions. The spectrum of PDEs in networks is hard to be calculated, especially
when the mutual ratios of the lengths of each edge in the network are irrational
numbers, since the asymptotic spectra contain different branches, very close to
each other. Hence, the approach based on spectral analysis, which works well to
achieve the polynomial decay rate for heat-wave system with the simple structure in
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Fig. 1 (see [5], [6]), cannot be applied to analyze the decay rate of general heat-wave
networks. Thus, other methods have to be developed.

We mainly consider the decay rate of star-shaped network (2) and divide the
problem into two cases:

Case 1) N −N1 = 1, Case 2) N −N1 ≥ 2.
For Case 1), we analyze its decay rate by estimating carefully the norm of the

resolvent operator along the imaginary axis. Some multipliers are constructed to
help us derive a sharp polynomial decay rate. Especially, the sharpness of the
obtained decay rate does not change no matter how many heat equations involved,
as long as only one wave equation is present in the network.

For Case 2), the polynomial and logarithmic decay rates are derived under smooth
initial conditions, based on different properties of the wave equations entering in the
network, respectively. To do this, we deduce a weakened observability inequality for
system (2), by means of the energy estimate and some known observability results
for pure wave networks (see [9]). In this case we do not use resolvent estimates as in
Case 1. Contrarily to Case 1, when more than one wave equation is involved in the
network, it is difficult to transfer the dissipative effect from the heat components
to the wave ones by the transmission conditions at the common node, so as to
obtain estimates on the resolvent operator along the imaginary axis. In fact, the
relationship between the decay rate and the lengths of the wave edges in the network
is delicate and difficult to identify by means of a frequency domain analysis. This
can be done using the observability inequality. As we will see later, the decay rate
of the network depends on the Diophantine properties of the mutual ratios of the
lengths of the wave edges.

It should be noted that although we focus on discussing the decay rate of heat-
wave network with star-shaped structure, the methods also can be adapted to the
transmission problem between heat and wave equations on tree-shaped or more
complex networks. Hence, we also present some results on decay rate for more
general planar networks, which can be derived easily out of the techniques proposed
in this paper.

The results on this paper yield further light on the decay properties of damped
systems of vibrating networks. Further analysis is still required to handle other
models such as those in which the heat equations entering in the network are re-
placed by the system of thermoelasticity.

The rest of the paper is organized as follows. In Section 2, we consider system
(2) in an appropriate functional setting. The well-posedness and strong stability are
derived. Section 3 is devoted to show that the energy of heat-wave networks can not
achieve exponential decay rate. In Section 4, we show the sharp polynomial decay
rate of star-shaped network (2) which contains only one wave equation (N−N1 = 1).
Section 5 is devoted to analyze the decay rate of system (2) for the case involved
more than one wave equation (N − N1 ≥ 2). In Section 6, more general planar
networks are considered.

2. Well-posedness and strong stability. In this section, we shall consider sys-
tem (2) in an appropriate well-posedness space and discuss the strong asymptotic
stability of it. Define

L2(Ωh) = {f = (fj)
N1
j=1|fj ∈ L

2(0, `j), ∀j = 1, 2, · · · , N1},

L2(Ωw) = {f = (fj)
N
j=N1+1|fj ∈ L2(0, `j), ∀j = N1 + 1, N1 + 2, · · · , N},
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V m(Ωh) = {f = (fj)
N1
j=1|fj ∈ H

m(0, `j), fj(`j) = 0, ∀j = 1, 2, · · · , N1},

V m(Ωw) = {f = (fj)
N
j=N1+1|fj ∈ Hm(0, `j), fj(`j) = 0, ∀j = N1 + 1, N1 + 2, · · · , N}.

Set the state space H as follows:

H =

(θ, u) ∈ V 1(Ωh)× V 1(Ωw)

∣∣∣∣∣∣
θk(0) = uj(0),
k = 1, 2, · · · , N1,
j = N1 + 1, N1 + 2, · · · , N

× L2(Ωw),

equipped with inner product: for W = (θ, u, z), W̃ = (θ̃, ũ, z̃) ∈ H,

(W, W̃ )H =

N1∑
k=1

∫ `k

0

θk,xθ̃k,xdx+

N∑
j=N1+1

∫ `j

0

uj,xũj,xdx+

N∑
j=N1+1

∫ `j

0

zj z̃jdx.

It is easy to check that (H, ‖ · ‖H) is a Hilbert space. Define the system operator A
in H as follows:

A

 θ
u
z

 =

 (θk,xx)N1

k=1

z
(uj,xx)Nj=N1+1

 ,

the domain

D(A)=


(θ, u, z)∈H∩[H2(Ωh)×H2(Ωw)×V 1(Ωw)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θk,xx ∈ H1(0, `k),
θk,xx(`k) = 0,
θk,xx(0) = zj(0),
k = 1, 2, · · · , N1,
j = N1 + 1, N1 + 2, · · · , N,
N1∑
k=1

θk,x(0) +
N∑

j=N1+1

uj,x(0)=0


.

We have the following result on the well-posedness and asymptotic stability of sys-
tem (2).

Theorem 2.1. Let A and H be defined as before. Then A is dissipative in H.
A generates a C0 semigroup of contractions on H. Moreover, the energy of the
system decays to zero as t → ∞, if and only if one of the following two conditions
is fulfilled,

1). N −N1 = 1;
2). N −N1 ≥ 2 and `i/`j /∈ Q, i, j = N1 + 1, N1 + 2, · · · , N, i 6= j.

Proof. Since the well-posedness of system (2) can be proved by the standard semi-
group methods (see [11], [12], [24]), we omit it. Hence, we focus on proving the rest
part of this theorem. the Proof by contradiction is mainly used here.

“ ⇐ ” If the energy of the system does not decay, then due to the Lyubich-
Phóng strong stability theorem (see [19]), we have that there exists at least one
λ0 = iσ ∈ σ(A), σ ∈ R, σ 6= 0 on the imaginary axis. Assume that W ∈ D(A) is an
eigenvector of A corresponding to λ0, where

W =
(

(θk)N1

k=1, (uj)
N
j=N1+1, λ0(uj)

N
j=N1+1

)T
.
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We get

0 = <λ0‖W‖2H = <(AW,W )H = −λ2
0

N1∑
k=1

∫ `k

0

θ2
kdx = −

N1∑
k=1

∫ `k

0

(θk,xx)2dx,

which yields θk = θk,xx = 0, k = 1, 2, · · · , N1. Then by the boundary conditions
and transmission conditions in (2), θk(x) and uj(x) satisfy the following equations:

θk(x) = 0, k = 1, 2, · · · , N1,
λ2

0uj − uj,xx = 0, j = N1 + 1, N1 + 2, · · · , N,
uj(`j) = uj(0) = 0, j = N1 + 1, N1 + 2, · · · , N,

N∑
j=N1+1

uj,x(0) = 0.

(6)

If N−N1 = 1, then by the last equation in (6), we get uN,x(0) = 0, which together
with uN (0) = 0 implies uN (x) = 0. Thus (θ, u, λ0u) = 0. It is a contradiction, since
(θ, u, λ0u) = 0 is an eigenvector corresponding to λ0.

If N − N1 ≥ 2, then by a direct calculation, we get uj = cj sinhλ0x, j =
N1 + 1, N1 + 2, · · · , N, which satisfy

cj sinhλ0`j = 0, j = N1 + 1, N1 + 2, · · · , N, and

N∑
j=N1+1

cj = 0.

Note that there are at least cj1 , cj2 6= 0 for some j1, j2 ≥ N1 + 1, since (θ, u, λ0u)
is the eigenvector corresponding to λ0. Hence, sinhλ0`j1 = sinhλ0`j2 = 0, which

deduces that
`j1
`j2
∈ Q. It contradicts to the condition 2) in Theorem 2.1.

“⇒ ” If there exist i0, j0 satisfying N1+1 ≤ i0, j0 ≤ N,
`i0
`j0

= p
q , p, q are nonzero

integers, then it is easy to check that
(

(0)N1

k=1, (ûj(x))Nj=N1+1, λ0(ûj(x))Nj=N1+1

)
is

an eigenvector corresponding to eigenvalue λ0 = i qπ`j0
= i pπ`i0

, in which

ûi0(x) = sin(
pπx

`i0
), ûj0(x) = − sin(

q0πx

`j0
) and uj(x) = 0,∀N1+1 ≤ j ≤ N, j 6= i0, j0.

Note that the above eigenvector is sinusoidal wave concentrated in the wave equa-
tions, without any support in the heat ones. Thus we can build the solution
((θk(x, t))N1

k=1, (uj(x, t))
N
j=N1+1) to system (2), such that

θk(x, t)=0, k = 1, 2,· · ·, N1, ui0(x, t) = ûi0(x) cos(
pπt

`i0
), uj0(x, t) = ûj0(x) cos(

qπt

`j0
)

and uj(x, t) = 0, N1 +1 ≤ j ≤ N, j 6= i0, j0. Based on the construction of the above
solution, we get E(t) = E(0), t ≥ 0, which is a contradiction to that the energy of
system decays to zero as t→∞. Hence, `i/`j /∈ Q, i, j = N1 +1, N1 +2, · · · , N, i 6=
j.

Remark 2. Note that Theorem 2.1 give a sufficient and necessary condition for
the strong stability of this system. Thus, we always assume that the conditions in
Theorem 2.1 are fulfilled, when discussing the decay rate of system (2).

3. Lack of exponential decay rate. This section is devoted to show the lack of
exponential decay of heat-wave networks. We have the following result.

Theorem 3.1. The energy of system (2) does not decay exponentially as t → ∞,
as soon as the network involves at least one wave equation.
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Proof. By means of WKB asymptotic analysis (see [25], [5]), we construct a kind of
local ray-like approximate solutions for heat-wave networks, based on which, we will
show that this kind of solutions does not decay exponentially. Thus, the heat-wave
networks have no exponential decay.

Since there exists at least one wave equation in the networks, let us consider the
following transmission problem on one joint node in the networks:

θk,t(x, t)− θk,xx(x, t) = 0, x ∈ (0, `k), k = 1, 2, · · · , N1, t > 0,
uj,tt(x, t)− uj,xx(x, t) = 0, x ∈ (0, `j), j = N1 + 1, N1 + 2, ...N, t > 0,
θk(0, t) = uj(0, t), ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N,

N∑
j=N1+1

uj,x(0, t) +
N1∑
k=1

θk,x(0, t) = 0, t > 0.

(7)

For simplification, here we still use the same subscripts as in (2) to describe the
transmission conditions at the joint node. We build the ray-like solutions of (7) by
the following three steps. Here only the sketch of the construction is given. See
Appendix 7.1 for more details.

Step 1). Assume that uε
ĵ
(x, t) := ei(τt+ξx)/ε

∞∑
n=0

εnan
ĵ
(x, t), N1 + 1 ≤ ĵ ≤ N is the

incoming wave. We seek an approximate solutions for wave equations in (7) of the
following WKB type with linear phase{

uε
ĵ
(x, t) ∼ uε

ĵ
(x, t) + ũε

ĵ
(x, t),

uεj(x, t) ∼ ũεj(x, t), j = N̂ + 1, N1 + 2, · · · , N, j 6= ĵ,
(8)

in which

ũεj(x, t) := ei(τt−ξx)/ε
∞∑
n=0

ε
n
2 bnj (x, t), j = N1 + 1, N1 + 2, · · · , N

where τ 6= 0, ξ 6= 0 are real numbers satisfying τ2 = ξ2 and ε ∈ (0, 1); the functions
an
ĵ
(x, t), bnj (x, t), n = 0, 1, 2 · · · , can be uniquely gotten from the initial conditions

imposed at x = 0: an
ĵ
(0, t) = an,0

ĵ
(t) and bnj (0, t) = bn,0j (t), j = N1+1, N1+2, · · · , N .

Step 2). Build the approximate solutions for the heat equations in system (7).
Since θi(0, t) = θj(0, t), i, j = 1, 2, · · · , N1 holds, set

θεk(0, t) ∼ eiτt/ε
∞∑
n=0

εn/2fn(t), k = 1, 2, · · · , N1

and

θεk(x, t) ∼ ei(τt/ε+xξ̂/
√
ε)
∞∑
n=0

εn/2Bnk (x, t), k = 1, 2, · · · , N1, (9)

where τ is the same as in (8) and

iτ + ξ̂2 = 0, =ξ̂ > 0. (10)

Bnk (x, t), k = 1, 2, · · · , N1, n = 0, 1, 2, · · · can be identified uniquely from fn, n =
0, 1, 2, · · · .
Step 3). Glue uεj(x, t) and θεk(x, t) by means of the transmission conditions in
(7). Based on the transmission conditions at the joint node, all the functions
bnj (x, t), N1 + 1 ≤ j ≤ N and Bnk (x, t), 1 ≤ k ≤ N1, n = 0, 1, 2, 3, · · · in (8)

and (9) can be identified uniquely from an,0
ĵ

(t), n = 0, 1, 2, · · · , that is, the reflected
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waves in (8) and the solutions (9) to heat equations are determined uniquely by the
incoming wave uε

ĵ
(x, t).

Now, based on the above construction, let us consider the energy absorbed upon
reflection. From (9), we deduce that for j = 1, 2, · · · , N1, the solutions θεk(x, t)
are all localized in (0, O(

√
ε)). Indeed, out of (0, O(

√
ε)), we get from (10) that

ei(τt/ε+xξ̂/
√
ε) → 0 exponentially as ε → 0, which means that the solutions θεk(x, t)

vanish out of the domain (0, O(
√
ε)) when ε→ 0. Thus, for the constructed approxi-

mate solutions (θεk)N1

k=1, (u
ε
j)
N
j=N1+1, we calculate directly that the energy dissipation

between t = 0 and t = T is

N1∑
k=1

∫ T

0

∫ `k

0

|θεk,t|2dxdt ≈
N1∑
k=1

∫ T

0

∫ M
√
ε

0

|O(
1

ε
)|2dxdt = O(

1

ε
3
2

).

It is easy to get the total energy is O( 1
ε2 ). Hence, compared to the total energy,

the dissipated energy is negligible. Moreover, the negligible energy loss can be
quantified as

√
ε% of the total energy.

Based on the above constructed approximate solutions, let us show the non-
uniform decay of heat-wave networks. Let S(t), (‖S(t)‖ ≤ 1) be the semigroup of
contractions corresponding to heat-wave networks. In order to get the non-uniform
decay of this system, it is sufficient to show ‖S(T )‖ = 1 for any given T > 0. We
consider a ray ` of length T , which locates in wave domains in (7). It is reflected
at the boundary nodes and the joint nodes according to the law of Geometric
Optics. Then a family of solutions is builded, which is concentrated along the ray
considered above. When the ray hits the boundary nodes, the reflection follows the
simple reflection rule at the Dirichlet boundary; while when the ray intersects the
joint nodes like in (7), then the reflection occurs according to the above construction.
Note that when the ray intersects the joint nodes as in (7), there are N−N1 reflected
waves, each of which is in the wave domain (0, `j), j = N1 + 1, N1 + 2, · · · , N ,
respectively.

Firstly, assume that T is small enough that the ray only intersects the joint node
one time. By the constructions of the ray-like solutions above, it is easy to see that
‖S(T )‖ = 1. Indeed, from the discussion above, we can get that for the constructed
ray-like solutions,

‖(θε(T ), uε(T ), uεt(T ))‖H
‖(θε(0), uε(0), uεt(0))‖H

≈
1
ε2 −

1

ε
3
2

1
ε2

→ 1, ε→ 0.

Secondly, assume T is large. We have known that when the ray intersects the
joint node like in (7), there are N −N1 reflected waves (or outgoing waves) which
is in each of the N − N1 wave domains, respectively. Then these reflected waves
continue to hit other joint nodes or Dirichlet boundaries. Let us consider one of
these N −N1 reflected waves:

If this reflected wave hits a joint node in which all wave equations involved,
new reflected waves are generated for each wave domain around this node. It is
well-known that there is no dissipation and the energy is conservative.

If this reflected wave hits the Dirichlet boundary, then all of the wave will reflect
back according to the simple reflection rule at the Dirichlet boundary, which also
implies there is no dissipation during the process.
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If this reflected wave hits the joint node as in (7), then new reflected waves
are generated again in each wave domain, respectively. The dissipated energy is
negligible, which has been derived above.

As time goes, more and more reflected waves exist in the wave domains in the
networks. However, as T is fixed, there are only finite reflections occurring at
the joint nodes or boundaries during the time interval [0, T ]. Note that by the
above analysis, we have known that the dissipated energy is negligible during each
reflection at the joint nodes as in (7). Hence, the total loss is also negligible and
can be quantified as MT

√
ε% of the total energy, where MT is a positive constant

related to T . Hence, we get

‖(θε(T ), uε(T ), uεt(T ))‖H
‖(θε(0), uε(0), uεt(0))‖H

≈
1
ε2 −MT

1

ε
3
2

1
ε2

→ 1, ε→ 0.

Thus, ‖S(T )‖ = 1 holds for all T > 0. Therefore, the heat-wave networks can not
achieve exponential decay rate. The proof is complete.

4. Decay rate estimate. Case: N −N1 = 1. In this section, let us consider the
case: a star-shaped network with N − 1 heat equations and only one wave equation
(see Fig. 3). From the last section, we know that the energy of this kind of system
always does not decay exponentially. So we shall further discuss the polynomial
decay rate of this case. In fact, a sharp polynomial decay rate is derived.

`1

e1

`2

e2

`3
e3

`4

e4

`5

e5
...

`N−1 eN−1

`N

eN

0

Figure 3. network with N − 1 heat equations (grey) and 1 wave
equation (black)

4.1. Statement of the main result. Similar to the denotation in system (2), we
get the following equations to describe this case:

utt(x, t)− uxx(x, t) = 0, x ∈ (0, `N ), t > 0,
θk,t(x, t)− θk,xx(x, t) = 0, x ∈ (0, `k), k = 1, 2, · · · , N − 1, t > 0,
u(`N , t) = θk(`k, t) = 0, t > 0, k = 1, 2 · · · , N − 1,
θk(0, t) = u(0, t), ∀k = 1, 2, 3, · · · , N − 1,
N−1∑
k=1

θk,x(0, t) + ux(0, t) = 0, t > 0,

u(t = 0) = u0, ut(t = 0) = u1,
θk(t = 0) = θ0

k, k = 1, 2, · · · , N − 1.

(11)
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Here and in this section below, for convenience, the displacement of the wave equa-
tion is always denoted by u(x, t) without any subscript, since there is only one wave
equation in this case.

Based on the frequency domain method, we obtain the following result on the
stability of system (11).

Theorem 4.1. The (S(t))t≥0 associated with system (11) decays polynomially as

‖S(t)W0‖ ≤
C

t2
‖W0‖D(A), (12)

Moreover, it is the sharp polynomial decay rate for this system.

Remark 3. From Theorem 4.1, we find that the polynomial decay rate of the energy
of system (11) is t−2, no matter how many edges described by heat equations in
this network. It means that the polynomial decay rate is not changed by adding or
reducing the heat equations in the star-shaped networks, as long as the networks
contain only one wave equation.

4.2. Polynomial decay rate (Proof of Theorem 4.1). In this subsection, we
shall deduce the polynomial decay rate of system (11) based on the frequency de-
scription. Let us introduce the following lemma from [8] (see also [16]).

Lemma 4.2. A C0 semigroup etA of contractions on a Hilbert space satisfies

‖etAU0‖ ≤ Ct−
1
` ‖U0‖D(A), ∀U0 ∈ D(A), t→∞

for some constant C > 0, if and only if the following conditions hold:
1). {iβ|β ∈ R} ⊂ ρ(A);
2). lim sup

|β|→∞

1
β`
‖(iβ −A)−1‖ <∞.

Proof of Theorem 4.1. We mainly prove this theorem by checking the two conditions
in Lemma 4.2. Note that the condition 1) has been proved in Theorem 2.1. Thus
it is sufficient to show that

lim
σ→∞

sup
1

σ
1
2

‖(iσI −A)−1‖ <∞. (13)

The trick proposed by Liu et al. [14] and [16] is employed to show the above
estimation. If (13) is false, then there exists Tn = 1

σ
1
2
n

(iσnI − A)−1, such that

‖Tn‖H → ∞, n → ∞. By Banach-Steinhaus theorem, there exists F ∈ H such
that

TnF =
1

σ
1
2
n

(iσnI −A)−1F = W̃n →∞, in the sense of norm, n→∞.

Thus,

σ
1
2
n (iσnI −A)

W̃n

‖W̃n‖
=

F

‖W̃n‖
→ 0, in the sense of norm, n→∞.

Hence, there exists a sequence Wn = (((θnj )N−1
j=1 , u

n, zn) ∈ D(A) with ‖Wn‖H = 1,

and a sequence σn ∈ R with σn →∞ such that lim
n→∞

σ
1
2
n ‖(iσnI−A)Wn‖H = 0, i.e.,

σ
1
2
n [iσnu

n − zn] → 0, in H1(0, `N ), (14)

σ
1
2
n [iσnz

n − unxx] → 0, in L2(0, `N ), (15)

σ
1
2
n [iσnθ

n
k − θnk,xx] → 0, in H1(0, `k), k = 1, 2, · · · , N − 1. (16)
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Note that σ
1
2
n

N−1∑
k=1

∫ `k
0
|θnk,xx|2dx = <(σ

1
2
n (iσn −A)Wn,Wn)H → 0. Hence,

σ
1
4
n θ

n
k,xx → 0, in L2(0, `k), k = 1, 2, · · · , N − 1. (17)

Then from (16), it is easy to get that

σ
5
4
n θ

n
k → 0, in L2(0, `k), k = 1, 2, · · · , N − 1. (18)

Using Gagliardo-Nirenberg inequality (see [17]),

‖σnθnk‖L∞ ≤ C1‖σnθnk,xx‖
1
4

L2‖σnθnk‖
3
4

L2 + C2‖σnθnk‖L2

= C1

∥∥∥σ 1
4
n θ

n
k,xx

∥∥∥ 1
4

L2

∥∥∥σ 5
4
n θ

n
k

∥∥∥ 3
4

L2
+ C2‖σnθnk‖L2

→ 0, n→∞,
where Cj , j = 1, 2 are positive constants. Thus,

σnθ
n
k (0)→ 0, n→∞, k = 1, 2, · · · , N − 1. (19)

Similarly, using Gagliardo-Nirenberg inequality again on θnj,x, we get

‖θnk,x‖L∞ ≤ C1‖θnk,xx‖
1
2

L2‖θnk,x‖
1
2

L2 + C2‖θnk,x‖L2 , k = 1, 2, · · · , N − 1, (20)

which implies that ‖θnk,x‖L∞ , k = 1, 2, · · · , N − 1 are bounded and hence

|θnk,x(0)|, |θnk,x(`k)|, k = 1, 2 · · · , N − 1

are bounded. Then, taking the inner product of (16) with σnθk(x), we have

(iσnθ
n
k , σnθ

n
k )− (θnk,xx, σnθ

n
k )→ 0, k = 1, 2, · · · , N − 1.

Thus, by integration by parts,

(iσnθ
n
k , σnθ

n
k )− θnk,xσnθnk |

`k
0 + (θnk,x, σnθ

n
k,x)→ 0, k = 1, 2, · · · , N − 1. (21)

Note that (iσnθ
n
k , σnθ

n
k ) is convergent to 0 due to (18). Then, by the boundedness

of |θnk,x(0)| and (19),

σ
1
2
n θ

n
k,x → 0, n→∞, in L2(0, `k), k = 1, 2, · · · , N − 1. (22)

Then using Gagliardo-Nirenberg inequality again, we have

‖σ
1
4
n θ

n
k,x‖L∞ ≤ C1‖θnk,xx‖

1
2

L2‖σ
1
2
n θ

n
k,x‖

1
2

L2 + C2‖σ
1
4
n θ

n
k,x‖L2 → 0, k = 1, 2, · · · , N − 1,

(23)
which implies that

|σ
1
4
n θ

n
k,x(0)| → 0, n→∞, k = 1, 2, · · · , N − 1. (24)

Thus, using the transmission conditions in system (11), that is, θnk (0) = un(0) and
N−1∑
k=1

θnk,x(0) + unx(0) = 0, together with (19) and (24), we deduce that

σnu
n(0), unx(0)→ 0, n→∞. (25)

Replacing zn in (14) by iσnu
n in view of (15) yields

−σ2
nu

n − unxx → 0, in L2(0, `N ).

Taking the inner product of the above with (`N − x)unx , we have

((`N − x)unx ,−σ2
nu

n)− ((`N − x)unx , u
n
xx)→ 0, n→∞. (26)
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Note that

((`N − x)unx ,−σ2
nu

n) = −σ2
n(`N − x)unun|`N0 +

∫ `N

0

σ2
nu

n[−un + (`N − x)unx ]dx.

Thus, by (25),

<((`N − x)unx ,−σ2
nu

n)→ −1

2

∫ `N

0

σ2
n|un|2dx. (27)

On the other hand, integrating the second term in (26) by parts yields

((`N − x)unx , u
n
xx) = (`N − x)unxu

n
x |
`N
0 −

∫ `N

0

[−unx + (`N − x)unxx]unxdx. (28)

By (28),

<((`n − x)unx , u
n
xx) =

1

2

∫ `N

0

|unx |2dx. (29)

Hence, by (26)–(29),

2<{((`N−x)unx ,−σ2
nu

n)−((`N−x)unx , u
n
xx)} = −

∫ `N

0

σ2
n|un|2dx−

∫ `N

0

|unx |2dx→ 0.

(30)
Therefore,

σnu
n, unx → 0, in L2(0, `N ), n→∞. (31)

So by (14), we get

zn → 0, in L2(0, `N ), n→∞. (32)

Hence, by (24), (31), (32), we have

Wn = ((θnk )N−1
k=1 , u

n, zn)→ 0, in H, n→∞,

which contradicts ‖Wn‖H = 1. Hence, (13) holds. Thus By Lemma 4.2, we get
(12).

Now, let us further show the sharpness of the polynomial decay rate t−2, i.e., the
decay rate can not be faster than t−2 for system (11). For this aim, we first get the
following result.

Lemma 4.3. There exists at least one sequence (σn, Fn) satisfying σn → +∞, n→
∞ and

‖(iσnI −A)−1Fn‖2 ≥ C̃1σn + C̃2. (33)

where Fn ∈ H and ‖Fn‖H is bounded; C̃j , j = 1, 2 are some positive constants.

Proof. See Appendix 7.2.

Based on this lemma, let us prove the sharpness by deducing contradiction if the
decay rate can be improved. If t−2 is not the sharp polynomial decay rate, then
there exists a small constant ε > 0 such that ‖S(t)W0‖ ≤ Ct−2−ε‖W0‖D(A). By
Lemma 4.2, we have that

lim
|σ|→∞

sup
1
1

σ2+ε

‖(iσ −A)−1‖ <∞,

which implies that when σ is sufficiently large,

‖(iσ −A)−1‖2 ≤ Cσ
2

2+ε . (34)
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On the other hand, by (33), we have that there at least exists one (σn, Fn) such
that

‖(iσnI −A)−1Fn‖2 ≥ C̃1σn + C̃2, σn → +∞,
which contradicts to (34). Therefore, t−2 is the sharp decay rate for the solution of
system (11). The proof of Theorem 4.1 is complete.

5. Decay rate estimate. Case: N − N1 ≥ 2. In the previous section, we have
discussed the decay rate of system (2), which contains only one wave equation in
the network. This section is devoted to discuss the long time behavior of the system
(2) for the rest case, in which more than one wave equation involved.

5.1. Statement of the main result. In order to further discuss the decay rate of
the energy of system (2), we introduce the definitions of some sets for the irrational
number from [9].

Definition 5.1. ([9]) 1. Set Bε: for all ε > 0 there exists a set Bε ⊂ R, such that
the Lebesgue measure of R \ Bε is equal to zero, and a constant Cε > 0 for which,
if ξ ∈ Bε, then |||ξm||| ≥ Cε

m1+ε , where |||η||| is the distance from η to the set Z:
|||η||| := min

η−x∈Z
|x|.

2. Set S: the set of all real numbers ρ such that ρ /∈ Q and so that its expansion as
a continued fraction [0, a1, a2, · · · , an, · · · ] is such that (an) is bounded. In particular
S is contained in the sets Bε for every ε > 0.

Definition 5.2. ([9]) We call that real numbers `1, `2, · · · , `m verify the conditions
(S), if `1, `2, · · · , `m are linearly independent over the field Q of rational numbers;
and the ratios `i/`j are algebraic numbers for i, j = 1, 2, · · · ,m.

Then we have the following weakened observability estimate for system (2).

Theorem 5.3. There exists positive constants T and C, such that

C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂s̃θk(x, t)

∂ts̃
)2 + (

∂1+s̃θk(x, t)

∂t1+s̃
)2 + (

∂2+s̃θk(x, t)

∂t2+s̃
)2]dxdt

≥ ‖(θ0, u0, u1)‖2H, (35)

where s̃ is given as follows:
• if `i

`j
∈ Bε, i, j = N1+1, N1+2, · · · , N, i 6= j, then s̃=1 + [N −N1 − 1 + ε];

• if `i
`j
∈ S, i, j = N1 + 1, N1 + 2, · · · , N, i 6= j, then s̃ = N −N1;

• if `j (j = N1 + 1, N1 + 2, · · · , N) satisfy the condition (S), then s̃=1 + [1 + ε].
Here [·] is denoted by the integer part of its inside.

Based on the observability estimate, we show that system (2) can achieve poly-
nomial decay rate.

Theorem 5.4. For any (θ0, u0, u1) ∈ D(A), there always exists a constant C > 0
such that the energy of system (2) satisfies

E(t) ≤ C 1

t
1
s̃+1

‖(θ0, u0, u1)‖2D(A), ∀t ≥ 0, (36)

where s̃ is the same as in Theorem 5.3.
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In the above theorem, we have derived that when the lengths of strings in the
network satisfy the conditions in Theorem 5.3, the polynomial decay rate holds
for the system. However, if all of these conditions are not satisfied, that is, some
of `i

`j
, i, j = N1 + 1, N1 + 2, · · · , N do not belong to Bε, S and `j(j = N1 +

1, N1 + 2, · · · , N) do not satisfy the condition (S), the decay rate of system (2)
becomes complicated and interesting. Note that under this assumption, the result
in Theorem 5.4 no longer holds, since one can not find a suitable constant s̃ > 0 for
(35). It means that the energy of the system does not decay polynomially for any
smooth initial conditions under this assumption. However, we prove that system
(2) can achieve logarithmic decay rate for a special case. The result on logarithmic
decay rate of system (2) will be given in subsection 5.4.

Remark 4. While the resolvent method yields optimal decay rates in last section,
the method based on replacing the heat-wave networks by the pure wave ones and
using observability inequalities, does not lead to sharp decay rates. Please see
Appendix 7.4.

5.2. Observability estimate (Proof of Theorem 5.3). In order to deduce the
observability inequality in Theorem 5.3, we divide the system (2) into two systems.
Set

(θ, u, z) = (p, w, v) + (p̃, w̃, ṽ), (37)

where (p, u, v) satisfies

pk,tt(x, t)− pk,xx(x, t) = 0, x ∈ (0, `k), k = 1, 2, · · · , N1, t > 0,
wj,tt(x, t)− wj,xx(x, t) = 0, x ∈ (0, `j), j = N1 + 1, N1 + 2, ...N, t > 0,
pk(`k, t) = wj(`j , t) = 0, k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N, t > 0,
pk(0, t) = wj(0, t), ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N, t > 0,

N∑
j=N1+1

wj,x(0, t) +
N1∑
k=1

pk,x(0, t) = 0, t > 0,

pk(t = 0) = θ0
k, pk,t(t = 0) = θ0

k,xx, k = 1, 2, · · · , N1,

wj(t = 0) = u0
j , wj,t(t = 0) = u1

j , j = N1 + 1, N1 + 2, · · · , N,
(38)

and (p̃, w̃, ṽ) satisfies

p̃k,tt(x, t)−p̃k,xx(x, t)=θk,tt(x, t)− θk,t(x, t), x ∈ (0, `k), k = 1, 2,· · ·, N1, t > 0,
w̃j,tt(x, t)− w̃j,xx(x, t) = 0, x ∈ (0, `j), j = N1 + 1, N1 + 2, ...N, t > 0,
p̃k(`k, t) = w̃j(`j , t) = 0, ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N, t > 0,
p̃k(0, t) = w̃j(0, t), ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N, t > 0,

N∑
j=N1+1

w̃j,x(0, t) +
N1∑
k=1

p̃k,x(0, t) = 0, t > 0,

p̃k(t = 0) = 0, p̃k,t(t = 0) = 0, k = 1, 2, · · · , N1,
w̃j(t = 0) = 0, w̃j,t(t = 0) = 0, j = N1 + 1, N1 + 2, · · · , N.

(39)
Firstly, we consider system (38). Assume that λn are the eigenvalues of the corre-
sponding operator A for system (38) and φn = (φnj )Nj=1 is its corresponding eigen-
vector. Note that system (38) is a conservative wave system. Thus, the initial state
of system (38) can be expanded as follows

(θ0, u0)T =
∑
n≥1

anφn(x), (θ0
xx, u

1) =
∑
n≥1

bnφn(x). (40)
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Proposition 1. There exists a positive constant T > 0 such that

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
∑
n≥1

γ2
n[λ2

na
2
n + b2n], (41)

where γ2
n > 0 is the weights, which are determined by the lengths of the strings

involved in the network.

Proof. See Appendix 7.3.

Remark 5. Note that by the proof of Proposition 1, together with [9], we can see
that the weights γn in (41) satisfy

γn = max
i=N1+1,N1+2,··· ,N

N∏
j=N1+1, j 6=i

| sin(λn`j)|, ∀n ≥ 1,

and the condition inf
n>0

γ2
n = c > 0 does not hold for the star-shaped network (2) and

other general networks. In fact, it always holds that lim inf
n→∞

γ2
n = 0. The weights γ2

n

can be determined by the ratios `i
`j

, where `i, `j , i, j = N1 +1, N1 +2, · · · , N, i 6= j.

When the irrational numbers `i/`j belong to different sets, we obtain different
estimates for γk, respectively (see [9], [27]).

Lemma 5.5. Let λn be the eigenvalues of the corresponding operator A for system
(38) and γn is the same as in (41). Then

(1) if `i
`j
∈ Bε, i, j = N1 + 1, N1 + 2, · · · , N, i 6= j, then γn ≥ cε

λ
N−N1−1+ε
n

, n ≥
1, ε > 0;

(2) if `i
`j
∈ S, i, j = N1 + 1, N1 + 2, · · · , N, i 6= j, then γn ≥ c

λ
N−N1−1
n

, n ≥ 1;

(3) if `j (j = N1 + 1, N1 + 2, · · · , N) satisfy the the condition (S), then γn ≥
cε
λ1+ε
n

, n ≥ 1, ε > 0.

From Lemma 5.5, we know that under the above three conditions on the lengths
of the strings in the network, there always exists s > 0 such that

γn ≥ λ−sn , n ≥ 1. (42)

Set

s̃ := [s] + 1, (43)

where [s] is the integer part of s given as in (42).

Corollary 1. There exists a positive constant T such that

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃pk(x, t)

∂t1+s̃
)2 + (

∂s̃pk(x, t)

∂ts̃
)2]dxdt ≥ ‖(θ0, u0, u1)‖2H. (44)

Proof. Let s̃ be defined as (43). By Proposition 1, it is easy to check that

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
∑
n≥1

λ−2s̃
n [λ2

na
2
n + b2n]. (45)

Set (
θ̃0

ũ0

)
= As̃

(
θ0

u0

)
= As̃

∑
n≥1

anφn =
∑
n≥1

λs̃nanφn.
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Similarly, we have(
θ̃0
xx

ũ1

)
= As̃

(
θ0
xx

u1

)
= As̃

∑
n≥1

bnφn =
∑
n≥1

λs̃nbnφn,

where (θ0, u0) and (θ0
xx, u

1) are the same as (40). It is easy to check that (∂
s̃p
∂ts̃

, ∂
s̃w
∂ts̃

,

∂s̃v
∂ts̃

) is a solution to system (38) with initial condition (

(
θ̃0

ũ0

)
,

(
θ̃0
xx

ũ1

)
). There-

fore, by (45), we get that

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃pk
∂t1+s̃

)2 + (
∂s̃pk
∂ts̃

)2]dxdt ≥
∑
n≥1

λ−2s̃
n λ2s̃

n [λ2
na

2
n + b2n] =

∑
n≥1

[λ2
na

2
n + b2n].

Note that
∑
n≥1

[λ2
na

2
n + b2n] ≥ ‖(θ0, u0, u1)‖H. Hence (44) follows. The proof is

complete.

Secondly, let us consider system (39). We get the following result.

Proposition 2. There exists positive constants T and C such that

C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂s̃θk(x, t)

∂ts̃
)2 + (

∂1+s̃θk(x, t)

∂t1+s̃
)2 + (

∂2+s̃θk(x, t)

∂t2+s̃
)2]dxdt

≥
N1∑
k=1

∫ T

0

∫ `k

0

[(
∂s̃p̃k(x, t)

∂ts̃
)2 + (

∂1+s̃p̃k(x, t)

∂t1+s̃
)2]dxdt. (46)

Proof. Set { ˜̃pk = ∂s̃p̃k
∂ts̃

, k = 1, 2, · · · , N1,˜̃wj =
∂s̃w̃j
∂ts̃

, j = N1 + 1, N1 + 2, · · · , N.
(47)

It is easy to see that ˜̃pk, ˜̃wj satisfy the following equations:

˜̃pk,tt(x, t)−˜̃pk,xx(x, t)= ∂2+s̃θk(x,t)
∂t2+s̃

− ∂1+s̃θk(x,t)
∂t1+s̃

, x ∈ (0, `k), k = 1, 2, · · · , N1,˜̃wj,tt(x, t)− ˜̃wj,xx(x, t) = 0, x ∈ (0, `j), j = N1 + 1, N1 + 2, ...N,˜̃pk(`k, t) = ˜̃wj(`j , t) = 0, k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N,˜̃pk(0, t) = ˜̃wj(0, t), ∀k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N,
N∑

j=N1+1

˜̃wj,x(0, t) +
N1∑
k=1

˜̃pk,x(0, t) = 0,˜̃pk(t = 0) = 0, ˜̃pk,t(t = 0) = 0, k = 1, 2, · · · , N1,˜̃wj(t = 0) = 0, ˜̃wj,t(t = 0) = 0, j = N1 + 1, N1 + 2, · · · , N.
(48)

Let

E
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(t) =

N1∑
k=1

∫ `k

0

[˜̃p2

k,x + ˜̃p2

k,t]dx+

N∑
j=N1+1

∫ `j

0

[ ˜̃w2

j,x + ˜̃w2

j,t]dx

be the energy of system (48). It is easy to check that

dE
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(t)

dt
=

N1∑
k=1

∫ `k

0

˜̃pk,t(x, t)[∂2+s̃θk(x, t)

∂t2+s̃
− ∂1+s̃θk(x, t)

∂t1+s̃
]dx. (49)



672 ZHONG-JIE HAN AND ENRIQUE ZUAZUA

Hence,

E
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(t)− E(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(0) = E

(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(t)
=

N1∑
k=1

∫ t

0

∫ `k

0

˜̃pk,t(x, t)[∂2+s̃θk(x, t)

∂t2+s̃
− ∂1+s̃θk(x, t)

∂t1+s̃
]dxdt

≤1

2

N1∑
k=1

[∫ t

0

∫ `k

0

(˜̃pk,t(x, τ))2dxdτ

+

∫ t

0

∫ `k

0

[
∂2+s̃θk(x, τ)

∂τ2+s̃
− ∂1+s̃θk(x, τ)

∂τ1+s̃
]2dxdτ

]

≤1

2

[∫ t

0

E
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(τ)dτ+

N1∑
k=1

∫ t

0

∫ `k

0

[
∂2+̃sθk(x, τ)

∂τ2+̃s
− ∂

1+̃sθk(x, τ)

∂τ1+̃s
]2dxds

]
. (50)

By Grönwall’s inequality, we get

E
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)(t) ≤ C̃t

N1∑
k=1

∫ t

0

∫ `k

0

[
∂2+s̃θk(x, t)

∂t2+s̃
− ∂1+s̃θk(x, t)

∂t1+s̃
]2dxdt, ∀t ∈ [0, T ].

Thus,

N1∑
k=1

∫ T

0

∫ `k

0

[˜̃pk,t(x, t)]2dxdt
≤

∫ T

0

E
(˜̃p,˜̃pt, ˜̃w, ˜̃wt)dxdt

≤ TC̃T

N1∑
k=1

∫ T

0

∫ `k

0

[
∂2+s̃θk(x, t)

∂t2+s̃
− ∂1+s̃θk(x, t)

∂t1+s̃
]2dxdt

≤ C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂2+s̃θk(x, t)

∂t2+s̃
)2 + (

∂1+s̃θk(x, t)

∂t1+s̃
)2]dxdt. (51)

It is easy to see that
∫ t

0
˜̃pkdt, ∫ t0 ˜̃wjdt, k = 1, 2, · · · , N1, j = N1 + 1, N1 + 2, · · · , N

also satisfy equation (48) with ∂2+s̃θk(x,t)
∂t2+s̃

− ∂1+s̃θk(x,t)
∂t1+s̃

replaced by ∂1+s̃θk(x,t)
∂t1+s̃

−
∂s̃θk(x,t)

∂ts̃
. Using the similar discussion, we get that

N1∑
k=1

∫ T

0

∫ `k

0

[˜̃pk(x, t)]2dxdt ≤ C
N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃θk(x, t)

∂t1+s̃
)2 + (

∂s̃θk(x, t)

∂ts̃
)2]dxdt.

(52)
Therefore, by (47), (51) and (52), there exist positive constants T and C, such that

C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂s̃θk
∂ts̃

)2 + (
∂1+s̃θk
∂t1+s̃

)2 + (
∂2+s̃θk
∂t2+s̃

)2]dxdt

≥
N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃p̃k
∂t1+s̃

)2 + (
∂s̃p̃k
∂ts̃

)2]dxdt.

The proof of Proposition 2 is complete.
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Now, based on Proposition 1 and 2, let us show Theorem 5.3.

Proof of Theorem 5.3. By (37), we get{
∂s̃pk
∂ts̃

= ∂s̃θk
∂ts̃
− ∂s̃p̃k

∂ts̃
, k = 1, 2, · · · , N1,

∂1+s̃pk
∂t1+s̃

= ∂1+s̃θk
∂t1+s̃

− ∂1+s̃p̃k
∂t1+s̃

, k = 1, 2, · · · , N1.

Hence,

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃pk(x, t)

∂t1+s̃
)2 + (

∂s̃pk(x, t)

∂ts̃
)2]dxdt

=

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃θk(x, t)

∂t1+s̃
− ∂

1+s̃p̃k(x, t)

∂t1+s̃
)2+(

∂s̃θk(x, t)

∂ts̃
− ∂

s̃p̃k(x, t)

∂ts̃
)2]dxdt

≤ 2

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃θk(x, t)

∂t1+s̃
)2 + (

∂1+s̃p̃k(x, t)

∂t1+s̃
)2 + (

∂s̃θk(x, t)

∂ts̃
)2

+(
∂s̃p̃k(x, t)

∂ts̃
)2]dxdt.

Then by (46), there exist positive constants C and T such that

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂1+s̃pk(x, t)

∂t1+s̃
)2 + (

∂s̃pk(x, t)

∂ts̃
)2]dxdt

≤ C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂2+s̃θk(x, t)

∂t2+s̃
)2+(

∂1+s̃θk(x, t)

∂t1+s̃
)2+(

∂s̃θk(x, t)

∂ts̃
)2]dxdt. (53)

Therefore, by Corollary 1, we get

C

N1∑
k=1

∫ T

0

∫ `k

0

[(
∂2+s̃θk(x, t)

∂t2+s̃
)2 + (

∂1+s̃θk(x, t)

∂t1+s̃
)2 + (

∂s̃θk(x, t)

∂ts̃
)2]dxdt

≥ ‖(θ0, u0, u1)‖2H.
Thus, the proof of Theorem 5.3 is complete.

5.3. Polynomial decay rate (Proof of Theorem 5.4). This subsection is de-
voted to deduce the polynomial decay rate for system (2) based on the derived
observability inequality in Theorem 5.3. We need the following result from [31] (see
also [26]).

Lemma 5.6. Let A generate a bounded C0−semigroup on a Banach space V . Then

there is a constant Ĉ > 0 such that for any v ∈ D(A2), one has

‖Av‖2V ≤ Ĉ‖v‖V ‖A2v‖V . (54)

Based on this lemma, we can deduce the following result.

Corollary 2. Let A and H be defined as before. Then for W ∈ D(A),

‖W‖H ≤ Ĉ‖A−1−s̃W‖
1
s̃+2

H ‖AW‖
s̃+1
s̃+2

H . (55)

Proof. The inductive method is used to show this result by the follow two steps:

Step 1). When s̃ = 1, that is,

‖W‖H ≤ Ĉ‖A−2W‖
1
3

H‖AW‖
2
3

H. (56)
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In fact, from (54) we have

‖W‖2H ≤ Ĉ‖A−1W‖H‖AW‖H, ‖A−1W‖2H ≤ Ĉ‖A−2W‖H‖W‖H. (57)

Hence, ‖W‖2H ≤ Ĉ‖A−2W‖1/2H ‖W‖
1/2
H ‖AW‖H, which leads to (56).

Step 2). Assume that when s̃ = s0, (55) holds, that is,

‖W‖H ≤ Ĉ‖A−1−s0W‖
1

s0+2

H ‖AW‖
s0+1
s0+2

H . (58)

We will finish the proof by showing that when s̃ = s0 + 1, (55) also holds, that is

‖W‖H ≤ Ĉ‖A−2−s0W‖
1

s0+3

H ‖AW‖
s0+2
s0+3

H . (59)

Indeed, since A−1W ∈ D(A), from (58), we have

‖A−1W‖H ≤ Ĉ‖A−2−s0W‖
1

s0+2

H ‖W‖
s0+1
s0+2

H .

Then by (57), we have

‖W‖2H ≤ Ĉ‖A−1W‖H‖AW‖H ≤ Ĉ‖A−2−s0W‖
1

s0+2

H ‖W‖
s0+1
s0+2

H ‖AW‖H.

Hence,

‖W‖
2− s0+1

s0+2

H ≤ Ĉ‖A−2−s0W‖
1

s0+2

H ‖AW‖H,
which implies (59) holds. The proof is complete.

Let E(θ, u, ut) be the natural energy of system (2), which is defined as (4). Define

Er(t) := E(Θr, Ur, Urt ), (60)

where

(Θr, Ur, Urt ) = Ar(θ, u, ut), r = −s̃− 2, −s̃− 1, −s̃, · · · ,−1, 1. (61)

Note that (Θr, Ur, Urt ), r = −s̃ − 2,−s̃ − 1,−s̃, · · · ,−1, 1 are also the solution to

system (2) with initial state Ar(θ0, u0, u1). Set ε(t) =
−1∑

r=−s̃−2

Er(t) + E(t). It is

easy to check that

Er(T )−Er(S) = −
N1∑
k=1

∫ T

S

∫ `k

0

(Θr
k,t(x, t))

2dxdt, r = −s̃−2, −s̃−1, −s̃, · · · ,−1.

(62)
Hence,

ε(S)− ε(T ) =

N1∑
k=1

∫ T

S

∫ `k

0

[

−1∑
r=−s̃−2

(Θr
k,t(x, t))

2 + (θk,t(x, t))
2]dxdt. (63)

Applying Theorem 5.3 to (Θ−s̃−1, U−s̃−1, U−s̃−1
t ), we have

C

N1∑
k=1

∫ T

0

∫ `k

0

[(∂2+s̃[Θ−s̃−1
k (x, t)]

∂t2+s̃

)2

+

(
∂1+s̃[Θ−s̃−1

k (x, t)]

∂t1+s̃

)2

+

(
∂s̃[Θ−s̃−1

k (x, t)]

∂ts̃

)2 ]
dxdt ≥ E−s̃−1(0). (64)
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Note that
∂2+s̃[Θ−s̃−1

k ]

∂t2+s̃
= θk,t, k = 1, 2, · · · , N1. Thus, we have C[ε(0) − ε(T )] ≥

E−s̃−1(0). By (55) in Corollary 2, we have

ε(t) ≤ CE(t) ≤ CĈ2(E−1−s̃(t))
1
s̃+2 (E1(t))

s̃+1
s̃+2 . (65)

Thus, there exists a positive constant C such that (ε(0))s̃+2

(E1(0))s̃+1 ≤ C[ε(0)−ε(T )]. Fixing

T > 0, we get

C[ε(mT )− ε((m+ 1)T )] ≥ (ε((m+ 1)T ))s̃+2

(E1(0))s̃+1
.

Here we have used ε((m+ 1)T ) ≤ ε(0) due to the dissipativity of operator A. Then

we get C[ ε(mT )
E1(0) −

ε((m+1)T )
E1(0) ] ≥ [ ε((m+1)T )

E1(0) ]s̃+2 and hence

ε((m+ 1)T )

E1(0)
≤ ε(mT )

E1(0)
− 1

C
[
ε((m+ 1)T )

E1(0)
]s̃+2. (66)

In order to proceed to deduce the decay rate of the energy of system (2), we need
the following lemma from [3].

Lemma 5.7. Let {am}∞m=1 be a sequence of positive number satisfying

am+1 ≤ am − C(am+1)2+α, ∀m ≥ 1, (67)

for some constants C > 0 and α > −1. Then there exists a positive constant MC,α

such that

am ≤
MC,α

(m+ 1)
1

1+α

.

By the above Lemma, together with (66), it is easy to get that ε(mT )
E1(0) ≤

MC,s̃

(m+1)
1

1+s̃
.

Thus, ε(mT ) ≤ MC,s̃

(m+1)
1

1+s̃
E1(0). Therefore, there exists a positive constant C such

that E(t) ≤ ε(t) ≤ C

t
1

1+s̃
E1(0). The proof of Theorem 5.4 is complete.

5.4. Logarithmic decay rate. In the previous subsection, we have proved that
if `j , j = N1 + 1, N1 + 2, · · · , N satisfy the conditions in Lemma 5.5 (see also
Theorem 5.3), then we always can find some s > 0 such that the weights in inequality
(41) satisfy (42) and based on which, the polynomial decay rate of system (2) is
derived. However, if all of these conditions are not fulfilled, there is no s satisfying
γn ≥ λ−sn , n ≥ 1. Thus system (2) can not achieve polynomial decay and some
weaker decay rate may hold. In fact, the logarithmic decay rate can be derived
when the weights γn decay exponentially, that is,

γ2
n ∼ ce−an, n = 1, 2, · · · , (68)

where c, a are positive constants. Note that this kind of weights γn, n ≥ 1 in (68)
can not be deduced by the conditions in Lemma 5.5.

By Proposition 1, there exists a positive constant T such that

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
∑
n≥1

ce−an[λ2
na

2
n + b2n]. (69)

From the above inequality, we have the following observability estimate.
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Theorem 5.8. For b ∈ (0, 1
2 ), there exist positive constants T and C, such that for

(θ0, u0, u1) ∈ D(A),

C

a−1 ln

 c‖(θ0, u0, u1)‖2H
N1∑
k=1

‖θk‖2H2(0,T ;L2(0,`k))



−2b

‖A(θ0, u0, u1)‖2H ≥ ‖(θ0, u0, u1)‖2H,

(70)
where a, c are positive constants given as in (68).

The proof of Theorem 5.8 will be given at the end of this subsection. Let us
proceed to show the following logarithmic decay rate of system (2) based on the
weakened observability inequality (70). We mainly employ some techniques from
[31] to deduce the logarithmic decay.

Theorem 5.9. Assume that the weights in (41) satisfy condition (68). Then for
any (θ0, u0, u1) ∈ D(A) and b ∈ (0, 1

2 ), there always exist positive constants a′, c′

such that the energy of system (2) satisfies

E(t) ≤ a′

(ln[c′(t+ 1)])2b
‖(θ0, u0, u1)‖2D(A), ∀t ≥ 0. (71)

Proof. Set ε1(t) = E−1(t)+E(t)+E1(t), where Ej(t) is defined the same as in (60).
It is easy to get that

dE(t)

dt
= −

N1∑
k=1

∫ `k

0

θ2
k,tdx,

dE1(t)

dt
= −

N1∑
k=1

∫ `k

0

θ2
k,ttdx,

dE−1(t)

dt
= −

N1∑
k=1

∫ `k

0

θ2
kdx

and hence ε1(0)− ε1(T ) =
N1∑
k=1

∫ T
0

∫ `k
0

(θ2
k,tt + θ2

k,t + θ2
k)dxdt. From (70), we get

C

a−1 ln

 cE(0)
N1∑
k=1

‖θk‖2H2(0,T ;L2(0,`k))



−2b

≥ E(0)

E1(0)
. (72)

A direct calculation yields
N1∑
k=1

‖θk‖2H2(0,T ;L2(0,`k)) ≥ cE(0)e
−a
(
CE1(0)

E(0)

) 1
2b

, b ∈ (0, 1
2 ).

Hence,

ε1(0)− ε1(T ) ≥ cE(0)e
−a
(
CE1(0)

E(0)

) 1
2b

, ∀b ∈ (0,
1

2
). (73)

Then replacing the initial date (θ0, u0, u1) by A−1(θ0, u0, u1), we get that (73)
becomes

ε(0)− ε(T ) ≥ cE−1(0)e
−a
(
CE(0)
E−1(0)

) 1
2b

, ∀b ∈ (0,
1

2
). (74)
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Note that E(t) ≤ ε(t) ≤ C̃E(t). By Corollary 2, we have E−1(0) ≥ (E(0))2

C̃Ĉ2E1(0)
, and

hence C̃Ĉ2E1(0)
E(0) ≥

E(0)
E−1(0) . Thus, there exist constants C1, C̃1 > 0 such that

ε(0)− ε(T ) ≥ c (E(0))2

C̃1E1(0)
e
−a
(
C1E1(0)

E(0)

) 1
2b

, ∀b ∈ (0,
1

2
). (75)

Set αm = ε(mT )
E1(0) . We have that

αm − αm+1 ≥
c

C̃1

α2
me
−a( C1

αm
)

1
2b

. (76)

Here we have used that E1(t) is non-increasing. From (76), for any n ∈ N, we get

ncα2
ne
−a( C1

αn
)

1
2b ≤

n∑
m=1

C̃1(αm − αm+1) ≤ C̃1α1,

since αm is non-increasing respective to m. Note that it is easy to check

min
ρ∈(0,α1)

ρ2ea(
C1
ρ )

1
2b

> 0.

Thus, there exists a constant Cb such that

α2
n ≥ Cbe

−a(C1
αn

)
1
2b

, ∀b ∈ (0,
1

2
).

Hence, nce−2a(C1
αn

)
1
2b ≤ C̃1

Cb
α1. Then we calculate directly that

αn ≤ C1

[
1

2a
ln(

Cbnc

C̃1α1

)

]−2b

, ∀b ∈ (0,
1

2
).

Therefore, by the definition of αn, for sufficient large n,

ε(nT ) ≤ C1

[
1

2a
ln(

Cbnc

C̃1α1

)

]−2b

E1(0), ∀b ∈ (0,
1

2
), (77)

which implies the logarithmic decay rate in Theorem 5.9. The proof is complete.

Proof of Theorem 5.8. Similarly to [27], for b ∈ (0, 1
2 ), we construct a concave and

increasing function in t ∈ (0, 1),

Φb(t) =

[
a

ln( ct )

]2b

. (78)

It is easy to check that Φb(ce
at)t2b = 1. By the inverse Jensen’s inequality (see

[27]), we get

1 ≤ Φb


∑
n≥1

ce−an(λ2
na

2
n + b2n)∑

n≥1

(λ2
na

2
n + b2n)


∑
n≥1

n2b(λ2
na

2
n + b2n)∑

n≥1

(λ2
na

2
n + b2n)

, (79)

where λn are the eigenvalues of the corresponding operator A for system (38) and
an, bn are the Fourier coefficients given as (40). Hence,

Φ−1
b


∑
n≥1

(λ2
na

2
n + b2n)∑

n≥1

n2b(λ2
na

2
n + b2n)

∑
n≥1

(λ2
na

2
n + b2n) ≤

∑
n≥1

ce−an(λ2
na

2
n + b2n). (80)
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Then by (41) in Proposition 1,

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥ Φ−1
b


∑
n≥1

(λ2
na

2
n + b2n)∑

n≥1

n2b(λ2
na

2
n + b2n)

∑
n≥1

(λ2
na

2
n + b2n),

which implies

Φb


N1∑
k=1

∫ T
0

∫ `k
0

[p2
k,t + p2

k]dxdt∑
n≥1

(λ2
na

2
n + b2n)

∑
n≥1

n2b(λ2
na

2
n + b2n) ≥

∑
n≥1

(λ2
na

2
n + b2n).

Substituting (78) into the above inequality, we geta−1 ln


c
∑
n≥1

(λ2
na

2
n + b2n)

N1∑
k=1

∫ T
0

∫ `k
0

[p2
k,t + p2

k]dxdt



−2b∑

n≥1

n2b(λ2
na

2
n + b2n) ≥

∑
n≥1

(λ2
na

2
n + b2n).

By proposition 2, there exist positive constants C and T such that

N1∑
k=1

∫ T

0

∫ `k

0

[(p̃k,t(x, t))
2 + (p̃k(x, t))2]dxdt

≤ C

N1∑
k=1

∫ T

0

∫ `k

0

[(θk(x, t))2 + (θk,t(x, t))
2 + (θk,tt(x, t))

2]dxdt,

where (p̃, w̃) is the solution to (39). Note that θk = pk + p̃k, k = 1, 2, · · · , N1.
Thus, there exist constants C > 0 and T > 0, such that

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≤ 2

N1∑
k=1

∫ T

0

∫ `k

0

[θ2
k,t + p̃2

k,t + θ2
k + p̃2

k]dxdt

≤ C

N1∑
k=1

∫ T

0

∫ `k

0

[θ2
k + θ2

k,t + θ2
k,tt]dxdt.

Note that by Weyl’s formula (see [21]), when n is sufficiently large,

λn ∼
nπ
N∑
j=1

`j

. (81)

Then we get the following estimate: there exists a constant C̃ > 0 such that

C̃

a−1 ln


c
∑
n≥1

(λ2
na

2
n + b2n)

N1∑
k=1

‖θk‖2H2(0,T ;L2(0,`k))



−2b∑

n≥1

λ2b
n (λ2

na
2
n + b2n) ≥

∑
n≥1

(λ2
na

2
n + b2n).

(82)
Note that for any (θ0, u0, u1) ∈ D(A) and b ∈ (0, 1

2 ), there exists a positive constant
C such that

‖A(θ0, u0, u1)‖2H =

N1∑
k=1

∫ `k

0

(θ0
k,xxx)2 +

N∑
j=N1+1

[(u1
j,x)2 + (u0

j,xx)2]dx
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≥ C‖
(
(θ0, u0), (θ0

xx, u
1)
)
‖2N∏
j=1

H1+b
0 ×

N∏
j=1

Hb0

.

Since ‖
(
(θ0, u0), (θ0xx, u

1)
)
‖2N∏
j=1

H1+b
0 ×

N∏
j=1

Hb0

∼
∑
n≥1

λ2b
n (λ2

na
2
n + b2n) and ‖(θ0, u0, u1)‖2H ≤∑

n≥1

(λ2
na

2
n+b2n), then we deduce from (82) that for b ∈ (0, 1

2 ), there exists a constant

C > 0 such that

C

a−1 ln

 c‖(θ0, u0, u1)‖2H
N1∑
k=1

‖θk‖2H2(0,T ;L2(0,`k))



−2b

‖A(θ0, u0, u1)‖2H ≥ ‖(θ0, u0, u1)‖2H.

The proof of Theorem 5.8 is complete.

6. Decay rate for more general networks. In this section, we present some
results for general networks, which can be deduced similarly by the techniques
proposed in this paper.

Figure 4. heat network (left); wave network (right)

• Assume that the Dirichlet condition is satisfied at least at one exterior node of
the network. Then:

a). If the heat equation is fulfilled in all the edges (see Fig. 4 (left) for example),
then the energy of the network decays exponentially. This can be easily seen by the
energy identity and the Poincaré inequality along the network.

b). If the wave equation is satisfied in all edges (see Fig. 4 (right) for example),
then the energy is conserved.
• Assume that M is a tree-shaped wave network with Dirichlet condition at its
root. Consider a network composed by M extended by heat equations, such that all
the leaves in the resulting network are heat-like (see Fig. 5 for example). Then the
total energy of the network decays polynomially with the following sharp decay rate:

E(t) ≤ t−4‖(θ0, u0, u1)‖2D(A), (83)

where (θ0, u0, u1) is the initial condition.

Remark 6. This polynomial decay rate can be proved by combining the frequency
domain method together with the multipliers, as in the analysis of star-shaped
networks in Section 4 above.
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Root

Root

Figure 5. tree-shaped network M (left); the heat-wave network
extended from M (right)

Figure 6. star-shaped wave network M (left); heat-wave net-
work(right) extended from M

Especially, if the networkM in the above result is a star-shaped one, the following
extended result holds.
• If only part of the leaves in the resulting network are heat-like (see Fig. 6 for
example), then we have the following polynomial decay rate:

E(t) ≤ C 1

t
1
s̃+1

‖(θ0, u0, u1)‖2D(A), ∀t ≥ 0,

in which s̃ is given as follows:

1) s̃ = 1 + [N − Ñ − 1 + ε], if `i
`j
∈ Bε, i, j ∈ ]Mw, i 6= j,

2) s̃ = N − Ñ , if `i
`j
∈ S, i, j ∈ ]Mw, i 6= j,

3) s̃=1 + [1 + ε], if `j , j ∈ ]Mw satisfy the condition (S),
where ]Mw stands for the set of edges described by the wave equations which do
not connect heat-like edges directly. The sets Bε, S and the condition (S) are given
as in Definition 5.1 and 5.2.

Remark 7. The above decay rate can be shown by the observability estimate
method similarly as the discussion in Section 5, in which the heat-wave network is
replaced by pure wave network when deducing the observability inequality.

• Based on the observability estimate method (see Section 5), we can get the decay
rates for general heat-wave network G, as long as the weakened observability esti-
mate can be obtained for the corresponding wave network, in which all heat equations
are replaced by the wave ones. More precisely, assume that the following weakened
observability inequality holds:∑

k∈]Gh

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
∑
n≥1

γ2
n[λ2

na
2
n + b2n], (84)
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where (pk, pk,t), k ∈ ]Gh are the states of the wave equations which replace the heat
equations in the heat-wave network G; λn denote the corresponding eigenvalues and
an, bn the Fourier coefficients of the initial state, similar as in (40). In here ]Gh
stands for the set of edges evolving according to the heat equation.

Then the heat-wave network G decays as follows:
1). If the weights in (84) satisfy γn ≥ λ−sn , n ≥ 1, then network G decays

polynomially, that is,

E(t) ≤ C 1

t
1
s̃+1

‖(θ0, u0, u1)‖2D(A), ∀t ≥ 0,

where s̃ := [s] + 1.
2). If γ2

n ∼ ce−an, n ≥ 1, where c, a are positive constants, then network G
can achieve logarithmic decay rate, that is, for any b ∈ (0, 1

2 ), there always exists
positive constants a′, c′ such that

E(t) ≤ a′

(ln[c′(t+ 1)])2b
‖(θ0, u0, u1)‖2D(A), ∀t ≥ 0.

Remark 8. Following the proof in Section 5, the decay rate of star-shaped heat-
wave networks is deduced from the corresponding star-shaped wave networks. Hence,
employing a similar analysis, we can extend these results to more general heat-wave
networks. This approach is useful since there have been several methods and results
on the observability for wave networks (see [9], [15]). Note however that, in general,
this approach does not lead to optimal decay rates.

Remark 9. Despite the contributions of the present paper, the obtention of sharp
decay rates for all possible planar heat-wave networks is still a widely open subject
of research.

7. Appendix.

7.1. Appendix: Construction of ray-like approximate solutions of heat-
wave networks . This appendix is devoted to build ray-like approximate solutions
of (7) by the WKB approach of asymptotic expansion (see [25], [5]).

Step 1). The approximate solutions for the wave equations
We rewrite (8) as follows

uεĵ(x, t) = eiτt/ε
[
∞∑
k=0

εk[eiξx/εakĵ (x, t)+e−iξx/εb2kĵ (x, t)]+

∞∑
n=0

εn+
1
2 e−iξx/εb2n+1

ĵ
(x, t)

]
, (85)

uεj(x, t) = eiτt/ε
[
∞∑
k=0

εk[e−iξx/εb2kj (x, t)] +

∞∑
n=0

εn+
1
2 e−iξx/εb2n+1

j (x, t)

]
,

N1 + 1 ≤ j ≤ N, j 6= ĵ. (86)

A direct calculation yields that

∂ttu
ε
ĵ(x, t)

= −τ
2

ε2
eiτt/ε

[
∞∑
k=0

εk[eiξx/εakĵ (x, t) + e−iξx/εb2kĵ (x, t)] +

∞∑
n=0

εn+
1
2 e−iξx/εb2n+1

ĵ
(x, t)

]

+2
iτ

ε
eiτt/ε

[
∞∑
k=0

εk[eiξx/ε∂ta
k
ĵ (x, t)+e−iξx/ε∂tb

2k
ĵ (x, t)]+

∞∑
n=0

εn+
1
2e−iξx/ε∂tb

2n+1

ĵ
(x, t)

]

+eiτt/ε
[
∞∑
k=0

εk[eiξx/ε∂tta
k
ĵ (x, t)+e−iξx/ε∂ttb

2k
ĵ (x, t)]+

∞∑
n=0

εn+
1
2 e−iξx/ε∂ttb

2n+1

ĵ
(x, t)

]
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and

∂xxu
ε
ĵ(x, t)

=− ξ2

ε2
eiτt/ε

[
∞∑
k=0

εk[eiξx/εakĵ (x, t) + e−iξx/εb2kĵ (x, t)] +

∞∑
n=0

εn+
1
2 e−iξx/εb2n+1

ĵ
(x, t)

]

+2
iξ

ε
eiτt/ε

[
∞∑
k=0

εk[eiξx/ε∂xa
k
ĵ (x, t)−e−iξx/ε∂xb2kĵ (x, t)]−

∞∑
n=0

εn+
1
2 e−iξx/ε∂xb

2n+1

ĵ
(x, t)

]

+eiτt/ε
[
∞∑
k=0

εk[eiξx/ε∂xxa
k
ĵ (x, t)+e−iξx/ε∂xxb

2k
ĵ (x, t)]+

∞∑
n=0

εn+
1
2e−iξx/ε∂xxb

2n+1

ĵ
(x, t)

]
.

Let uε
ĵ
(x, t) satisfy uε

ĵ,tt
(x, t)−uε

ĵ,xx
(x, t) = O(ε∞). According to the term of O(ε−1),

we get that

2
iτ

ε
eiτt/ε[eiξx/ε∂ta

0
ĵ (x, t)+e

−iξx/ε∂tb
0
ĵ (x, t)]−2

iξ

ε
eiτt/ε[eiξx/ε∂xa

0
ĵ (x, t)−e

−iξx/ε∂xb
0
ĵ (x, t)]=0.

Thus, we have τ∂ta
0
ĵ
− ξ∂xa0

ĵ
= 0, τ∂tb

0
ĵ

+ ξ∂xb
0
ĵ

= 0. Using the similar argument

on other terms of O((
√
ε)n), n = −1, 0, 1, 2, · · · , we deduce that

τ∂ta
0
ĵ
− ξ∂xa0

ĵ
= 0, i2τ∂ta

n
ĵ
− i2ξ∂xanĵ + ∂tta

n−1

ĵ
− ∂xxan−1

ĵ
= 0,

τ∂tb
0
j + ξ∂xb

0
j = 0, τ∂tb

1
j + ξ∂xb

1
j = 0,

i2τ∂tb
2n
j + i2ξ∂xb

2n
j + ∂ttb

2(n−1)
j − ∂xxb2(n−1)

j = 0,

i2τ∂tb
2n+1
j + i2ξ∂xb

2n+1
j + ∂ttb

2n−1
j − ∂xxb2n−1

j = 0,

j = N1 + 1, N1 + 2, · · · , N, n = 1, 2, · · · .

(87)

Let us consider the equations (87) with initial conditions imposed at the joint node
x = 0, that is,

an
ĵ
(0, t) = an,0

ĵ
(t), bnj (0, t) = bn,0j (t), j = N1 + 1, N1 + 2, · · · , N, n = 0, 1, 2, · · · .

(88)
Note that they are all transport equations in (88). We get the unique ray-like
solutions to the above problem as follows:

a0
ĵ
(x, t) = a0,0

ĵ
(t+ τ

ξ x),

an
ĵ
(x, t) = an,0

ĵ
(t+ τ

ξ x)− i(2ξ)−1
∫ x

0
(∂tt − ∂xx)an−1

ĵ
(θ, t− τ

ξ (θ − x))dθ,

b0j (x, t) = b0,0j (t− τ
ξ x), b1j (x, t) = b1,0j (t− τ

ξ x),

b2nj (x, t) = b2n,0j (t− τ
ξ x) + i(2ξ)−1

∫ x
0

(∂tt − ∂xx)b
2(n−1)
j (θ, t+ τ

ξ (θ − x)dθ,

b2n+1
j (x, t) = b2n+1,0

j (t− τ
ξ x) + i(2ξ)−1

∫ x
0

(∂tt − ∂xx)b2n−1
j (θ, t+ τ

ξ (θ − x)dθ,

j = N1 + 1, N1 + 2, · · · , N, n = 1, 2, · · · .
(89)

Thus, the ray-like solutions (8) have been uniquely gotten from the initial conditions

an,0
ĵ

(t), bn,0j (t), j = N1 + 1, N1 + 2, · · · , N, n = 0, 1, 2, · · · .

Step 2). The approximate solutions for the heat equations
Let us build the solutions of the form (9) for the heat equations in (7). It can be

calculated directly that: for k = 1, 2, · · · , N1,

∂tθ
ε
k(x, t) ∼ iτ

ε
ei(τt/ε+xξ̂/

√
ε)
∞∑
n=0

(
√
ε)nBnk (x, t) + ei(τt/ε+xξ̂/

√
ε)
∞∑
n=0

(
√
ε)n∂tB

n
k (x, t),
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∂xxθ
ε
k(x, t) ∼ −ξ̂

2

ε
ei(τt/ε+xξ̂/

√
ε)
∞∑
n=0

(
√
ε)nBnk (x, t)+2

iξ̂√
ε
ei(τt/ε+xξ̂/

√
ε)
∞∑
n=0

(
√
ε)n∂xB

n
k (x, t)

+ei(τt/ε+xξ̂/
√
ε)
∞∑
n=0

(
√
ε)n∂xxB

n
k (x, t).

Since θεk, k = 1, 2, · · · , N1 satisfy θεk,t(x, t) − θεk,xx(x, t) = O(ε∞), similar to the

discussion for the wave equations, according to the term of O((
√
ε)n), we get{

∂xB
0
k(x, t) = 0,

−2iξ̂∂xB
n
k (x, t) + (∂t − ∂xx)Bn−1

k (x, t) = 0, n = 1, 2, 3, · · · (90)

From (9), we have

Bnk (x, t)|x=0 = fn(t), n = 0, 1, 2, · · · , k = 1, 2, · · · , N1. (91)

Then by (90) and (91), it is easy to get the unique functions Bnk (x, t), n = 0, 1, 2, · · ·
from fn(t) as follows:

B0
k(x, t) = f0(t), B1

k(x, t) = f1(t)− i
df0(t)
dt

2ξ̂
x,

Bnk (x, t) = fn(t)− i

2ξ̂

∫ x
0

(∂t − ∂xx)Bn−1
k (x, t)dx, n = 1, 2, · · · ,

k = 1, 2, · · · , N1.

(92)

Thus, we have identified θεk(x, t), k = 1, 2, · · · , N1 uniquely from fn, n = 0, 1, 2, · · · .
Step 3). Gluing uεj(x, t) and θεk(x, t) by the transmission conditions

By (9) and (91), we obtain

θεk(0, t) ∼ eiτt/ε[

∞∑
n=0

εnf2n(t) +

∞∑
n=0

εn+ 1
2 f2n+1(t)], k = 1, 2, · · · , N1,

∂xθ
ε
k(0, t) ∼ 1√

ε
eiτt/ε

[
iξ̂f0(t) +

∞∑
n=1

εn(iξ̂f2n(t) + ∂xB
2n−1
k (0, t))

+

∞∑
n=1

εn−
1
2 (iξ̂f2n−1(t) + ∂xB

2n−2
k (0, t))

]
.

On the other hand, from (8), we get that

uε
ĵ
(0, t) ∼ eiτt/ε

[ ∞∑
n=0

εn(an,0
ĵ

(t) + b2n,0
ĵ

(t)) +

∞∑
n=0

εn+ 1
2 b2n+1,0

ĵ
(t)
]
,

uεj(0, t) ∼ eiτt/ε
[ ∞∑
n=0

εnb2n,0j (t) +

∞∑
n=0

εn+ 1
2 b2n+1,0
j (t)

]
,

j = N1 + 1, N1 + 2, · · · , N, j 6= ĵ,

where an,0
ĵ

(t) and bn,0j (t) are the same as in (88). Note that from the transmission

conditions in (7), we have θεk(0, t) = uεj(0, t), k = 1, 2, · · · , N1, j = N1 + 1, N1 +
2, · · · , N . Hence,

f0(t) = a0,0

ĵ
(t) + b0,0

ĵ
(t) = b0,0j (t), j = N1 + 1, N1 + 2, · · · , N, j 6= ĵ,

f2n(t) = an,0
ĵ

(t) + b2n,0
ĵ

(t) = b2n,0j (t), j = N1 + 1, N1 + 2, · · · , N, j 6= ĵ,

f2n+1(t) = b2n+1,0
j (t), j = N1 + 1, N1 + 2, · · · , N, n = 0, 1, 2, · · · .

(93)
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We further calculate that

∂xu
ε
ĵ
(0, t) ∼ 1√

ε
eiτt/ε

[
iξ√
ε
(a0,0

ĵ
(t)− b0,0

ĵ
(t))− iξb1,0

ĵ
(t)

+

∞∑
n=1

εn[−iξb2n+1,0

ĵ
(t) + ∂xb

2n−1

ĵ
(0, t)]

+

∞∑
n=1

εn−
1
2 [iξ(an,0

ĵ
(t)− b2n,0

ĵ
(t)) + ∂xa

n−1

ĵ
(0, t) + ∂xb

2(n−1)

ĵ
(0, t)]

]
;

∂xu
ε
j(0, t) ∼ 1√

ε
eiτt/ε

[
− iξ√

ε
b0,0j (t)−iξb1,0j (t)+

∞∑
n=1

εn[−iξb2n+1,0
j (t)+∂xb

2n−1
j (0, t)]

+
∞∑
n=1

εn−
1
2 [−iξb2n,0j (t) + ∂xb

2(n−1)
j (0, t)]

]
,

j = N1 + 1, N1 + 2, · · · , N, j 6= ĵ.

Thus, from
N∑

j=N1+1

uεj,x(0, t) +
N1∑
k=1

θεk,x(0, t) = 0,

0 ∼ 1√
ε
eiτt/ε

[
iξ√
ε
a0,0
ĵ

(t) +

∞∑
n=1

εn−
1
2 (iξan,0

ĵ
(t) + ∂xa

n−1

ĵ
(0, t))

]

+

N∑
j=N1+1

{
1√
ε
eiτt/ε

[
− iξ√

ε
b0,0j (t)− iξb1,0j (t) +

∞∑
n=1

εn[−iξb2n+1,0
j (t) + ∂xb

2n−1
j (0, t)]

+

∞∑
n=1

εn−
1
2 [−iξb2n,0j (t) + ∂xb

2n−2
j (0, t)]

]}

+

N1∑
k=1

{
1√
ε
eiτt/ε

[
iξ̂f0(t) +

∞∑
n=1

εn(iξ̂f2n(t) + ∂xB
2n−1
k (0, t))

+

∞∑
n=1

εn−
1
2 (iξ̂f2n−1 + ∂xB

2n−2
k (0, t))

]}
.

Based on the above equation, in order to identify uεj(x, t) and θεj(x, t), we will get

fn and bn,0j (t), j = N1 + 1, N1 + 2, · · · , N from an,0
ĵ

(t). From the term of O(ε−1),

we have

a0,0

ĵ
(t) =

N∑
j=N1+1

b0,0j (t). (94)

From the term of O(ε−
1
2 ), we get

−
N∑

j=N1+1

iξb1,0j (t) +N1iξ̂f
0(t) = 0. (95)

Note that from (93),

b0,0
ĵ

(t) = f0(t)− a0,0

ĵ
(t), b0,0j (t) = f0(t), j = N1 + 1, N1 + 2, · · · , N, j 6= ĵ, (96)

which together with (94) implies that 2a0,0

ĵ
(t) = (N −N1)f0(t). Hence,

f0 =
2a0,0

ĵ
(t)

N −N1
. (97)
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Then, from the third equation in (93) and (95), we have

−
N∑

j=N1+1

iξf1(t) +
2iN1ξ̂a

0,0

ĵ
(t)

N −N1
= 0.

Thus,

b1,0j (t) = f1(t) =
2N1ξ̂a

0,0

ĵ
(t)

(N −N1)2ξ
, j = N1 + 1, N1 + 2, · · · , N. (98)

From the term of O(εn−
1
2 ) (n ≥ 1),

N1∑
k=1

(iξ̂f2n(t) + ∂xB
2n−1
k (0, t)) +

N∑
j=N1+1

(−iξb2n+1,0
j (t) + ∂xb

2n−1
j (0, t)) = 0. (99)

Similarly, from the term of O(εn−1), n = 1, 2, · · · ,

iξan,0
ĵ

(t) + ∂xa
n−1

ĵ
(0, t)+

N1∑
j=1

(iξ̂f2n−1(t) + ∂xB
2n−2
j (0, t))

+

N∑
j=N1+1

[
− iξb2n,0j (t)+∂xb

2n−2
j (0, t)

]
= 0. (100)

When n = 1, from (100), we get

iξa1,0

ĵ
(t)+∂xa

0
ĵ
(0, t)+

N1∑
j=1

(iξ̂f1(t)+∂xB
0
j (0, t))+

N∑
j=N1+1

[
−iξb2,0j (t)+∂xb

0
j (0, t)

]
= 0.

Then by (93),

i2ξa1,0

ĵ
(t)+∂xa

0
ĵ
(0, t)+

N1∑
j=1

(iξ̂f1(t)+∂xB
0
j (0, t))+

N∑
j=N1+1

[
−iξf2(t)+∂xb

0
j (0, t)

]
= 0.

Thus, a direct calculation yields

f2(t)=
1

(N−N1)iξ

[
i2ξa1,0

ĵ
(t)+∂xa

0
ĵ (0, t)+

N1∑
j=1

(iξ̂f1(t)+∂xB
0
j (0, t))+

N∑
j=N1+1

∂xb
0
j (0, t)

]
,

in which b0,0j , f0 are given as (96), (97); a0
ĵ
(x, t), b0j (x, t) and B0

j (x, t), can be

uniquely determined by (89) and (92), respectively. Thus, by (93), we get all

b2,0j (t), j = N1 + 1, N1 + 2, · · · , N.
Continuing the similar argument by induction, we can obtain all the bn,0j (t), fn(t)

uniquely from an,0
ĵ

(t) and hence an
ĵ
(x, t), bnj (x, t) and Bnk (x, t) can also be identified

from an,0
ĵ

(t). It means that by the transmission conditions in (7), the reflected

waves in (8) and the heat-like solutions (9) can be determined uniquely from the
constructed incoming wave in the wave domain.

7.2. Appendix: Proof of Lemma 4.3. This appendix is devoted to prove Lemma
4.3. We mainly construct a counterexample by the trick from [4] to show this
Lemma.

Let us consider the resolvent system for A as follows

iσW −AW = F, (101)
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where W = ((θk)N−1
k=1 , u, z), F = ((f0

k )N−1
k=1 , f

1, f2). Thus system (101) can be
rewritten as follows:

iσθk − θk,xx = f0
k , k = 1, 2, · · · , N − 1, (102)

iσu− z = f1, (103)

iσz − uxx = f2, (104)

with boundary and transmission conditions

u(`N ) = θk(`k) = 0, k = 1, 2, · · · , N − 1,
θk(0) = u(0), ∀k = 1, 2, 3, · · · , N − 1,
N−1∑
k=1

θk,x(0) + ux(0) = 0.
(105)

Set f0
k = f1 = 0, k = 1, 2, · · · , N − 1, and f2 = g. Thus, (102) can be rewritten as

follows:

iσθk − θk,xx = 0, k = 1, 2, · · · , N − 1, (106)

−σ2u− uxx = g. (107)

We calculate directly that
θk(x) = θk(0)

sinh
√
iσ`k

sinh
√
iσ(`k − x), k = 1, 2, · · · , N − 1,

u(x) = u(0)
sinσ`N

sinσ(`N − x) + sinσ(`N−x)
σ sinσ`N

∫ `N
0

g(`N − s) sinσ(`N − s)ds
− 1
σ

∫ `N−x
0

g(`N − s) sinσ(`N − x− s)ds.
(108)

Note that
N−1∑
k=1

θk,x(0) + ux(0) = 0 and θk(0) = u(0), k = 1, 2, · · · , N − 1. Hence,

we get

σu(0)

[
−
N−1∑
k=1

√
i cosh

√
iσ`k√

σ sinh
√
iσ`k

− cosσ`N
sinσ`N

]

=
cosσ`N
sinσ`N

∫ `N

0

g(`N − s) sinσ(`N − s)ds

−
∫ `N

0

g(`N − s) cosσ(`N − s)ds, (109)

which implies that

σu(0) =
cosσ`N
sinσ`N

∫ `N
0

g(`N − s) sinσ(`N − s)ds−
∫ `N

0
g(`N − s) cosσ(`N − s)ds

−
N−1∑
k=1

√
i cosh

√
iσ`k√

σ sinh
√
iσ`k
− cosσ`N

sinσ`N

.

Note that −
N−1∑
k=1

√
i cosh

√
iσ`k√

σ sinh
√
iσ`k
∼ −

N−1∑
k=1

√
i√
σ
, σ → +∞. Now, set g(s) = sin(σ(`N −

s)), where σ`N = 2nπ + π
2 + n−

1
2 . Then we have

cos(σ`N ) ∼ n− 1
2 , sin(σ`N ) ∼ 1, σ → +∞. (110)

Note that
∫ x

0
sin(σs) sinσ(x− s)ds = −x cos(σx)

2 − sin3(σx)
2σ`0

+ cos(σx) sin(2σx)
2σ . A direct

calculation yields ∫ `N

0

sin(σs) sinσ(`N − s)ds→ 0, σ → +∞. (111)
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Similarly, we get ∫ `N

0

sin(σs) cosσ(`N − s)ds→
`N
2
, σ → +∞. (112)

Thus, when σ → +∞,

σu(0) ∼
cosσ`N
sinσ`N

∫ `N
0

sin(σs) sinσ(`N − s)ds−
∫ `N

0
sin(σs) cosσ(`N − s)ds

−(N − 1)
√
i√
σ
− cosσ`N

sinσ`N

∼
− `N2

−(N − 1)
√
i√
σ
− 1√

σ

=
√
σ

`N

2(N − 1)
√
i+ 2

. (113)

Hence, when σ → +∞,

σu(x) =
σu(0)

sinσ`N
sinσ(`N − x) +

sinσ(`N − x)

sinσ`N

∫ `N

0

sin(σs) sinσ(`N − s)ds

−
∫ `N−x

0

sin(σs) sinσ(`N − x− s)ds

∼
√
σ

`N

2(N−1)
√
i+2

sinσ(`N−x)−
∫ `N−x

0

sin(σs)sinσ(̀ N−x−s)ds.(114)

Here we have used (110) and (111) and the boundedness of sinσ(`N−x). Therefore,

‖σu(x)‖2 ∼
∫ `N

0

∣∣∣∣∣√σ `N
2(N−1)

√
i+2

sinσ(`N − x)

−
∫ `N−x

0
sin(σs) sinσ(`N − x− s)ds

∣∣∣∣∣
2

dx.

(115)

Note that
∫ `N−x

0
sin(σs) sinσ(`N − x− s)ds is bounded. Thus we have

‖σu(x)‖2 ≥ C1

∫ `N

0

∣∣∣∣√σ `N

2(N − 1)
√
i+ 2

sinσ(`N − x)

∣∣∣∣2 dx+ C2

∼ C̃1σ + C̃2. (116)

Therefore, ‖W‖2H ≥ ‖σu(x)‖2 ≥ C̃1σ + C̃2. Hence, there at least exists a sequence

(σn, Fn) satisfying ‖(iσnI −A)−1Fn‖2H ≥ C̃1σn + C̃2, σn → +∞ as n→∞.

7.3. Appendix: Proof of Proposition 1. This appendix is devoted to show
Proposition 1. We mainly prove this proposition by estimating some inequalities
together with the known observability results in [9].

Lemma 7.1. Let t1, t2 > 0. Then for each (ω1, ω2) ⊂ (0, `k),∫ t2

t1

∫ ω2

ω1

(p2
k,x(x, t) + p2

k,t(x, t))dxdt≥
ω2 − ω1

`k

∫ t̂2

t̂1

∫ `k

0

(p2
k,x(x, t) + p2

k,t(x, t))dxdt,

(117)
where k = 1, 2, · · · , N1 and

t2−t1>2 max
k
{`k − ω2, ω1}, t̂1 = t1 + max

k
{`k − ω2, ω1}, t̂2 = t2 −max

k
{`k − ω2, ω1}.

(118)
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Proof. By D’Alembert formula, we have that for x0 ∈ (0, `k), k = 1, 2, · · · , N1,∫ t2

t1

(p2
k,x(x0, t) + p2

k,t(x0, t))dt ≥
∫ t2+x−x0

t1+x0−x
(p2
k,x(x, t) + p2

k,t(x, t))dt, 0 ≤ x < x0

and∫ t2

t1

(p2
k,x(x0, t) + p2

k,t(x0, t))dt ≥
∫ t2−x+x0

t1−x0+x

(p2
k,x(x, t) + p2

k,t(x, t))dt, `k ≥ x > x0.

So,∫ t2

t1

(p2
k,x(x0, t) + p2

k,t(x0, t))dt ≥
∫ t̂2

t̂1

(p2
k,x(x, t) + p2

k,t(x, t))dt, k = 1, 2, · · · , N1,

where t̂1, t̂2 are given as (118). Thus, integrating respect to x from 0 to `k, we have

`k

∫ t2

t1

(p2
k,x(x0, t) + p2

k,t(x0, t))dt ≥
∫ t̂2

t̂1

∫ `k

0

(p2
k,x(x, t) + p2

k,t(x, t))dxdt.

Finally, integrating respect to x0 from ω1 to ω2, we obtain

`k

∫ t2

t1

∫ ω2

ω1

(p2
k,x(x0, t) + p2

k,t(x0, t))dx0dt

≥ (ω2 − ω1)

∫ t̂2

t̂1

∫ `k

0

(p2
k,x(x, t) + p2

k,t(x, t))dxdt.

Therefore, (117) holds.

Lemma 7.2. Let t1, t2, %, τ > 0. Then there exists a constant C3 such that for
k = 1, 2, · · · , N1,

C3

∫ t2

t1

∫ `k

0

(p2
k,t + p2

k)dxdt ≥
∫ t2−%−τ

t1+%+τ

∫ `k

0

(p2
k,x + p2

k,t)dxdt, (119)

where %, τ are some positive constants and

t2 − t1 > 2%+ 2τ. (120)

Proof. Multiplying the first equation in (38) by x2h(t)pk, where h = h(t) is a non-
negative smooth function such that

h = 1 in [t1 + %, t2 − %], h(t1) = h(t2) = 0,

and integrating in (t1, t2)× (0, `k) we obtain∫ t2

t1

∫ `k

0

x2h(t)pkpk,ttdxdt−
∫ t2

t1

∫ `k

0

x2h(t)pkpk,xxdxdt = 0, k = 1, 2, · · · , N1.

(121)
Integrating by parts, we get

0 =

∫ `k

0

x2h(t)pkpk,tdx|t2t1 −
∫ t2

t1

∫ `k

0

x2(h′(t)pk + h(t)pk,t)pk,tdxdt

−
∫ t2

t1

x2h(t)pkpk,xdt|`k0 +

∫ t2

t1

∫ `k

0

h(t)(2xpk + x2pk,x)pk,xdxdt,

k = 1, 2, · · · , N1.

Hence, ∫ t2

t1

∫ `k

0

x2h(t)p2k,tdxdt+

∫ t2

t1

∫ `k

0

x2h′(t)pk,tpkdxdt
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=

∫ t2

t1

∫ `k

0

2xh(t)pkpk,xdxdt+

∫ t2

t1

∫ `k

0

x2h(t)p2k,xdxdt.

Note that∫ t2

t1

∫ `k

0

xh(t)pkpk,xdxdt =

∫ t2

t1

h(t)xp2
kdt|

`k
0 −

∫ t2

t1

∫ `k

0

h(t)(pk + xpk,x)pkdxdt

= −
∫ t2

t1

∫ `k

0

h(t)(pk + xpk,x)pkdxdt.

Hence,
∫ t2
t1

∫ `k
0
xh(t)pkpk,xdxdt = − 1

2

∫ t2
t1

∫ `k
0
h(t)p2

kdxdt, k = 1, 2, · · · , N1. So,∫ t2

t1

∫ `k

0

x2h(t)p2
k,tdxdt+

∫ t2

t1

∫ `k

0

x2h′(t)pk,tpkdxdt

= −
∫ t2

t1

∫ `k

0

h(t)p2
kdxdt+

∫ t2

t1

∫ `k

0

x2h(t)p2
k,xdxdt.

Thus, using Cauchy-Schwarz inequality, we have that there exist τ > 0 and C̃3 such
that

C̃3

∫ t2

t1

∫ `k

0

(p2
k,t + p2

k)dxdt ≥
∫ t2

t1

∫ `k

τ

h(t)p2
k,xdxdt, k = 1, 2, · · · , N1.

By the definition of h(t), we obtain

C̃3

∫ t2

t1

∫ `k

0

(p2
k,t + p2

k)dxdt ≥
∫ t2−%

t1+%

∫ `k

τ

p2
k,xdxdt, k = 1, 2, · · · , N1.

On the other hand, from Lemma 7.1,∫ t2−%

t1+%

∫ `k

τ

(p2
k,x+p2

k,t)dxdt ≥
`k − τ
`k

∫ t2−%−τ

t1+%+τ

∫ `k

0

(p2
k,x+p2

k,t)dxdt, k = 1, 2,· · ·, N1.

Therefore, there exists constant C3 > 0 such that

C3

∫ t2

t1

∫ `k

0

(p2
k,t + p2

k)dxdt ≥
∫ t2−%−τ

t1+%+τ

∫ `k

0

(p2
k,x + p2

k,t)dxdt, k = 1, 2, · · · , N1.

The proof is complete.

Note that using sidewise estimate, we can get∫ t2

t1

∫ `k

0

(p2
k,x + p2

k,t)dxdt ≥ `k
∫ t2−`k

t1+`k

[p2
k,x(0, t) + p2

k,t(0, t)]dt, k = 1, 2, · · · , N1.

(122)
Thus, we have the following estimate.

C4

N1∑
k=1

∫ t2

t1

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
N1∑
k=1

∫ t2−ρ−τ−`k

t1+ρ+τ+`k

[p2
k,x(0, t) + p2

k,t(0, t)]dt.

Then by the above inequality and the transmission conditions in (38), together
with the observability results on the exterior node controls for star-sharped network
system (see [9]), we get that there exists positive constant T such that

N1∑
k=1

∫ T

0

∫ `k

0

[p2
k,t + p2

k]dxdt ≥
∑
n≥1

γ2
n[λ2

na
2
n + b2n],
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where γ2
n > 0 given as in Remark 5, which is dependent on the lengths of the strings

involved in the network; λn are the eigenvalues of the operator A corresponding to
system (38); an, bn are the Fourier coefficients of the initial condition given as (40).
The proof of Proposition 1 is complete.

7.4. Appendix: Polynomial decay rate of system (11) (based on observ-
ability estimate) . In this appendix, the observability estimate method in Section
5 is used to discuss the decay rate of system (11) in which only one wave equation en-
ters in the network. Similar to the discussion in subsection 5.2, we get the following
observability estimate.

C

N−1∑
k=1

∫ T

0

∫ `k

0

[θ2
k,tt + θ2

k,t + θ2
k]dxdt ≥ ‖(θ0, u0, u1)‖2H, (123)

where (θ0, u0, u1) is the initial condition in system (11). Based on (123) and Lemma
5.7, we deduce that the (S(t))t≥0 associated with the system (2) decays polynomially
as

‖S(t)W0‖H ≤
C

t
1
2

‖W0‖D(A). (124)

Indeed, let (Θr, Ur, Urt ), Er(t), r = −2,−1, 1 be defined as (60) and (61), respec-
tively. Then

E(T )− E(S) = −
N−1∑
k=1

∫ T

S

∫ `k

0

θ2
k,tdxdt,

E−1(T )− E−1(S) = −
N−1∑
k=1

∫ T

S

∫ `k

0

(Θ−1
k,t)

2dxdt,

and

E−2(T )− E−2(S) = −
N−1∑
k=1

∫ T

S

∫ `k

0

(Θ−2
k,t)

2dxdt.

Set ε(t) = E(t) + E−1(t) + E−2(t). We get that for 0 ≤ S ≤ T <∞,

ε(T )− ε(S) = −
N−1∑
k=1

∫ T

S

∫ `k

0

[θ2
k,t + (Θ−1

k,t)
2 + (Θ−2

k,t)
2]dxdt

= −
N−1∑
k=1

∫ T

S

∫ `k

0

[(Θ−1
k,tt)

2 + (Θ−1
k,t)

2 + (Θ−1
k )2]dxdt. (125)

By (123), we deduce that C
N−1∑
k=1

∫ T
S

∫ `k
0

[(Θ−1
k,tt)

2 + (Θ−1
k,t)

2 + (Θ−1
k )2]dxdt ≥ E−1(S).

Note that ε(t) ∼ E(t). Hence,

C(E(S)− E(T )) ≥ E−1(S). (126)

From Corollary 2, we get E(t) ≤ Ĉ2
√
E−(t)E1(t). Hence, E−(t) ≥ (E(t))2

Ĉ4E1(t)
, which

together with (126), implies that there exists a constant C > 0 such that C(E(mT )−
E((m+ 1)T )) ≥ (E(mT ))2

E1(0) . Here we have used E1(t) ≤ E1(0), t ≥ 0, because of the

dissipativity of system (11). Thus, C(E(mT )
E1(0) −

E((m+1)T )
E1(0) ) ≤

(
E(mT )
E1(0)

)2

. Finally,

according to Lemma 5.7, set α = 0, we get (124).
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Remark 10. Compared to the decay rate obtained in Section 4, it is easy to find
that the decay rate obtained from the observability estimate method is not the
sharp one, which also implies that the weakened observability inequality (123) is
not sharp.
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