Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells

  • Received: 14 April 2020 Accepted: 08 June 2020 Published: 22 June 2020
  • A new mathematical model was proposed to study the effect of self-proliferation and delayed activation of immune cells in the process of virus infection. The global stability of the boundary equilibria was obtained by constructing appropriate Lyapunov functional. For positive equilibrium, the conditions of stability and Hopf bifurcation were obtained by taking the delay as the bifurcation parameter. Furthermore, the direction and stability of the Hopf bifurcation are derived by using the theory of normal form and center manifold. These results indicate that self-proliferation intensity can significantly affect the kinetics of viral infection, and the delayed activation of immune cells can induce periodic oscillation scenario. Along with the increase of delay time, numerical simulations give the corresponding bifurcation diagrams under different self-proliferation rates, and verify that there exists stability switch phenomenon under some conditions.

    Citation: Huan Kong, Guohong Zhang, Kaifa Wang. Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242

    Related Papers:

    [1] Eunha Shim, Beth Kochin, Alison Galvani . Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences and Engineering, 2009, 6(4): 839-854. doi: 10.3934/mbe.2009.6.839
    [2] Hyun Mo Yang, André Ricardo Ribas Freitas . Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, 2019, 16(4): 3195-3214. doi: 10.3934/mbe.2019159
    [3] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [4] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [5] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [6] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [7] Xunyang Wang, Canyun Huang, Yuanjie Liu . A vertically transmitted epidemic model with two state-dependent pulse controls. Mathematical Biosciences and Engineering, 2022, 19(12): 13967-13987. doi: 10.3934/mbe.2022651
    [8] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [9] Lan Zou, Jing Chen, Shigui Ruan . Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1585-1604. doi: 10.3934/mbe.2017082
    [10] Hai-Feng Huo, Tian Fu, Hong Xiang . Dynamics and optimal control of a Zika model with sexual and vertical transmissions. Mathematical Biosciences and Engineering, 2023, 20(5): 8279-8304. doi: 10.3934/mbe.2023361
  • A new mathematical model was proposed to study the effect of self-proliferation and delayed activation of immune cells in the process of virus infection. The global stability of the boundary equilibria was obtained by constructing appropriate Lyapunov functional. For positive equilibrium, the conditions of stability and Hopf bifurcation were obtained by taking the delay as the bifurcation parameter. Furthermore, the direction and stability of the Hopf bifurcation are derived by using the theory of normal form and center manifold. These results indicate that self-proliferation intensity can significantly affect the kinetics of viral infection, and the delayed activation of immune cells can induce periodic oscillation scenario. Along with the increase of delay time, numerical simulations give the corresponding bifurcation diagrams under different self-proliferation rates, and verify that there exists stability switch phenomenon under some conditions.




    [1] J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. A. Lifton, et al, Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science, 283 (1999), 857-860.
    [2] L. C. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006), 44-57.
    [3] X. Y. Song, A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281-297.
    [4] R. J. De Boer, A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol., 190 (1998), 201-214.
    [5] Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011), 14-27.
    [6] J. L. Wang, J. M. Pang, T. Kuniya, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241 (2014), 298-316.
    [7] M. A. Nowak, S. Bonhoefier, A. M. Hill, R. Boehme, H. C. Thomas, H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402.
    [8] A. Korobeinikov, S. Giles, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
    [9] M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
    [10] H. Zhu, X. Zou, Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay,Discr. Cont. Dyn. Syst. Ser. B, 12 (2009), 511-524.
    [11] K. Wang, W. Wang, H. Pang, X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D, 226 (2007), 197-208.
    [12] Yukihiko Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011), 14-27.
    [13] H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLVI infection and its consequences in HAM/TSP development and prevention, Bull. Math. Biol., 72 (2010), 681-696.
    [14] R. M. Anderson, R. M. May, S. Gupta, Non-linear phenomena in host-parasite interactions, Parasitology, 99 (1989), 59-79.
    [15] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.
    [16] C. Chiyaka, W. Garira, S. Dube, Modelling immune response and drug therapy in human malaria infection, Comput. Math. Method. Med., 9 (2008), 143-163.
    [17] A. S. Perelson, Modelling viral and immune system dynamics, Nature Rev. Immunol., 2 (2002), 28-36.
    [18] A. Korobeinikov, Immune response and within-host viral evolution:Immune response can accelerate evolution, J. Theor. Biol., 456 (2018),74-83.
    [19] H. Q. Zhang, H. Chen, C. C Jiang, K. F. Wang, Effect of explicit dynamics of free virus and intracellular delay, Chaos, Solitons Fractals, 104 (2017), 827-834.
    [20] Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506-527.
    [21] K. Allali, S. Harroudi, D. F. M. Torre, Analysis and optimal control of an intracellular delayed HIV model with CTL immune response, Math. Comput. Sci., 12 (2018), 111-127.
    [22] H. J. Liu, J. F. Zhang, Dynamics of two time delays differential equation model to HIV latent infection, Physica A, 514 (2019), 384-395.
    [23] M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774-1793.
    [24] D. W. Huang, X. Zhang, Y. F. Guo, H. L. Wang, Analysis of an HIV infection model with treatment sand delayed immune response, Appl. Math. Model., 40 (2016), 3081-3089.
    [25] D. Wodarz, J. P. Christensen, A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, Trends Immunol., 23 (2002), 194-200.
    [26] C. Bartholdy, J. P. Christensen, D. Wodarz, A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus, J. Virology, 74 (2000), 10304-10311.
    [27] K. Wang, Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Comm. Pure Appl. Anal., 10 (2011), 1537-1548.
    [28] S. Bonhoeffer, J. M. Coffin, M. A. Nowak, Human immunodeficiency virus drug therapy and virus load, J. Virology, 71 (1997), 3275-3278.
    [29] M. Nagumo, Uber die lage der integralkurven gewohnlicher differentialgleichungen, Proc. Phys. Math. Soc., 24 (1942), 551-559.
    [30] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
    [31] B. Hassard, D. Kazarinoff, Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981.
  • This article has been cited by:

    1. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    2. Bruno Buonomo, Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions, 2015, 3, 2227-7390, 1241, 10.3390/math3041241
    3. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    4. Benjamin Riche, Hélène Bricout, Marie-Laure Kürzinger, Sylvain Roche, Jean Iwaz, Jean-François Etard, René Ecochard, Modeling and predicting the long-term effects of various strategies and objectives of varicella-zoster vaccination campaigns, 2016, 15, 1476-0584, 927, 10.1080/14760584.2016.1183483
    5. Lingcai Kong, Jinfeng Wang, Weiguo Han, Zhidong Cao, Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model, 2016, 13, 1660-4601, 253, 10.3390/ijerph13030253
    6. Nkengafac Villyen Motaze, Zinhle E. Mthombothi, Olatunji Adetokunboh, C. Marijn Hazelbag, Enrique M. Saldarriaga, Lawrence Mbuagbaw, Charles Shey Wiysonge, The Impact of Rubella Vaccine Introduction on Rubella Infection and Congenital Rubella Syndrome: A Systematic Review of Mathematical Modelling Studies, 2021, 9, 2076-393X, 84, 10.3390/vaccines9020084
    7. BRUNO BUONOMO, ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES, 2011, 19, 0218-3390, 263, 10.1142/S0218339011003853
    8. Bruno Buonomo, 2014, Chapter 3, 978-3-319-06922-7, 23, 10.1007/978-3-319-06923-4_3
    9. Chairat Modnak, Jin Wang, Zindoga Mukandavire, Simulating optimal vaccination times during cholera outbreaks, 2014, 07, 1793-5245, 1450014, 10.1142/S1793524514500144
    10. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    11. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001
    12. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    13. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    14. Adison Thongtha, Chairat Modnak, Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand, 2022, 7, 24680427, 835, 10.1016/j.idm.2022.11.002
    15. Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou, A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies, 2024, 10075704, 107981, 10.1016/j.cnsns.2024.107981
    16. Gui Guan, Zhenyuan Guo, Yanyu Xiao, Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination, 2024, 137, 10075704, 108097, 10.1016/j.cnsns.2024.108097
    17. Samiullah Salim, Fazal Dayan, Muhammad Azizur Rehman, Husam A. Neamah, Optimization and Control in Rubella Transmission Dynamics: A Boundedness-Preserving Numerical Model with Vaccination, 2024, 23529148, 101595, 10.1016/j.imu.2024.101595
    18. Habtamu Ayalew Engida, Demeke Fisseha, Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis, 2025, 24682276, e02517, 10.1016/j.sciaf.2024.e02517
    19. Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, Marco Verani, A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts, 2025, 437, 00457825, 117796, 10.1016/j.cma.2025.117796
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4092) PDF downloads(303) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog