Citation: Bing Liu, Gang Hu, Baolin Kang, Xin Huang. Analysis of a hybrid pest management model incorporating pest resistance and different control strategies[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4364-4383. doi: 10.3934/mbe.2020241
[1] | C. V. L. Joop, J. W. V. R. Herman, S. Susanne, Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: how does it work?, Biol. Control., 6 (1996), 1-10. |
[2] | A. L. Marten, C. C. Moore, An options based bioeonomic model for biological and chemical control of invasive species, Ecol. Econ., 70 (2011), 2050-2061. |
[3] | J. C. Van Lenteren, J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Ent., 33 (1988), 239-250. |
[4] | S. Udayagiri, A. P. Norton, S. C. Welter, Interating pesticide effects with inundative biological control: interpretation of pesticide toxicity curves for Anaphesiole in strawberries, Entomol. Exp. Appl., 95 (2000), 87-95. |
[5] | J. C. Van Lenteren, The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake, Biocontrol, 57 (2012), 1-20. |
[6] | S. Y. Tang, Y. N. Xiao, L. S. Chen, R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005), 115-135. |
[7] | B. Liu, W. B.Liu, F. M. Tao, B. L. Kang, A dynamical analysis of a piecewise smooth pest control SI model, Int. J. Bifurcat. Chaos., 25 (2015), 1550068. |
[8] | J. J. Jiao, L. S. Chen, Global attractivity of a stage-structure variable coefficients predatorprey system with time delay and impulsive perturbations on predators, Int. J. Biomath., 1 (2008), 197-208. |
[9] | G. J. Lan, Y. J. Fu, C. J. Wei, S. W. Zhang, A research of pest management SI stochastic model concerning spraying pesticide and releasing natural enemies, Commun. Math. Biol. Neurosci., 2018 (2018), 3648. |
[10] | C. T. Li, S. Y. Tang, The effects of timing of pulse spraying and releasing periods on dynamics of generalized predator-prey model, Int. J. Biomath., 5 (2012), 1250012. |
[11] | S. H. Cai, J. J. Jiao,L. M. Li, Dynamics of a pest management predator-prey model with stage structure and impulsive stocking, J. Appl. Math. Comput., 52 (2016), 125-138. |
[12] | X. J. Fang, Y. F. Shao, W. L. Kong, X. M. Ma, Z. Wang, Z. X. Ju, The dynamics of a delayed Gompertz model with Holling IV function response and impulsive effects at different moment on the prey, J. Appl. Math. Comput. 15 (2010), 421-429. |
[13] | J. Yang, S. Y.Tang, Y. S. Tan, Complex dynamics and bifurcation analysis of host-parasitoid models with impulsive control strategy, Chaos. Soliton. Fract., 91 (2016), 522-532. |
[14] | H. Malchow, B. Radtke, M. Kallache, A. B. Medvinsky, D. A. Tikhonov, S. V. Petrovskii, Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion, Nonlinear Anal. Real World Appl., 1 (2000), 53-67. |
[15] | B. Liu, Y. Tian, B. L. Kang, Dynamics on a Holling II predator-prey model with statedependent impulsive control, Int. J. Biomath., 5 (2012), 12600066. |
[16] | G. P. Pang, L. S. Chen, W. J. Xu, A stage structure pest management model with impulsive state feedback control, Commun. Nonlinear. Sci. Numer. Simulat., 23 (2015), 78-88. |
[17] | Y. Tian, S. Y. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Model. Anal., 24 (2019), 134-154. |
[18] | J. B. Fu, L. S. Chen, Modelling and qualitative analysis of water hyacinth ecological system with two state-dependent impulse controls, Complexity, 2018 (2018), 4543976. |
[19] | H. Zhou, X. Wang, S. Y. Tang, Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate, Math. Biosci. Eng., 16 (2019), 7327-7361. |
[20] | L. R. Liu, C. C. Xiang, G. Y. Tang, Y. Fu, Sliding dynamics of a Filippov forest-Pest model with threshold policy control, Complexity, 2019 (2019), 2371838. |
[21] | W. J. Qin, X. W. Tan, X. T. Shi, J. H.Chen, X. Z. Liu, Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcat. Chaos., 29 (2019), 1950020. |
[22] | S. Y. Tang, G. Y. Tang, W. J. Qin, Codimension-1 Sliding bifurcations of a Filippov pest growth model with threshold policy, Int. J. Bifurcat. Chaos., 24 (2014), 1450122. |
[23] | S. Y. Tang, J. H. Liang, Y. N. Xiao, R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds, SIAM. J. Appl. Math., 72 (2012), 1061-1080. |
[24] | C. E. Suttman, G. W. Barrett, Effects of sevin on arthropods in an agricultural and an oldfield plant community, Ecology, 69 (1979), 628-641. |
[25] | D. J. Ward, R. E. Wilson, Pesticide effects on decomposition and recycling of Avena litter in a monoculture ecosystem, Am. Midl. Nat., 90 (1973), 266-276. |
[26] | B. L. Kang, B. Liu, F. M. Tao, An integrated pest management model with dose-response effect of pesticides, J. Biol. Syst., 26 (2018), 59-86. |
[27] | J. H. Liang, S. Y. Tang, R. A. Cheke, An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics, Nonlinear Anal. Real World Appl., 13 (2012), 2352-2374. |
[28] | J. C. Panetta, A logistic model of periodic chemotherapy, Appl. Math. Lett., 8 (1995), 83-86. |
[29] | J. H. Liang, S. Y. Tang, J. J. Nieto, R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249-257. |
[30] | J. H. Liang, S. Y. Tang, R. A. Cheke, J. H. Wu, Adaptive release of natural enemies in a pestnatural enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167-2195. |
[31] | J. H. Liang, S. Y. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear. Sci. Numer. Simulat., 36 (2016), 327-341. |
[32] | D. Suandi, K. P. Wijaya, M. Apri, K. A. Sidarto, D. Syafruddin, T. Götz, et al., A one-locus model describing the evolutionary dynamics of resistance against insecticide in Anopheles mosquitoe, Appl. Math. Comput., 359 (2019), 90-106. |
[33] | A. d'Onofrio, Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures, Math. Comput. Model, 36 (2002), 473-489. |
[34] | A. d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput., 151 (2004), 181-187. |
[35] | Q. Liu, Q. M. Chen, Dynamics of stochastic delay Lotka-Volterra systems with impulsive toxicant input and Levy noise in polluted environments, Appl. Math. Comput., 256 (2015), 52-67. |
[36] | B. Liu, Y. Duan, S. Luan, Dynamics of an SI epidemic model with external effects in a polluted environment, Nonlinear Anal. Real World Appl., 13 (2012), 27-38. |
[37] | Y. Xue, S. Y. Tang, J. H. Liang, Optimal timing of interventions in fishery resource and pest management, Nonlinear Anal. Real World Appl., 13 (2012), 1630-1646. |
[38] | Y. Tan, L. J. Ning, S. Y. Tang, Optimal threshold density in a stochastic resource management model with pulse intervention, Nat. Resour. Model, 32 (2019), e12220. |
[39] | J. Yang, Y. S. Tan, R. A. Cheke, Complex dynamics of an impulsive chemostat model, Int. J. Bifurcat. Chaos, 29 (2019), 1950101 |
[40] | Z. X. Li, L. S. Chen, Z. J. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Appl. Math. Model, 36 (2012), 1255-1266. |