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Abstract: In this paper, we describe a hybrid dynamical model incorporating residual and de-
layed effects of pesticides and pest resistance to simulate the process of integrated pest manage-
ment. It assumes that spraying pesticides is more frequently used than releasing natural enemies.
The threshold condition for pest-eradication is given. Combined with numerical simulations, the
effects of chemical control factors on the threshold are discussed. The results confirm that it
is not that the more frequently the pesticides are sprayed and the stronger effects the pesticides
have on pests, the smaller the threshold is. Further, we give three different control strategies,
including switching pesticide strategy and strategy for releasing natural enemies elastically for
the pest-eradication, and the state feedback strategy for controlling pests not exceeding the eco-
nomic injury level (EIL). The results indicate that if the purpose is to prevent the density of pest
population from increasing to the EIL, from an ecological and economic perspective, it is not
that the more natural enemies are released, and the better results are obtained.

Keywords: hybrid pest management model; resistance; switching pesticide; releasing natural
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1. Introduction

As we all know, crop pests have been the biggest obstacle to agricultural development. The
existence of pests will not only reduce the yield of crops but also affect their quality, resulting in
economic losses. Therefore, the control of pests is an important research subject in agriculture
all over the world.

The most common method of pest control is spraying pesticide. Its advantages are conve-
nient and efficient, and the effects on pests can be seen in a short time. However, with a large
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amount of pesticide use, people have to face many serious problems, such as the development
of pest resistance, reduction of beneficial organisms, the resurgence of major pests, the outbreak
of secondary pests, residues in food, environmental pollution and so on. Faced with these seri-
ous consequences, people have begun to explore new pest control methods. Biological control
is also an important method to control pests [1–3]. In augmentative biological control, natural
enemies are mass-reared in biofactories for release in certain numbers to obtain immediate con-
trol of pests, which can not only control pests but also reduce environmental pollution [4–5].
According to statistics, there are about 500 kinds of pests in the world controlled by imported
natural enemies, and at least 300 kinds of pests have been effectively controlled. However, nat-
ural enemies often need to breed in captivity, and it is costly. Therefore, people often combine
these two methods, that is, adopt integrated pest management (IPM) [3,6]. In the process of IPM,
economic threshold (ET) and economic injury level (EIL) are two important concepts. EIL is
defined as the lowest pest density which will cause economic damage, and ET is defined as the
pest density at which control action should be taken to prevent pests from reaching the EIL [6,7].
More realistically, we need to control the density of the pest population below EIL rather than to
make them extinct.

Based on the above biological background, many scholars used mathematical models to sim-
ulate the process of spraying pesticide and releasing natural enemies, including impulsive dif-
ferential equations at the fixed time [8–14] or state-dependent [6,15–18] and Filippov switching
systems [7,19–23], etc. These studies assumed that the pesticides acted in a way that killed pests
instantaneously and proportionately. However, studies have shown that the effects of pesticides
on pests are not always instantaneous, but have certain delayed responses. In many cases, the
pesticides may remain on or in a crop or pest after they have been treated [25–26], which indi-
cates that the pesticides have residual and delayed effects on the process of pest control. So the
density of pest population could increase for a time even after the pesticide application has been
made before it decreases. A more realistic method of modelling pesticide action is to assume
that the effects of pesticide are simulated by continuous or piecewise-continuous periodic func-
tions which affect the growth rate in the Logistic growth model [27–28]. For example, Liang
et al. [27] developed mathematical models to evaluate the residual and delayed effects on an
integrated pest management strategy which combined piecewise-continuous periodic functions
for chemical control with pulse actions for releasing natural enemies.

In previous studies, most researchers also ignored the development of pest resistance. Pesti-
cide control in the initial phase has very good effects. However, in agricultural production, due
to the improper applications of pesticides and the long-term use of the single pesticide in the
same area, pests are prone to developing resistance to pesticide [29–32], which eventually loses
its effects. Therefore, to reduce or delay the development of pest resistance and make the best
use of pesticides, we should avoid unnecessary pesticide applications or switch to apply different
types of pesticides [29]. Once pest resistance has developed, we could also use natural enemies
to suppress the outbreaks of pests. The release amount of natural enemies needed to be adjusted
according to the evolution of pesticide resistance. If the released amount was too large, then it
was not cost-effective and may cause secondary outbreaks or pest resurgence [30].

Considering the residual and delayed effects of pesticide and pest resistance to pesticide, one
purpose of this paper is to use a mathematical model to help determine how the spraying fre-
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quency of pesticides and the residual and delayed effects of pesticide affect the results of pest
control in the process of integrated pest management. Another purpose of this paper is how we
can take effective strategies to reduce or delay the development of the pest resistance or adjust
the release amount of natural enemies to the extent that the pests become extinct or do not exceed
the EIL when pests develop resistance.

The organization of this paper is as follows. A hybrid dynamical model is established to
simulate the process of integrated pest management in section 2. It assumes that spraying pes-
ticide is more frequently used than releasing natural enemies. A piecewise-continuous periodic
function to model the residual and delayed effects of pesticides on pests and natural enemies and
the development of pest resistance to pesticides are introduced into the pest control model. In
section 3, the threshold condition for pest-eradication is obtained, and we compare the integrated
pest management strategy with any single control strategy. In section 4, the effects of chemical
control factors on the threshold are analysed, including the frequency of spraying pesticide, the
killing efficiency rate of pesticide to pests, the decay rate of pesticide to pests, and the delayed
response rate on pests. In section 5, we give three different control strategies to reduce or delay
the development of pest resistance and control the outbreaks of pest, including switching pesti-
cides strategy and strategy for releasing natural enemies elastically for the pest-eradication, and
the state feedback strategy for controlling pests not exceeding the EIL. Finally, a brief discussion
is given in the last section.

2. Model formulation

To address the effects of integrated control tactics on the pest-natural enemy dynamic model
and consider the effects of residual pesticide effects and delayed responses to the pesticide on
successful pest control, Liang et al. [27] proposed the following pest-natural enemy model with
residual pesticidal actions and delayed responses to the pesticide applications.

dx(t)
dt = rx(t)(1 − x(t)

K ) − b1(t)x(t) − αx(t)y(t),
dy(t)

dt = λαx(t)y(t) − dy(t) − b2(t)y(t)),

}
t , nT,

x(t+) = x(t),
y(t+) = y(t) + µ,

}
t = nT,

(2.1)

where x(t) and y(t) represent the densities of the pests and natural enemies at time t, respectively;
r > 0 is the intrinsic growth rate of the pest population; K > 0 is the carrying capacity of the pest
population; α > 0 is the predation rate per natural enemy on pests; λ > 0 denotes the effective
conversion rate of natural enemies; d > 0 denotes the death rate of the natural enemies; µ > 0
is the release amount of natural enemies at time t = nT ; bi(t)(i = 1, 2) refers to the effects of
pesticide on pests and natural enemies, respectively.

In this paper, we suppose that pesticides are applied more frequently than natural enemies
release. In any interval [nT, (n+1)T ), we spray pesticides p times periodically at t = nT +kTP(k =

0, 1, 2, · · · p − 1), and take on the following exponentially decaying piecewise periodic function:

bi(t) = mi(e−ai(t−(nT+kTP)) − e−ci(t−(nT+kTp)), nT + kTP ≤ t < nT + (k + 1)TP, (2.2)

where mi ≥ 0(i = 1, 2) represents the the killing efficiency rate of pesticide to pests and natural
enemies, respectively; ai(i = 1, 2) represents the positive decay rate of pesticide to pests and
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natural enemies, respectively; ci(i = 1, 2) is the delayed response rate with ci > ai > 0(i = 1, 2).
The model established by Liang et al. [27], as quoted above, did not consider pest resistance

to pesticides. In this paper, based on the above model, we assume that pests population x is
made up of two parts: sensitive to pesticides (denoted by xs) and resistant to pesticides, that is,
pesticides have no effects on them (denoted by xr), and q(t) refers to the proportion of sensitive
pests at time t (i.e. q(t) = xs/x), which changes over time, then 1 − q(t) is the proportion of
resistant pests. Let q(0) = q0 denotes the proportion of sensitive pests at the initial time. Then
xs(t) and xr(t) meet the following equations:{ dxs(t)

dt = rxs(t)(1 −
x(t)
K ) − b1(t)xs(t) − αxs(t)y(t),

dxr(t)
dt = rxr(t)(1 −

x(t)
K ) − αxr(t)y(t),

(2.3)

and we have
dx(t)

dt
= rx(t)(1 −

x(t)
K

) − b1(t)q(t)x(t) − αx(t)y(t).

Since q(t) = xs/x, by simple calculations, we obtain

dq(t)
dt

= b1(t)q(t)(q(t) − 1). (2.4)

Then we set up the following hybrid pest control model with resistance evolution:

dx(t)
dt = rx(t)(1 − x(t)

K ) − b1(t)q(t)x(t) − αx(t)y(t),
dy(t)

dt = λαx(t)y(t) − dy(t) − b2(t)y(t)),

}
t , nT,

x(t+) = x(t),
y(t+) = y(t) + µ,

}
t = nT,

dq(t)
dt = b1(t)q(t)(q(t) − 1),

(2.5)

where n ∈ N = {0, 1, 2, ...}, and the implications of all other parameters are the same with those
in model (2.1), and q(t) satisfies equation (2.4).

By calculations, the analytic solution of q(t) at interval [nT, (n + 1)T )(n ∈ N) is

q(t) =
q(nT + kTP)

q(nT + kTP) + (1 − q(nT + kTP)) exp(m1
a1

(1 − e−a1(t−(nT+kTP))) − m1
c1

(1 − e−c1(t−(nT+kTP))))
,

where

q(nT + kTP) =
q0

q0 + (1 − q0) exp((np + k)(m1
a1

(1 − e−a1TP) − m1
c1

(1 − e−c1TP)))
. (2.6)

To illustrate the effects of spraying period TP, the killing efficiency rate m1, the decay rate a1

and the delayed response rate c1 on the development of pest resistance, we simulate the changing
graph q(t) with time t, respectively. The results indicate that shortening the period of spraying
pesticide, increasing the killing efficiency rate, small decay rate and large delayed response rate
could result in the development of pest resistance (see Figure 1).

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4364–4383.



4368

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

q
(t

)

(a)

 

 

T
P
=4

T
P
=2.5

T
P
=0.5

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

q
(t

)

(b)

m
1
=0.4

m
1
=0.6

m
1
=0.8

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

q
(t

)

(c)

a
1
=0.8

a
1
=0.6

a
1
=0.4

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

q
(t

)

(d)

c
1
=3

c
1
=5

c
1
=8

Figure 1. The changing graph of q(t) along with time t, q0 = 0.99. (a) m1 = 0.8, a1 =

0.4, c1 = 8; (b) a1 = 0.4, c1 = 8,TP = 1.5; (c) m1 = 0.4, c1 = 8,TP = 1.5; (d)
m1 = 0.4, a1 = 0.4,TP = 1.5.

3. Threshold condition of pest-eradication

Firstly, we consider the following subsystems of system (2.5):{ dy(t)
dt = −(d + b2(t)y(t), t , nT,

y(nT +) = y(nT ) + µ, t = nT,
(3.1)

Similar to the proof of Appendix B in [27], the following theorem can be obtained:
Theorem 3.1 System (3.1) has a unique globally asymptotically stable positive T-periodic

solution ỹ(t), and for any solution y(t) of system (3.1), we have y(t)→ ỹ(t) as t → ∞.
where,

ỹ(t) = y∗ exp(
∫ t

nT
−(d + b2(s))ds), t ∈ [nT, (n + 1)T ), (3.2)

y∗ =
µ

1 − exp(−dT − m2 p( 1
a2

(1 − e−a2
T
p ) − 1

c2
(1 − e−c2

T
p ))
. (3.3)

Therefore, in any given time interval [nT, (n + 1)T ), there exists a pest-eradication periodic
solution (0, ỹ(t)) of system (2.5).

Denote

R0(n,T ) = exp(
∫ (n+1)T

nT
(r − b1(t)q(t))dt),

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4364–4383.



4369

M(T ) = exp(
∫ T

0
(−αỹ(t))dt),

R1(n,T ) = R0(n,T )M(T ),

we have,
Theorem 3.2 If R1(n,T ) < 1 holds, then the pest-eradication periodic solution (0, ỹ(t)) of

system (2.5) is globally attractive.
The proof of Theorem 3.2 is given in Appendix A.
By direct calculation, we obtain

R0(n,T ) = erT exp
∫ (n+1)T

nT
(−b1(t)q(t))dt

= erT
p−1∏
k=0

[(q(nT + k T
p )e( m1

a1
e−a1

T
p −

m1
c1

e−c1
T
p )

+ (1 − q(nT + k T
p )e( m1

a1
−

m1
c1

)]e−( m1
a1
−

m1
c1

)
,

where q(nT + k T
p ) is given in (2.6).

M(T ) = exp(
∫ T

0
(−αỹ(t))dt)

= exp(−αy∗(
p−1∑
k=0

∫ (k+1)· Tp
k· Tp

exp(−dt − ( km2
a2

(1 − e−a2
T
p ) − km2

c2
(1 − e−c2

T
p ))

−(m2
a2

(1 − e−a2(t−k T
p )) − m2

c2
(1 − e−c2(t−k T

p ))))dt)),

where y∗ is given in (3.3). From above we can get the exact expression of R1(n,T ).
Remark 3.1 The first part R0(n,T ) of R1(n,T ) shows the effects of the development of pest

resistance on the threshold; the second part M(TN) reflects the effects of natural enemies on
pests control, including the predation rate α, the impulsive release period T , the release amount
µ. Without biological control, the threshold condition of pest eradication becomes R0(n,T ), and
it is clear that R1(n,T ) < R0(n,T ). Since q(t) is decreasing with time t, R0(n,T ) and R1(n,T ) are
increasing functions with respect to n, and R1(n,T ) tends to erT M(T ) (see Figure 2(a)), which
means that at last chemical control does not work and natural enemies are killed. So in the short
term, the integrated pest control strategy works better than chemical and biological control. Still,
pests eventually break out because of pest resistance to pesticides (see Figure 2(b)). Therefore,
we need to take more effective measures to control pests.

4. The effects of parameters on threshold R1(n,T )

What is interesting here is how the control strategy affects the threshold R1(h,TN), and con-
sequently on the success of pest control.

From the expression of R1(n,T ), we know ∂R1(n,T )
∂µ

< 0, which implies that the larger the release
amount µ of natural enemies, the smaller the threshold R1(n,T ), and then the pest population can
be more easily controlled by biological control applications. In the following, we focus on the
effects of chemical control factors on the R1(n,T ), including the frequency p of spraying pesti-
cide, the killing efficiency rate m1 of pesticide to pests, the decay rate a1 of pesticide to pests,
and the delayed response rate c1 on pests.
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Figure 2. (a) The plots of R0(n,T ), R1(n,T ), erT M(T ) with respect to n; (b) Time-
series of pest population with chemical control (dashed line), biological control (thin
line) and integrated pest control (bold line), respectively, where parameters are r =

0.5, q0 = 0.99,d = 0.4,α = 0.8, m1 = 0.7,m2 = 0.15,a1 = 0.2,a2 = 0.2,c1 = 3,c2 =

3,µ = 0.1,T = 1.2, p = 3.
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Figure 3. The plots of R1(n,T ) with p to show the effects of spraying frequency on
the threshold. (a) m1 = 0.9, a1 = 0.2, c1 = 3; (b) a1 = 0.8, c1 = 3,T = 0.6;(c)
m1 = 0.5, c1 = 3,T = 1; (d) m1 = 0.9, a1 = 0.2, T = 1, other parameters are r = 0.5,
q0 = 0.99, d = 0.4, α = 0.8, m2 = 0.15, c2 = 3, a2 = 0.2, µ = 0.5, h = 10.

First of all, we want to know if it’s better to spray pesticide as often as possible during the
period of releasing natural enemies. In Figure 3 (a)–(d), we fix all parameters except for the
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period T , parameters which describe the residual and delayed effects of pesticides on pest (
m1, a1 and c1), and choose different spraying pesticide frequencies, respectively. It shows that
the minimum value of the threshold R1(n,T ) depends on the above key parameters. When the
pesticide has a weak effect on the pests, the pest resistance develops slowly and the threshold
R1(n,T ) decreases with the increase of frequency p. The more frequently the pesticide is
sprayed, the better the pest control will be (see Figure 3(a) T = 1.7, Figure 3(b) m1 = 0.4, Figure
3(c) a1 = 1.2, Figure 3(d) c1 = 0.3); when the pesticide effect increases to a certain extent, the
resistance of pests gradually develops. The threshold R1(n,T ) is not a monotonous function,
and in this case there is an optimal spraying frequency to control pests (see Figure 3(a) T = 1,
Figure 3(b) m1 = 0.8, Figure 3(c) a1 = 0.8, Figure 3(d) c1 = 0.7). When the pesticide has a
strong effect on the pests, the pest resistance develops rapidly. With the increase of p, R1(n,T )
increases, which indicates spraying pesticides frequently is not conducive to pest control, and
repeated use of the same pesticide can cause revival of the pests (see Figure 3(a) T = 0.6, Figure
3(b) m1 = 1.1, Figure 3(c) a1 = 0.4, Figure 3(d) c1 = 1.2). Therefore, in the process of pest
control, due to the development of pest resistance, we should carefully choose the frequency of
spraying pesticide, not that the more frequently pesticides are sprayed, the better the pest control
is.

0.75

0.8

0.8

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

1

1.05
1.05

1.05

1.1
1.1

1.1

a
1

m
1

(a)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
1
(n,T)

0.96

0.96

0.96
0.96

0.96

0.96

0.98

0.98

0.98

0.98

0.98

0.98

1

1

1

1

1

1

1

1.02

1.02

1.02

1.02

1.02

1.04
1.04

1.04

1.04

1.04

1.06
1.06

1.06

1.06

1.08
1.08

1.08

1.08

1.1 1.1
1.1

1.12 1.12 1.12

a
1

m
1

(b)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
1
(n,T)

Figure 4. Contours of R1(n,T ) with respect to the killing efficiency rate m1 and the
positive decay rate a1. (a) h = 4;(b) h = 14, other parameters are r = 0.4, q0 = 0.99,
d = 0.4, α = 0.8, c1 = 3, m2 = 0.15, c2 = 3, a2 = 0.2, T = 1.2, µ = 0.2, p = 3.

Next, the effects of other chemical control factors to pests on the threshold R1(n,T ) are con-
sidered. In Figures 4 and 5, we simulate the contours of R1(n,T ) with respect to m1, a1 and c1,
respectively. It can be seen that in the early stages of pest control (h = 4, see Figure 4(a) and
Figure 5(a)), pest resistance has not yet developed, so R1(n,T ) decreases with the increase of
m1 or c1 and increases with the increase of a1, which implies that strong effects of pesticides
are helpful to control pests at the beginning of pest control. However, with time passing (see
Figure 5(b) and Figure 6(b)), R1(n,T ) is no longer a monotone function with respect to m1, a1

and c1. For higher killing efficiency rate m1, lower decay rate a1 and larger delayed response
rate c1, repeated use of the same insecticide causes the pest to develop resistance rapidly. The
strong effects of pesticides lead to the increase of R1(n,T ), which are not better for pest control.
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Figure 5. Contours of R1(n,T ) with respect to the delayed response rate c1 and the
positive decay rate a1. (a) h = 4; (b) h = 8, other parameters are r = 0.4, q0 = 0.99,
d = 0.4, α = 0.8, m1 = 0.8, m2 = 0.15, c2 = 3, a2 = 0.2, T = 1.2, µ = 0.2, p = 3.

Therefore, for the long term of pest control, we should be careful in choosing pesticides, not that
the stronger effect of pesticide, the better the pest control.

5. Pest control strategies

From the analysis in section 3, we know that R1(n,T ) is a monotonic increasing function
concerning n. At first, R1(n,T ) < 1, under the effects of biological and chemical control, the
density of pest populations decrease rapidly. However, with time passing, pests gradually de-
velop resistance to pesticide, R1(n,T ) will be greater than 1, and the density of pests population
will increase gradually after decreasing to a certain level. Pests will eventually break out (see
Figure 6(b), dashed line). Therefore, to reduce or delay the development of pest resistance and
control the outbreaks of pest, effective measures must be taken.

5.1. Switching pesticide strategy

To avoid the development of the pest resistance, the most common method used by farm-
ers is to switch to another pesticide with different action mechanisms to achieve the purpose
of pest control. Then how to choose the switching time is an important question. To answer
this question, based on model (2.5) we set up the following pest control model with resistance
development and switching pesticides. Here, for the sake of convenience, it assumes that each
pesticide has the same strength of action and the proportion q0 of sensitive pests at the initial
time is also the same.

dx(t)
dt = rx(t)(1 − x(t)

K ) − b1(t)q(t)x(t) − αx(t)y(t),
dy(t)

dt = λαx(t)y(t) − dy(t) − b2(t)y(t)),

}
t , nT,

x(t+) = x(t),
y(t+) = y(t) + µ,

}
t = nT,

dq(t)
dt = b1(t)q(t)(q(t) − 1), t , hTN ,

q(t+) = q0, t = hTN ,

(5.1)
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Figure 6. (a) Plots of R1(n,T ) and R2(ω,T ); (b) Time-series of pest population with
switching pesticide with R1(n,T ) as a guide (bold line), switching pesticide with
R2(ω,T ) as a guide (thin line) and no switching strategy (dashed line), respectively,
where parameters are r = 0.5, q0 = 0.99, d = 0.4, α = 0.8, λ = 0.75, a1 = 0.2
m1 = 0.7, c1 = 3, m2 = 0.15, a2 = 0.2, c2 = 3,T = 0.4, µ = 0.2, p = 3.

where, n ∈ N, h ∈ N, and we assume that each pesticide is applied for ω periods of releasing
natural enemies, that is, TN = ωT, ω ∈ N+ = {1, 2, · · · , }.

Denote
R2(ω,T ) = R1(1,T )R1(2,T ) . . .R1(ω,T )

we have the following threshold for eradication of pests,
Theorem 5.1 If R2(ω,T ) < 1 holds, then the pest-eradication periodic solution (0, ỹ(t)) of

System (5.1) is globally attractive.
The proof of Theorem 5.1 is similar to the proof of Theorem 3.2, here we omit it.
Now we determine the switching time for each pesticide. First, take the threshold R2(ω,T )

as a guide. Once the threshold R2(ω,T ) reaches one for the first time, we switch to another new
type of pesticide. Select the parameters in Figure 6(a), we find that R1(ω,T ) reaches one for
the first time after 15 periods of releasing natural enemies. So we can switch to another kind of
pesticide after 45 pesticide applications for each pesticide. By switching pesticides, the pests are
finally controlled (see Figure 6(b), thin line). We can also take the threshold R1(n,T ) as a guide
for switching pesticides. Once the threshold R1(n,T ) reaches one for the first time, we switch
to another pesticide, then from Figure 6(a) we can see that after 9 periods R1(n,T ) reaches one
for the first time. So by switching to another pesticide after 27 applications for each pesticide,
the pests tend to be extinct (see Figure 6(b), bold line). Therefore, taking threshold R2(ω,T ) as
a guide for switching pesticides, each pesticide can be used more often, and we can also achieve
the purpose of pest control.

5.2. Strategy for releasing natural enemies elastically

As previous analysis indicates, if we take chemical control only or integrated pest control
but release a constant amount of natural enemies periodically described by the model (2.5), then
pests eventually break out because of pest resistance to pesticides (see Figure 7(b) dashed line
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Table 1. The release amount of natural enemies at different releasing periods.

Time nT of the releasing natural enemies The releasing amount un of natural enemies
T 0.038

2T 0.0385
3T 0.039
4T 0.0396
5T 0.04
6T 0.0405
7T 0.041
8T 0.049
9T 0.0429
10T 0.044
11T 0.0454
12T 0.047
13T 0.049
14T 0.0513
15T 0.054
16T 0.0567
17T 0.06
18T 0.0635
19T 0.0675
20T 0.0716
21T 0.076
22T 0.08
23T 0.0846
24T 0.089

and thin line, respectively). To reduce or delay the increase of pest resistance, the frequency and
dosage of pesticide should be reduced as much as possible, and more biological control should
be taken. So if the pesticide spraying pattern is not changed, the release amount µ of natural
enemies is no longer constant, but elastic with the increase of n to adapt to the development of
the pest resistance and ensure that the threshold R1(n,T ) is always less than 1, and the pests will
be eradicated. Then the question is how to determine the release amount of natural enemies?

To achieve this goal, we choose a constant RC < 1 and assume that the release amount of
natural enemies is µn at time t = nT . Let

R1(n,T ) = R0(n,T )M(T ) = R0(n,T ) exp(
∫ T

0
(−αy∗B(t))dt) � RC

and

B(t) = exp
∫ t

0
(−d + b2(s))ds),
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then we have,

µn = −
1 − exp(−dT − m2 p( 1

a2
(1 − e−a2

T
p ) − 1

c2
(1 − e−c2

T
p ))

α
∫ T

0
B(t)dt

ln
RC

R0(n,T )
. (5.2)

Our ultimate goal is to control outbreaks of pests. If R1(n,T ) ≤ RC, we choose µn = 0.
Otherwise, if R1(n,T ) > RC, chemical control can no longer control pests, and natural enemies
should be released. At t = nT , the release amount µn of natural enemies is determined by
equation (13) which guarantees that R1(n,T ) = RC < 1, and the pests will eventually become
extinct. Taking the parameters in Figure 7 as an example, set RC = 0.96. If we choose µn as Table
1, then we can maintain R1(n,T ) to RC (see Figure 7(a)), accordingly pests tend to be eradicated
(see Figure 7(b), bold line).
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Figure 7. (a) Plots of R0(n,T ),R1(n,T ) and Rc for the strategy of releasing natural en-
emies elastically; (b) Time-series of pests population with no release of natural enemy
(dashed line), constant release of natural enemy (black line) and elastic release of nat-
ural enemy (bold line), where the parameters are fixed as follows: r = 0.4, q0 = 0.99,
d = 0.3, α = 0.8, λ = 0.75, a1 = 0.2 m1 = 0.84, c1 = 6, m2 = 0.15, a2 = 0.2,
c2 = 6,T = 0.6, µ = 0.04, p = 3.

5.3. State feedback strategy

In the first two strategies, we are more concerned about how to take effective measures to
eradicate pests. However, ecologically and economically, the strategy of eradicating pests is not
desirable because the right amount of pests is beneficial for the protection of natural enemies
and the maintenance of economic compensation for crops. Therefore, a more reasonable pest
control strategy is to take control measures when the density of pests reaches ET to prevent the
density of pests from increasing to the EIL. This strategy maintains the sensitivity of pests to
pesticides. It avoids the development of pest resistance caused by excessive pesticide use and
the adverse effects of pesticides on the environment and natural enemies, here we call it state
feedback control.

In this subsection, it is assumed that the integrated pest control strategy is applied when the
pest density increases and reaches ET, and corresponding time series are τ1, τ2, . . ., τ1 < τ2 <
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. . . < τ j < τ j+1 < . . ., then x(τ j) = ET for j = 1, 2, . . .. By these assumptions, the following
integrated pest management model with ET and resistance development is established.

dx(t)
dt = rx(t)(1 − x(t)

K ) − b1(t)q(t)x(t) − αx(t)y(t),
dy(t)

dt = λαx(t)y(t) − dy(t) − b2(t)y(t)),

}
t , τ j,

x(t+) = x(t),
y(t+) = y(t) + µ,

}
t = τ j,

dq(t)
dt = b1(t)q(t)(q(t) − 1),

bi(t) = mi(e−ai(t−τ j) − e−ci(t−τ j)), i = 1, 2, τ j ≤ t < τ j+1, j ∈ N+,

(5.3)

where the initial values are x(0) = x0 < ET, y(0) = y0, q(0) = q0, the biological meanings of
other parameters are identical to those in model (2.5).

It is very difficult to investigate model (5.3) theoretically, as we can not determine the exact
time of τ j, j = 1, 2, . . ., and the times of pesticide applications for any solution with initial value
(x0, y0). For simplification of analysis, we assume that the initial value x0 of the density of pests
is ET. In the following, we turn to numerical simulations to investigate how this control strategy
affects the success of the pest control within a given time.
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Figure 8. (a) Time-series of pests population with state feedback control strategy (bold
black line) and no control strategy (thin blue line); (b) Time-series of pests population
with state feedback control strategy (bold black line) and periodical pest control strat-
egy based on model (2.5) (thin red line) and p = 1,T = 4, where other parameters are
fixed as follows: r = 0.5, q0 = 0.99, d = 0.3, α = 0.6, λ = 0.8, a1 = 0.2 m1 = 0.9,
c1 = 6, m2 = 0.05, a2 = 0.2, c2 = 6, µ = 0.1,ET = 0.6, x0 = 0.6, y0 = 0.2.

From Figure 8(a), for a given time t ∈ [0, 200], we can see that if we don’t take any pest
control strategy, pest populations will eventually break out and exceed the EIL (see Figure 8(a),
thin blue line). So the state feedback strategy based on model (5.3) is applied once the pest
population increases and reaches ET = 0.6. The density of the pest population can be eventually
maintained below the EIL after the integrated pest control strategy is applied for 13 times, but
exceeds the ET and oscillates periodically (see Figure 8, bold black line). If we take periodically
pest control strategy based on model (2.5), although we can control the pests below EIL, we
apply the integrated control strategy for 50 times (see Figure 8(b), thin red line). Therefore, from
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Figure 9. (a) Time-series of pests population; (b) The outbreak period of pests , where
the parameters are fixed as follows: r = 0.5, q0 = 0.99, d = 0.3, α = 0.6, λ = 0.8,
a1 = 0.2 m1 = 0.9, c1 = 6, m2 = 0.05, a2 = 0.2, c2 = 6, ET = 0.6, x0 = 0.6, y0 = 0.2.

the point of reality, the state feedback control strategy is more desirable, saves natural enemies
and causes less harm to the environment.

Next, we investigate the effects of the release amount of natural enemies on this feedback
control strategy. We denote ∆τ j = τ j − τ j−1, j = 1, 2, . . . , n with τ0 = 0, where n denotes the
maximum number at which the pest population x(t) increases and reaches ET within the given
time, which we called the outbreak period. We take the same parameters as those in Figure 8
except for the release amount µ of natural enemies. In Figure 9(a) and Figure 9(b), we plot
the time series of pest population and the outbreak period of pests for µ = 0.1, µ = 0.3, µ =

0.6, respectively. The simulation results indicate that the pest population eventually oscillate
periodically and can be maintained below EIL. When the release amount µ = 0.1, although the
amplitude of density the pest is the largest, the period of pest outbreak ∆τi is the longest, and
the pest control strategies are only used 13 times. When the release amount µ = 0.3, the pest
outbreak period is the shortest, and the pest control strategy is the most frequently used. When
the release amount µ = 0.6, compared with µ = 0.3, the pest outbreak period is longer, and the
pest control strategy is less used, but we need to release more natural enemies. Therefore, if we
want to prevent the density of pests from increasing to the level of EIL, from an ecological and
economic perspective, it is not that the more natural enemies are released, the better the results
are.

6. Discussions

Many scholars used impulsive differential equations at the fixed time or with state feedback
to describe biological phenomena that are subject to instantaneous disturbances, such as
vaccination strategy [33–34], pollutants discharge [35–36], harvesting [37–38] and the culture
of microorganisms in chemostats[39–40]. In the pest control, the two most common methods
are spraying insecticides and releasing natural enemies, which were also simulated by many
mathematical models with impulsive differential equation [6,8–18,29–31]. Those studies mainly
focused on the chemical and biological control with instantaneous disturbances, or failed
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to take into account pesticide resistance. However, as the introduction pointed out that the
pesticides had residual and delayed effects, and the pests were apt to develop resistance to
pesticides, while the release of natural enemies can be instantaneous. So it is more reasonable
to use a hybrid dynamic system to describe this process. In some cases, pesticides can be
successfully integrated into the pest management program without harming natural enemies or
having less effects on natural enemies. This can be done by using selective pesticides such as
Bacillus thuringiensis (B.t.), choosing the time of pesticides applications to avoid the presence
of important natural enemies or keeping pesticides out of the reach of natural enemies. In this
case, the effects of pesticides on natural enemies are greatly reduced and the development of
resistance is negligible. Therefore, in this paper, we developed a hybrid pest management model
incorporating pest resistance to investigate how the frequency of the pesticide applications and
the effects of pesticides affected the success or failure of pest control. Our results indicated that
the development of pest resistance was related to the frequency of pesticide applications, the
killing efficiency rate m1, the decay rate a1 and the delayed response rate c1. It was not that the
more frequently the pesticides were sprayed and the stronger effects the pesticides had on pests,
the more successful pest control became.

In particular, to control the outbreaks of pest, we provided three possible pest control
strategies. If we want to completely eradicate the pest population, the simple and direct method
for successful pest control is switching to another kind of pesticide. Our results indicated that
taking threshold R2(ω,T ) as a guide for switching pesticides, each pesticide could be used more
often than taking the threshold R1(n,T ) as a guide. However, the pesticide switching method will
still result in the pest resistance to pesticide and even damage to natural enemies. Therefore, to
reduce or delay the emergence of pest resistance and avoid harm to natural enemies, we should
use less pesticides and adopt biological control whenever possible. We have shown that the
constant release of natural enemies was insufficient to suppress the outbreaks of pest population
once pest resistance developed, so we could take the releasing-natural-enemies-elastically
strategy, that is, the amount of natural enemies to be released was determined according to the
evolution of pest resistance, which was dynamic and varied with the development of resistance.

If we want to control the density of pests population below the EIL rather than eradicating
them, the state feedback control strategy could be taken. From an ecological and economic
perspective, the state feedback control strategy is more desirable. It avoids the development of
pest resistance caused by excessive pesticide applications and the negative effects of pesticides
on the environment and natural enemies. Further, our results obtained in the present work
showed that it was not that the more natural enemies were released, the better results were
obtained.

The results obtained here can provide theoretical guidance for relevant decision-making
departments in the face of pesticide resistance. Note that only the simplest pest-natural
enemy system has been employed to discuss the key issues related to pest resistance and pest
management, and we only considered the pest resistance to pesticides. However, in some cases,
natural enemies can develop resistance to pesticides. Some effects of environmental variations
including climate, food availability and so on should be taken into account in the established
model, which could significantly affect the outcome of pest control. We will leave these in the
future work.
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Appendix A. The proof of Theorem 2

Since R(n,T ) < 1, we can choose a ε > 0 small enough such that

χ = R1(n,T ) exp(αεT ) < 1 (A.1)

holds.
From the second equation of system (2.5), we know

dy(t)
dt
≥ −(d + b2(t))y(t).

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4364–4383.



4382

Consider the following nonautonomous impulsive system:{ dN1(t)
dt = −(d + b2(t))N1(t), t , nT,

N1(nT +) = N1(nT ) + µ, t = nT,
(A.2)

By comparison theorem of impulsive differential equations and Theorem 3.1, we get
y(t) ≥ N(t) > ỹ(t) − ε for t large enough. For simplification, we assume y(t) > ỹ(t) − ε for all
t > 0. Then from the first equation of system (2.5), we have

dx(t)
dt
≤ rx(t)(1 −

x(t)
K

) − b1(t)q(t)x(t) − αx(t)(ỹ(t) − ε).

For t ∈ [nT, (n + 1)T ), since q(t) decreases with time t, we obtain

x((n + 1)T )) ≤ x(nT )(exp
∫ (n+1T )

nT
(r(1 − x(t)

K ) − b1(t)q(t) − α(ỹ(t) − ε))
≤ x(nT ) exp

∫ (n+1T )

nT
(r − b1(t)q(t))dt exp

∫ (n+1T )

nT
(−αỹ(t))dt exp(αεT )

= x(nT )R1(n,T ) exp(αεT ) ≤ x(nT )χ
≤ x((n − 1)T ) exp

∫ (nT )

(n−1)T
(r − b1(t)q(t))dt exp

∫ nT

(n−1)T
(−αỹ(t))dt exp(αεT )χ

≤ x((n − 1)T ) exp
∫ (n+1T )

nT
(r − b1(t)q(t))dt exp(

∫ (n+1T )

nT
(−αỹ(t))dt exp(αεT )χ

= x((n − 1)T )χ2 ≤ · · · ≤ x(0)χn+1,

so we have x(nT ) → 0 as n → ∞. For t ∈ [nT, (n + 1)T ), 0 < x(t) < x(nT ) exp(rT ), thus
x(t)→ 0 as t → ∞.
Next, we will prove y(t) → ỹ(t) as t → ∞. From the above conclusion, we know for any
0 < ε1 < d

λα
, there exists a t1 > 0 such that 0 < x(t) < ε1 for t > t1. Without loss of

generality, we assume 0 < x(t) < ε1 for all t ≥ 0. By System (2.5), we obtain

−(d + b2(t))y(t) ≤
dy(t)

dt
≤ −((d − λαε1) + b2(t))y(t). (A.3)

From the left-hand side of the above inequality and system (3.1), we have y(t) ≥ ỹ(t) − ε2

for any ε2 > 0 and t large enough. For the right-hand side of System (A.3), consider the
following impulsive system{ dN2(t)

dt = −((d − λαε1) + b2(t))N2(t), t , nT,
N2(t+) = N2(t) + µ, t = nT,

(A.4)

Similar to system (3.1), system (A.4) has a unique globally asymptotically stable positive
T -periodic solution Ñ2(t), where

Ñ2(t) = N∗2 exp(
∫ t

nT
(−((d − λαε1) + b2(s)))ds), t ∈ [nT, (n + 1)T ),

N∗2 =
µ

1 − exp(−(d − λαε1)T − m2
a2

(1 − e−a2T ) + m2
c2

(1 − e−c2T ))
.

Thus, for ε2 > 0, there exists a t2 > 0 such that

y(t) ≤ Ñ2(t) + ε2.
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Let ε1 → 0, we have
ỹ(t) − ε2 ≤ y(t) ≤ ỹ(t) + ε2

for t large enough, which implies y(t)→ ỹ(t) as t → ∞.
Therefore, if R1(n,T ) < 1 holds, the pest-eradication periodic solution (0, ỹ(t) of system
(2.5) is globally attractive. This completes the proof.
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