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Abstract: A new mathematical model was proposed to study the effect of self-proliferation and
delayed activation of immune cells in the process of virus infection. The global stability of the
boundary equilibria was obtained by constructing appropriate Lyapunov functional. For positive
equilibrium, the conditions of stability and Hopf bifurcation were obtained by taking the delay as
the bifurcation parameter. Furthermore, the direction and stability of the Hopf bifurcation are derived
by using the theory of normal form and center manifold. These results indicate that self-proliferation
intensity can significantly affect the kinetics of viral infection, and the delayed activation of immune
cells can induce periodic oscillation scenario. Along with the increase of delay time, numerical
simulations give the corresponding bifurcation diagrams under different self-proliferation rates, and
verify that there exists stability switch phenomenon under some conditions.
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1. Introduction

Recently, different kinds of viral infection such as HIV (human immunodeficiency virus), HCV
(hepatitis C virus) and HBV (hepatitis B virus) have received many attention. Different mathematical
models have been formulated to describe the dynamics of virus population in vivo [1–6]. The basic
viral infection model of within-host can be described by the following three dimensional system [7]:

dx
dt

= s − βxv − d1x,

dy
dt

= βxv − d2y,

dv
dt

= ky − uv.

(1.1)
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Here x(t), y(t), and v(t) represent uninfected target cells, infected cells and free virus, respectively.
Uninfected cells are produced at a constant rate s, die at rate d1x, and become infected at rate βxv.
Infected cells are produced at rate βxv and die at rate by. Free virus are produced from infected cells at
rate ky and die at rate uv. It was showed that, for system (1.1), there exist a critical threshold named as
the basic reproduction number of virus R0 =

βsk
d1d2

to determine its global dynamical behavior [8].
During viral infections, the adaptive immune response is mediated by lymphocytes expressing

antigen specific receptors, T and B lymphocytes, namely, humoral and cellular immunity. To study
the population dynamics of immune response, Nowak et al. [9] introduced the CTL population into
system (1.1) and obtain the following four dimensional system:

dx
dt

= s − βxv − d1x,

dy
dt

= βxv − d2y − pyz,

dv
dt

= ky − uv,
dz
dt

= cyz − d3z.

(1.2)

Here z(t) denotes CTLs, which is produced at rate cyz because of the stimulation of infected cells, and
die at rate d3z. The infected cells are eliminated by CTLs at rate pyz. Following [9], many authors
present and develop mathematical models for the cell-mediated immune response [10–13] and the
humoral immunity [14–17].

Recently study indicates that the self-proliferation of immune cells can not be neglected besides
the stimulation of infected cells. In order to mimic the spontaneous proliferation of CTLs, a logistic
proliferation term for CTLs was incorporated in virus infection models in [18], where a rigorous
mathematical analysis of the effect of self-proliferation of CTLs on the dynamics of viral infection is
necessary. In order to understand the effect of self-proliferation and delayed activation of immune
cells in a virus model, we propose the following virus infection model:

dx
dt

= s − βxv − d1x,

dy
dt

= βxv − d2y − pyz,

dv
dt

= ky − uv,

dz
dt

= cy(t − τ)z(t − τ) + rz(1 −
z
m

) − d3z.

(1.3)

Here the logistic proliferation term rz(1 − z/m) describes the self-proliferation of CTLs, in which
parameter r denotes a per capita self-proliferation rate, and m means the capacity of CTLs population.
Time delay term cy(t − τ)z(t − τ) represents a sequence of events such as antigenic activation and
selection. It has been shown that time delays cannot be ignored in models for viral immune response
including intracellular delay during viral infection [19–22] and time delay of CTLs stimulating
proliferation [23, 24].

Note that the turnover of virus is much faster than that of infection cells within-host [25, 26]. A
plausible quasi steady-state assumption is proposed to mimic the fast time-scale [27, 28]. In other
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words, v can be replaced by ky
u in (1.3). Let β̂ =

βk
u and also note as β to simplify the parameter,

system (1.3) can be written as:

dx
dt

= s − βxy − d1x,

dy
dt

= βxy − d2y − pyz,

dz
dt

= cy(t − τ)z(t − τ) + rz(1 −
z
m

) − d3z.

(1.4)

This paper is organized as follows. In section 2, some preliminary results are obtained, including
non-negativity and boundedness of the solution of system (1.4), the existence of equilibria under
different self-proliferation intensities of CTLs. Section 3 investigate the local and global stability of
the boundary equilibria. Section 4 study the effects of delayed activation of immune cells on the
existence of Hopf bifurcation. The direction and stability of Hopf bifurcation is investigated in
section 5. Some numerical simulations are given to quantify the impact of self-proliferation and
delayed activation of CTLs in section 6. Finally, some conclusions and discusses are presented in
section 7.

2. Preliminary results

In this section, we first discuss the non-negativity and boundedness of solutions of system (1.4).
For τ > 0, let C = C([−τ, 0],R3

+) denote the Banach space of continuous function mapping the interval
[−τ, 0] into R3

+ with the topology of uniform convergence. The initial conditions are given by

x(ξ) = φ1(ξ), y(ξ) = φ2(ξ), z(ξ) = φ3(ξ) (2.1)

with φi(ξ) ≥ 0, ξ ∈ [−τ, 0] and φi(0) > 0 (i = 1, 2, 3).

Theorem 2.1. The solutions of system (1.4) satisfying the initial conditions (2.1) are non-negative and
ultimately bounded.

Proof. We first define the right-hand side function of system (1.4) as

G(t,K(t)) =


s − βxy − d1x
βxy − d2y − pyz

cy(t − τ)z(t − τ) + rz(1 −
z
m

) − d3z

 ,
where K(t) = (K1(t),K2(t),K3(t))T and K1(t) = x, K2(t) = y, K3(t) = z. It is obvious that the function
G(t,K(t)) is locally Lipschitz and by the standard theory of functional differential equation, we know
that there exists a unique solution for a given initial conditions. To prove the non-negativity of solutions
of system (1.4), we first prove the non-negativity over the time interval [0, τ]. Considering the right-
hand side functions of system (1.4) over the time interval [0, τ], we have

G(t,K(t)) =


G1(t,K(t))
G2(t,K(t))
G3(t,K(t))


Ki(t)=0

=


s
0

cy(t − τ)z(t − τ)

 =


s
0

cφ2(ξ)φ3(ξ)

 ,
Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.
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where ξ ∈ [−τ, 0]. Note that the positivity of parameters and nonnegativity of initial functions. It can
be seen from the above expression that each component Gi(t,K(t)) ≥ 0. It follows that the solutions
of system (1.4) remain nonnegative in [0, τ]. Similarly, we can repeat the process over [τ, 2τ] and so
on by using the method of steps [29], it can be proved that for any finite interval [0, t], the solutions of
system (1.4) remains non-negative.

Now we consider the boundeness of the solutions. Define a new variable X(t) = x(t)+y(t)+
p
c

z(t+τ),
and let d = min{1, d1, d2}. By the non-negativity of the solutions of system (1.4), we have

dX
dt

= s − d1x − d2y +
pr
c

z(t + τ)
(
1 −

z(t + τ)
m

)
− d3z(t + τ)

= s − d1x − d2y −
p
c

z(t + τ) +
p
c

z(t + τ)
(
1 + r −

rz(t + τ)
m

)
− d3z(t + τ)

≤ s − d1x − d2y −
p
c

z(t + τ) +
pm(1 + r)2

4rc

≤ s +
pm(1 + r)2

4rc
− dX(t). (2.2)

Taking M = s +
pm(1 + r)2

4rc
, we know lim supt→∞ X(t) ≤

M
d

. So the solutions of system(1.4) are
ultimately bounded. �

The equilibria of (1.4) are the solutions of the following algebraic equations:
s − βxy − d1x = 0,
βxy − d2y − pyz = 0,

cyz + rz(1 −
z
m

) − d3z = 0.
(2.3)

It is easy to see that system (1.4) always has infection-free equilibrium Eyz
0 = (x0, 0, 0), where x0 =

s
d1

.

According to the definition in [30], we obtain the basic reproduction number of virus R0 =
βs

d1d2
. Now

we define x1 =
d2

β
, y1 =

d1(R0 − 1)
β

, x2 =
s

d1
, z2 =

m(r − d3)
r

. Based on (2.3), after some simple

calculations, it is easy to get the following results.

Proposition 2.2. (i) Suppose that R0 > 1. The immunity-inactivated infection equilibrium
Ez

0 = (x1, y1, 0) always exists. Especially, besides Ez
0, an infection-free but immunity-activated

equilibrium Ey
0 = (x2, 0, z2) will appear if r > d3. (ii) Suppose that 0 ≤ r ≤ d3. If R0 > 1 +

β(d3 − r)
cd1

,

system (1.4) has a unique immunity-activated infection equilibrium E∗1 = (x∗1, y
∗
1, z
∗
1), where

x∗1 =
d2 + pz∗1

β
, y∗1 =

rz∗1 + m(d3 − r)
mc

,

and z∗1 is the unique positive root of the quadratic equation A1z2 + B1z + C1 = 0, in which

A1 = −prβ, B1 = −(d2rβ + pmcd1 + βpm(d3 − r)),C1 = mcd1d2(R0 − 1) − βmd2(d3 − r).
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(iii) Suppose that r > d3. If R0 > 1 +
pm(r − d3)

rd2
, system (1.4) has a unique immunity-activated

infection equilibrium E∗2 = (x∗2, y
∗
2, z
∗
2), where

x∗2 =
s

d1 + βy∗2
, z∗2 =

m(cy∗2 + r − d3)
r

,

and y∗2 is the unique positive root of the quadratic equation A2y2 + B2y + C2 = 0, in which

A2 = pmcβ, B2 = pmβ(r − d3) + d2rβ + pmcd1,C2 = −rd1d2(R0 − 1) + pmd1(r − d3).

3. Global stability analysis of boundary equilibria

In order to study the stability of equilibrium, we linearize system (1.4) about one equilibrium E∗ =

(x∗, y∗, z∗) and obtain the following linear system

dx
dt

= (−βy∗ − d1)x − βx∗y,

dy
dt

= βy∗x + (βx∗ − d2 − pz∗)y − py∗z,

dz
dt

= cz∗y(t − τ) + cy∗z(t − τ) + (r − d3 −
2rz∗

m
)z.

(3.1)

When r = 0, it follows from the study of Michael Y. Li and Hongying Shu [23] that time delay τ
does not change the stability of the boundary equilibria.

When r > 0, by using the linear system (3.1) and constructing Lyapunov function, we can obtain
the following results.

Proposition 3.1. Suppose that 0 < r < d3. Then we have
(i) The infection-free equilibrium Eyz

0 is globally asymptotically stable if R0 < 1, and it is unstable
when R0 > 1.

(ii) The immunity-inactivated infection equilibrium Ez
0 is globally asymptotically stable if 1 < R0 <

1 +
β(d3 − r)

cd1
, and it is unstable when R0 > 1 +

β(d3 − r)
cd1

.

Proof. (i) By the linear system (3.1), we can obtain the characteristic equation of system(1.4) at Eyz
0 as

(λ + d1)(λ − (r − d3))
(
λ + d1d2(1 − R0)

)
= 0. (3.2)

So the eigenvalues are

λ1 = −d1 < 0, λ2 = r − d3 < 0, λ3 = d1d2(R0 − 1).

As a result, if R0 < 1, the infection-free equilibrium Eyz
0 is locally asymptotically stable, and Eyz

0 is
unstable if R0 > 1.

In order to obtain the global stability of equilibrium Eyz
0 , we consider a Lyapunov function given by

L1 = x − x0 − x0 ln
x
x0

+ y +
p
c

z + p
∫ 0

−τ

y(t + θ)z(t + θ)dθ.
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Taking the time derivative of L1 along the solution of system (1.4), we have

dL1

dt
= (1 −

x0

x
)(s − βxy − d1x) + βxy − d2y − pyz

+
p
c

[cy(t − τ)z(t − τ) + rz(1 −
z
m

) − d3z] + pyz − py(t − τ)z(t − τ)

= −
d1(x − x0)2

x
+ (βx0 − d2)y +

p
c

(r − d3)z −
prz2

cm

= −
d1(x − x0)2

x
+ d2(R0 − 1)y +

p
c

(r − d3)z −
prz2

cm
.

Notice that r < d3 and R0 < 1. We have L
′

1 ≤ 0 for all x(t), y(t), z(t) > 0, and L
′

1 = 0 only if x = x0,
y = 0 and z = 0. It can be verified that the maximal compact invariant set in L

′

1 = 0 is the singleton
Eyz

0 . By the LaSalle’s invariance principle, we know the infection-free equilibrium Eyz
0 is globally

asymptotically stable.
(ii) The characteristic equation of system(1.4) at Ez

0 is

(λ2 + d1R0λ + β2x1y1)
(
λ − (r − d3 + cy1e−λτ)

)
= 0. (3.3)

When τ = 0 and R0 < 1 +
β(d3 − r)

cd1
, the roots of (3.3) are negative. When τ > 0, the local stability of

equilibrium Ez
0 is solely determined by

λ − (r − d3 + cy1e−λτ) = 0. (3.4)

Let λ = iω(τ)(ω(τ) > 0) be the root of Eq (3.4). Separating real and imaginary parts yields d3 − r = cy1 cos(ωτ),
ω = cy1 sin(ωτ).

(3.5)

Squaring and adding Eq (3.5) gives

ω2 − (cy1)2 + (d3 − r)2 = 0.

Note that

(cy1)2 − (d3 − r)2 =

(cd1(R0 − 1)
β(d3 − r)

)2

− 1 < 0

if R0 < 1 +
β(d3 − r)

cd1
. Then we konw that (3.3) has no root that can across the imaginary axis, which

indicate that the immunity-inactivated infection equilibrium Ez
0 is locally asymptotically stable when

R0 < 1 +
β(d3 − r)

cd1
.

In order to obtain the global stability of Ez
0, we construct the following Lyapunov functions:

L2 = x − x1 − x1 ln
x
x1

+ y − y1 − y1 ln
y
y1

+
p
c

z + p
∫ 0

−τ

y(t + θ)z(t + θ)dθ.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.



4390

Taking the time derivative of L2 along the solution of system(1.4), we get

dL2

dt
= (1 −

x1

x
)(s − βxy − d1x) + (1 −

y1

y
)(βxy − d2y − pyz)

+
p
c
(
cy(t − τ)z(t − τ) + rz(1 −

z
m

) − d3z
)

+ pyz − py(t − τ)z(t − τ)

= s − d1x − s
x1

x
+ βx1y + d1x1 − d2y − βxy1 + d2y1 + py1z +

p
c

(r − d3)z −
prz2

cm
.

Using s = βx1y1 + d1x1 and d2 = βx1, we have

dL2

dt
= (d1x1 + βx1y1)(2 −

x
x1
−

x1

x
) + p(y1 −

d3 − r
c

)z −
prz2

cm

= (d1x1 + βx1y1)(2 −
x
x1
−

x1

x
) +

pd1

β
(R0 − 1 −

β(d3 − r)
cd1

)z −
prz2

cm
.

Using the LaSalle’s invariance principle, we can obtain that Ez
0 is globally asymptotically stable. �

Proposition 3.2. Suppose that r = d3. Then we have
(i) The infection-free equilibrium Eyz

0 is globally asymptotically stable if R0 < 1, and it is unstable
when R0 > 1.

(ii) The immunity-inactivated infection equilibrium Ez
0 is unstable as long as it appears, i.e., R0 > 1.

Proof. (i) The characteristic equation of system (1.4) at Eyz
0 is

λ(λ + d1)
(
λ + d1d2(1 − R0)

)
= 0. (3.6)

So the eigenvalues are
λ1 = 0, λ2 = −d1 < 0, λ3 = d1d2(R0 − 1).

So if R0 < 1, the infection-free equilibrium Eyz
0 is locally asymptotically stable and if R0 > 1, the

equilibrium Eyz
0 is unstable.

In order to obtain the global stability of Eyz
0 , we construct the following Lyapunov functions:

L3 = x − x0 − x0 ln
x
x0

+ y +
p
c

z + p
∫ 0

−τ

y(t + θ)z(t + θ)dθ.

Taking the time derivative of L3 along the solution of system (1.4), we have

dL3

dt
= (1 −

x0

x
)(s − βxy − d1x) + βxy − d2y − pyz

+
p
c

(cy(t − τ)z(t − τ) −
rz2

m
) + pyz − py(t − τ)z(t − τ)

= −
d1(x − x0)2

x
+ (βx0 − d2)y −

prz2

cm

= −
d1(x − x0)2

x
+ d2(R0 − 1)y −

prz2

cm
.

Using the LaSalle’s invariance principle, we can obtain that Eyz
0 is globally asymptotically stable.
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(ii)The characteristic equation of system (1.4) at Ez
0 is

(λ2 + d1R0λ + β2x1y1)(λ − cy1e−λτ) = 0. (3.7)

It can be showed that there exist positive real root for the characteristic Eq (4.3), which indicates that
the infection-free equilibrium Ez

0 is unstable. This completes the proof. �

Proposition 3.3. Suppose that r > d3. Then we have
(i) The infection-free equilibrium Eyz

0 is unstable.
(ii) The immunity-inactivated infection equilibrium Ez

0 is unstable.

(iii) If R0 < 1 +
pm(r − d3)

rd2
, the infection-free equilibrium Ey

0 is locally asymptotically stable,

moreover if R0 < 1, the infection-free equilibrium Ey
0 is globally asymptotically stable; if R0 > 1 +

pm(r − d3)
rd2

, Ey
0 is unstable.

Proof. (i) The characteristic equation of system (1.4) at Eyz
0 is

(λ + d1)(λ − (r − d3))
(
λ + d1d2(1 − R0)

)
= 0. (3.8)

So the eigenvalues are
λ1 = −d1, λ2 = r − d3, λ3 = d1d2(R0 − 1).

It follows from λ2 = r − d3 > 0 that the infection-free equilibrium Eyz
0 is always unstable. So we can

easily get the infection-free equilibrium Eyz
0 is always unstable when τ > 0.

(ii) The characteristic equation of system (1.4) at Ez
0 is

(λ2 + d1R0λ + β2x1y1)
(
λ − (r − d3 + cy1e−λτ)

)
= 0. (3.9)

Note that r > d3. It can be shown that there exist positive real root for the characteristic equation above,
which indicates that the immunity-inactivated infection equilibrium Ez

0 is unstable.
(iii) The characteristic equation of system (1.4) at Ey

0 is

(λ + d1)(λ + r − d3)(λ −
sβ
d1

+ d2 +
pm(r − d3)

r
) = 0. (3.10)

The eigenvalues are

λ1 = −d1, λ2 = −(r − d3), λ3 =
sβ
d1
− d2 −

pm(r − d3)
r

.

Note that

sβ
d1
− d2 −

pm(r − d3)
r

= d2(R0 − 1) −
pm(r − d3)

r
< 0⇔ R0 < 1 +

pm(r − d3)
rd2

.

Thus, the infection-free equilibrium Ey
0 is locally asymptotically stable if R0 < 1 +

pm(r − d3)
rd2

, and Ey
0

is unstable if R0 > 1 +
pm(r − d3)

rd2
.
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In order to obtain the global stability of Ey
0, we construct the following Lyapunov function:

L4 = x − x2 − x2 ln
x
x2

+ y +
p
c

(z − z2 − z2 ln
z
z2

) +
p
c

z + p
∫ 0

−τ

y(t + θ)z(t + θ)dθ.

Taking the time derivative of L4 along the solution of system (1.4) and using a computation process
similar to that of Theorem 3.9, we have

dL4

dt
= (1 −

x2

x
)(s − βxy − d1x) + βxy − d2y − pyz

+
p
c

(1 −
z2

z
)
(
cy(t − τ)z(t − τ) + rz(1 −

z
m

) − d3z
)

= −
d1(x − x2)2

x
+ d2(R0 − 1)y −

pz2y(t − τ)z(t − τ)
z

−
rp
cm

(z − z2)2.

Thus,
dL4

dt
≤ 0 if R0 < 1, and

dL4

dt
= 0 only if x = x2, y = 0 and z = z2, i.e., the maximal invariant

subset in {(x, y, z) :
dL4

dt

∣∣∣∣
(1.4)

= 0} is the singleton {Ey
0}. As a result, Ey

0 is globally asymptotically stable
based on the LaSalle’s invariance principle. This complete the proof. �

Remark 3.4. From Proposition 3.1 to Proposition 3.3, we can see that the delay τ does not affect the
stability of infection-free equilibrium Eyz

0 , Ey
0 and immune-unactivated Ez

0 equilibrium.

4. Stability of positive equilibrium and Hopf bifurcation

In this section, we take the discrete delay τ as a bifurcation parameter and show that when the
positive equilibrium E∗2 loses its stability and a Hopf bifurcation appears when the delay τ passes
through a critical value. We point out there also exists a Hopf bifurcation at positive equilibrium E∗1 as
the delay τ passes through a critical value and the proof is similar.

The characteristic equation of system (1.4) at E∗2 is

λ3 + B1λ
2 + B2λ + B3 + (C1λ

2 + C2λ + C3)e−λτ = 0, (4.1)

where

B1 =
2rz∗2
m
− r + d3 + d1 + βy∗2, B2 = (d1 + βy∗2)(

2rz∗2
m
− r + d3) + β2x∗2y∗2,

B3 = (
2rz∗2
m
− r + d3)β2x∗2y∗2, C1 = −cy∗2,

C2 = −(d1 + βy∗2)cy∗2 + pcy∗2z∗2, C3 = −cy∗2β
2x∗2y∗2 + (d1 + βy∗2)pcy∗2z∗2.

When τ = 0, the characteristic equation of system (1.4) at E∗2 is

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 ≡ B1 + C1 = d1 + βy∗2 + cy∗2 + r − d3 > 0,
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A2 ≡ B2 + C2 = (d1 + βy∗2)(cy∗2 + r − d3) + β2x∗2y∗2 + pcy∗2z∗2 > 0,
A3 ≡ B3 + C3 = pcy∗2z∗2(d1 + βy∗2) + (cy∗2 + r − d3)β2x∗2y∗2 > 0.

After some calculations, we have

A1A2 − A3 = (cy∗2 + r − d3)
(
pcy∗2z∗2

+ (d1 + βy∗2)2) + (d1 + βy∗2)
(
β2x∗2y∗2 + (cy∗2 + r − d3)2) > 0.

It follows from the Routh-Hurwitz criterion that E∗2 is locally asymptotically stable when time delay is
absent.

When τ > 0, putting λ = iω into characteristic Eq (4.1) and separating real and imaginary parts, we
have

B1ω
2 − B3 = (C3 −C1ω

2) cos(ωτ) + C2ω sin(ωτ), (4.2)

ω3 − B2ω = −(C3 −C1ω
2) sin(ωτ) + C2ω cos(ωτ). (4.3)

Since sin2(ωτ) + cos2(ωτ) = 1, squaring and adding the two Eqs (4.2) and (4.3), we have

ω6 + p1ω
4 + p2ω

2 + p3 = 0, (4.4)

where

p1 = B2
1 − 2B2 −C2

1,

p2 = B2
2 + 2C1C3 −C2

2 − 2B1B3,

p3 = B2
3 −C2

3.

Let u = ω2, Eq (4.4) becomes

G(u) = u3 + p1u2 + p2u + p3 = 0. (4.5)

If Eq (4.5) has a positive real root u, the characteristic Eq (4.1) has a purely imaginary root iω = i
√

u;
otherwise, Eq (4.1) has no purely imaginary root.
Note that

G
′

(u) = 3u2 + 2p1u + p2. (4.6)

Let
∆ = p2

1 − 3p2.

Then we know that G(u) is monotonically increasing if ∆ ≤ 0, which indicates that Eq (4.5) has no
positive root when p3 ≥ 0 and ∆ ≤ 0.

If ∆ > 0, the function G(u) has two critical points

u∗ =
−p1 +

√
∆

3
, u∗∗ =

−p1 −
√

∆

3
.

Thus we know that Eq (4.5) has unique positive root u0 with G′(u0) > 0 if one of the following two
conditions hold:
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(H1) ∆ > 0, p3 < 0, u∗∗ < 0 and u∗ > 0;
(H2) ∆ > 0, p3 < 0, u∗ > 0 and G(u∗∗) < 0.
Equation (4.5) has two positive roots u1 < u2 with G′(u1) < 0 and G′(u2) > 0 if the following
assumption is satisfied:
(H3) ∆ > 0, p3 > 0, u∗ > 0 and G(u∗) < 0.

Let ωk =
√

uk, k = 0, 1, 2. It follows from Eqs (4.2) and (4.3) that the value of τ associated with the
purely imaginary root iωk should satisfy

(B1ω
2
k − B3)(C3 −C1ω

2
k) + (ω3

k − B2ωk)C2ωk =
(
(C3 −C1ω

2
k)2 + C2

2ω
2
k
)

cos(ωkτ).

For k = 0, 1, 2, we define

τk
n =

1
ωk

arccos
( (B1ω

2
k − B3)(C3 −C1ω

2
k) + (ω3

k − B2ωk)C2ωk

(C3 −C1ω
2
k)2 + C2

2ω
2
k

)
+

2nπ
ωk

, n = 0, 1, 2 · · · . (4.7)

Then at increasing sequences of τ values,

τ0
0 < τ

0
1 < τ

0
2 < · · · < τ

0
n · ··,

τ1
0 < τ

1
1 < τ

1
2 < · · · < τ

1
n · ··,

τ2
0 < τ

2
1 < τ

2
2 < · · · < τ

2
n · ··,

Eq (4.1) has purely imaginary roots iωk, k = 0, 1, 2.
Now we consider the transversality conditions associated with Hopf bifurcation. Substituting λ(τ)

into Eq (4.1) and differentiating the resulting equation in τ, we obtain(dλ
dτ

)−1

=
3λ2 + 2B1λ + B2 + (2C1λ + C2)e−λτ + (C1λ

2 + C2λ + C3) · (−τ)e−λτ

λe−λτ(C1λ2 + C2λ + C3)

=
(3λ2 + 2B1λ + B2)eλτ

λ(C1λ2 + C2λ + C3)
+

2C1λ + C2

λ(C1λ2 + C2λ + C3)
−
τ

λ
.

which indicates that

sign
{d(Reλ)

dτ

}∣∣∣∣
λ=iωk

= sign
{
Re

(dλ
dτ

)−1
}∣∣∣∣
λ=iωk

= sign
{3ω4

k + 2(B2
1 − 2B2 −C2

1)ω2
k + (B2

2 + 2C1C3 −C2
2 − 2B1B3)

(C3 −C1ω
2
k)2 + C2

2ω
2
k

}
= sign

{ G
′

(ω2
k)

(C3 −C1ω
2
k)2 + C2

2ω
2
k

}
.

Since G′(u0) > 0, G′(u1) < 0 and G′(u2) > 0, then for n = 0, 1, 2, ..., we have

sign
{d(Reλ)

dτ

∣∣∣∣
τ=τk

n

}
= sign

{
Re

(dλ
dτ

)−1∣∣∣∣
τ=τk

n

}
> 0, (k = 0, 2),

and
sign

{d(Reλ)
dτ

∣∣∣∣
τ=τk

n

}
= sign

{
Re

(dλ
dτ

)−1∣∣∣∣
τ=τk

n

}
< 0, (k = 1).
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Then we know that at each τ0
n and τ2

n, n = 0, 1, 2, · · ·, a pair of characteristic roots of Eq (4.1) cross the
imaginary axis to the right. At each τ1

n, n = 0, 1, 2, · · ·, a pair of characteristic roots of Eq (4.1) cross the
imaginary axis to the left. Then the transversality condition required by the Hopf bifurcation theorem
is satisfied.

Note that ωk =
√

uk and u1 < u2. We have ω1 < ω2, which indicates that

τ1
n − τ

1
n−1 =

2π
ω1

>
2π
ω2

= τ2
n − τ

2
n−1, n = 0, 1, 2....

Then there exists a positive integer k such that

τ2
0 < τ

1
0 < τ

2
1 < τ

1
1 · ·· < τ

2
k < τ

2
k+1 < τ

1
k .

We thus obtain the following result.

Theorem 4.1. For system (1.4), we have
(i) If ∆ ≤ 0 and p3 ≥ 0 holds, E∗2 is asymptotically stable for all τ > 0.
(ii) If one of the conditions (H1) and (H2) holds, E∗2 is asymptotically stable when τ ∈ [0, τ0

0) and
unstable when τ > τ0

0, that is system (1.4) undergoes a Hopf bifurcation at E∗2 when τ = τ0
0.

(iii) If the condition (H3) holds, system (1.4) undergoes a Hopf bifurcation at E∗2 along two
sequences of τ values τ1,2

n , n = 0, 1, 2.... Furthermore there exists a positive integer k such that E∗2 is
stable when

τ ∈ [0, τ2
0) ∪ (τ1

0, τ
2
1) ∪ · · · · · ∪ (τ1

k−1, τ
2
k);

E∗2 is unstable when

τ ∈ (τ2
0, τ

1
0) ∪ (τ2

1, τ
1
1) ∪ · · · · · ∪ (τ2

k−1, τ
1
k−1) ∪ (τ2

k ,+∞).

5. Direction and stability of the Hopf bifurcation

In the previous section, we know that system (1.4) undergoes a Hopf bifurcation at E∗2 along some
sequences of τ values. Let τ∗ be one of the Hopf bifurcation points. As pointed out in
Hassard et al. [31], it is interesting to determine the direction, stability and period of these periodic
solutions.

Let µ = τ − τ∗, and then µ is new bifurcation parameter of the system. Define

X(t) = (x − x∗2, y − y∗2, z − z∗2)T, Xt(θ) = X(t + θ), θ ∈ [−τ, 0].

System (1.4) may be written as:

X
′

(t) = LµXt + f (Xt(.), µ), Lµφ = F1φ(0) + F2φ(−τ), (5.1)

where

f (φ, µ) =


−βφ1(0)φ2(0)

βφ1(0)φ2(0) − pφ2(0)φ3(0)
cφ2(−τ)φ3(−τ) −

r
m
φ3

2(0)

 ,
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F1 =


−βy∗2 − d1 −βx∗2 0

βy∗2 −d2 − pz∗2 −py∗2

0 0 r − d3 −
2rz∗2
m

 ,
and

F2 =


0 0 0
0 0 0
0 cz∗2 cy∗2

 .
By Riesz representation theorem, there exists a matrix η(θ, µ) : [−τ, 0] → R3 whose components are
bounded variation functions such that

Lµφ =

∫ 0

−τ

dη(θ, µ)φ(θ),

where
dη(θ, µ) = F1δ(θ)dθ + F2δ(θ + τ)dθ

and δ(θ) is the Dirac delta function.
For φ ∈ C([−τ, 0],R3), we define

A(µ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−τ, 0),∫ 0

−τ

dη(ξ, µ)φ(ξ), θ = 0,

and

R(µ)φ(θ) =

 0, θ ∈ [−τ, 0),
f (φ, µ), θ = 0.

Then system (1.4) is equivalent to the following operator equation

X
′

t (θ) = A(µ)Xt(θ) + R(µ)Xt(θ). (5.2)

For ϕ ∈ C([0, τ],R3), we define the adjoint operator of A(0) as A∗(0),where

A∗(0)ϕ(s) =


−

dϕ(s)
ds

, s ∈ (0, τ],∫ 0

−τ

dηT(ξ, 0)φ(−ξ), s = 0.

For the convenience of research, we simply write A for A(0), A∗ for A∗(0), R for R(0), η(θ) for η(θ, 0),
for ϕ ∈ C([0, τ],R3) and φ ∈ C([−τ, 0],R3).

Define a bilinear form as

〈ϕ, φ〉 = ϕ̄T(0)φ(0) −
∫ 0

θ=−τ

∫ θ

ξ=0
ϕ̄>(ξ − θ)dη(θ)φ(ξ)dξ.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.



4397

Let q(θ) and q∗(s) to be the eigenvectors of matric A and A∗ corresponding to eigenvalue iω0 and −iω0,
respectively. Then

Aq(θ) = iω0q(θ), A∗q∗(s) = −iω0q∗(s).

We can choose appropriate q(θ) and q∗(s) such that < q(θ), q∗(s) >= 1,
where

q(θ) = (1, q2, q3)Teiω0θ, q∗(s) = D(1, q∗2, q
∗
3)Teiω0 s,

and

q2 =
βy∗2 + d1 + iω0

−βx∗2
, q3 =

β2y∗2x∗2 + (βy∗2 + d1 + iω0)(d2 + pz∗2 + iω0)
py∗2βx∗2

,

q∗2 =
βy∗2 + d1 − iω0

βy∗2
, q∗3 =

[β2y∗2x∗2 + (βy∗2 + d1 − iω0)(d2 + pz∗2 − iω0)]eiω0τ
∗

cβy∗2z∗2
.

Note that

< q, q∗ > = D̄q̄T(0)q∗(0) −
∫ 0

θ=−τ∗

∫ θ

s=0
D̄q̄T(s − θ)dη(θ)q∗(s)ds

= D̄(1 + q̄2q∗2 + q̄3q∗3 −
∫ 0

θ=−τ∗

∫ θ

s=0
(1, q̄2, q̄3)e−(s−θ)iω0(1, q∗2, q

∗
3)Teiω0 sdsdη(θ))

= D̄(1 + q̄2q∗2 + q̄3q∗3 −
∫ 0

θ=−τ∗
(cq̄2z∗ + cq∗3y∗)θeiω0θdη(θ))

= D̄(1 + q̄2q∗2 + q̄3q∗3 + (cq̄2z∗ + cq∗3y∗)q∗3τ
∗eiω0τ

∗

).

Then we can choose D̄ as

D̄ = [1 + q̄2q∗2 + q̄3q∗3 + (cq̄2z∗2 + cq∗3y∗2)q∗3τ
∗eiω0τ

∗

]−1

such that < q(θ), q∗(s) >= 1.
According to the notations in Hassard et al. [31], we need to compute the center manifold C0 at

µ = 0. Let ut be the solution of Eq (5.1) when µ = 0 and define

Z(t) =< q∗, ut >, W(t, 0) = ut(0) − 2Re{Z(t)q(θ)}. (5.3)

On the center manifold C0, we have W(t, 0) = W(Z(t), Z̄(t), θ), where

W(Z, Z̄, θ) = W20(θ)
Z2

2
+ W11(θ)ZZ̄ + W02(θ)

Z̄2

2
+ · · · ,

Z and Z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that if Xt is
real, W is real. We only consider the real solutions. For the solution of the Eq (5.1) Xt ∈ C0, we have

Ż(t) = iωZ + q̄∗(θ) f (0,W(Z, Z̄, θ)) + 2Re{Zq(θ)} 4= iωZ + q̄∗(0) f0(Z, Z̄).

Now we rewrite this equation as Ż(t) = iωZ + g(Z, Z̄), where

g(Z, Z̄) = q̄∗(0) f0(Z, Z̄) = g20
Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ g21

Z2Z̄
2

+ · · · . (5.4)
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Note that ut(θ) = W(t, θ) + Zq(θ) + Z̄q̄(θ). We have

g(Z, Z̄) = q̄∗(0) f0(Z, Z̄)

= D̄
{
− βu1t(0)u2t(0) + q∗2

(
βu1t(0)u2t(0) − pu2t(0)u3t(0)

)
+ q∗3

(
cu2t(−τ)u3t(−τ) −

r
m

u2
3t(0)

)}
= D̄

{
(q∗2 − β)(Z + Z̄ + W (1)

20 (0)
Z2

2
+ W (1)

11 (0)ZZ̄ + W (1)
02 (0)

Z̄2

2
)(q2Z + q̄2Z̄ + W (3)

20 (0)
Z2

2

+ W (3)
11 (0)ZZ̄ + W (3)

02 (0)
Z̄2

2
) − pq∗2(q2Z + q̄2Z̄ + W (2)

20 (0)
Z2

2
+ W (2)

11 (0)ZZ̄ + W (2)
02 (0)

Z̄2

2
)(q3Z

+ q̄3Z̄ + W (3)
20 (0)

Z2

2
+ W (3)

11 (0)ZZ̄ + W (3)
02 (0)

Z̄2

2
) + q∗3c(q2Ze−iω0τ + q̄2Z̄e−iωτ + W (2)

20 (−τ)
Z2

2

+ W (2)
11 (−τ)ZZ̄ + W (2)

02 (−τ)
Z̄2

2
)(q4Ze−iω0τ + q̄4Z̄e−iωτ + W (3)

20 (−τ)
Z2

2
+ W (3)

11 (−τ)ZZ̄

+ W (3)
02 (−τ)

Z̄2

2
) −

r
m

q∗3
(
q3Z + q̄3Z̄ + W (3)

20 (0)
Z2

2
+ W (3)

11 (0)ZZ̄ + W (3)
02 (0)

Z̄2

2
)2
}
.

Comparing the coefficients with Eq (5.4), we have

g20 = 2D̄
{
(q∗2 − β)q2 + q∗3q2q3ce−2iωτ − q∗2q2q3 p −

r
m

q∗3q2
3
}
,

g11 = 2D̄
{
(q∗2 − β)Re{q2} + q∗3cRe{q̄2q3}e−2iωτ − q∗2 pRe{q̄2q3} −

r
m

q∗3q3q̄3
}
,

g02 = 2D̄
{
(q∗2 − β)q̄2 + q∗3q̄2q̄3ce−2iωτ − q∗2q̄2q̄3 p −

r
m

q∗3q̄3
2},

g21 = 2D̄
{
(q∗2 − β)

(
W (2)

11 (0) +
W (2)

20 (0)
2

+
q̄2W (1)

20 (0)
2

+ q2W (1)
11 (0)

)
+ q∗3c

(
q2e−iωτW (3)

11 (−τ) + q3e−iωτW (2)
11 (−τ) +

q̄2W (3)
20 (−τ)
2

e−iωτ +
q̄3W (2)

20 (−τ)
2

e−iωτ)
− q∗2 p

(
q2W (3)

11 (0) +
q̄2W (3)

20 (0)
2

+
q̄3W (2)

20 (0)
2

+ q3W (2)
11 (0)

)
−

r
m

q∗3
(
2q3W (3)

11 (0) + q̄3W (3)
20 (0)

)}
.

(5.5)

It remains to compute W11(0) and W20(0) in g21. From Eqs (5.2) and (5.3), we have

Ẇ = ẋt − Żq − Żq =

 AW − 2Re{q̄∗(0) f0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q̄∗(0) f0q(0)} + f0, θ = 0.

(5.6)

We rewrite the Eq (5.6) as
Ẇ 4

= AW + H(Z, Z̄, θ) (5.7)

where

H(Z, Z̄, θ) = H20(θ)
Z2

2
+ H11(θ)ZZ̄ + H02(θ)

Z̄2

2
+ · · · .

Thus
(A − 2iω)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (5.8)
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From Eq (5.7), we know that for θ ∈ [−1, 0)

H(Z, Z̄, θ) = −q̄∗(0) f0q(θ) − q∗(0) f̄0q̄(θ) = −gq(θ) − ḡq̄(θ).

Comparing the coefficients with Eq (5.8), we obtain

H20(θ) = −g20q(θ) − ḡ20q̄(θ), (5.9)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (5.10)

From Eqs (5.8) and (5.9) and the definition of A, we have

Ẇ20(θ) = 2iωW20(θ) + g20q(θ) + ḡ02q̄(θ),

where q(θ) = (1, q2, q3)Teiθωτ. Hence

W20(θ) =
ig20

ω
eiωθq(0) +

iḡ02

3ω
e−iωθq̄(0) + E20e2iωθ

where

E20 = 2(2iω − F1 − F2e−2iωτ)−1


−βq2

βq2 − pq2q3

cq2q3e−2iωτ −
r
m

q2
3

 .
Similarly, from Eqs (5.8) and (5.10) we obtain

W11(θ) =
ig11

ω
eiωθq(0) +

iḡ11

ω
e−iωθq̄(0) + E11,

where

E11 = 2(−F1 − F2)−1


−βRe{q2}

βRe{q2} − pRe{q2q̄3}

cRe{q2q̄3} −
r
m
{q2

3}

 .
So far, we have calculated g20, g11, g02, g21 in Eq (5.5) and then we can obtain

c1(0) =
i

2ω

(
g11g20 − 2 | g11 |

2 −
| g02 |

2

3

)
+

g21

2
,

ν2 = −
Re(c1(0))
Re(λ′(τ∗))

,

β2 = 2Re(c1(0)),

T2 =
−
(
Im{c1(0)} + ν2Im{λ

′

(τ∗)}
)

ω
.

(5.11)

It is well known that ν2 and β2 will determine the direction and stability of the Hopf bifurcation,
and T2 determines the period of the bifurcated periodic solutions, respectively. In particular, the Hopf
bifurcation is supercritical (subcritical) if ν2 > 0(ν2 < 0), and the bifurcated periodic solutions exist for
τ > τ0(τ < τ0). The bifurcated periodic solutions are stable (unstable) if β2 < 0 (β2 > 0) and the period
will become longer (shorter) if T2 > 0 (T2 < 0).
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6. Numerical simulations

In this section, we carry out some numerical simulations to display some qualitative behaviours of
system (1.4). Table 1 lists the values or ranges of parameters for system (1.4) referring to [21].

We first study the effect of logistic growth on the dynamics of system (1.4). According to the ranges
of parameters in Table 1, we take the following parameters

s = 10, β = 0.02, d1 = 0.2, d2 = 0.5, d3 = 0.2, p = 0.05, c = 0.4,m = 20. (6.1)

Figure 1 presents the bifurcation diagrams of the solutions for system (1.4) with respect to τ and
different logistic growth rate r. One can see that the positive equilibrium E∗1 of system (1.4) is local
asymptotically stable when τ < τ∗ = 0.8 and the bifurcated periodic solutions occurs through Hopf
bifurcations when τ > τ∗. Similarly, the positive equilibrium E∗2 = (49.42, 0.12, 9.77) of system (1.4)
is local asymptotically stable when τ = 8 < τ∗ = 8.655 and the bifurcated periodic solutions occur
through Hopf bifurcations when τ = 9 > τ∗. At the same time, one can note that, except r = 0, the
values of Hopf bifurcation points increase with the increase of r. On the other hand, the amplitude
of the bifurcated periodic solution increase with the increase of time delay τ and decrease with the
increase of r.

Table 1. Meanings and units of parameters.

Parameters Descriptions Ranges Units
s Source rate of uninfected cell 1–10 cells mL−1day−1

β Virus-to-cell infection rate 0.00025–0.5 mL virion−1day−1

p Predation rate of infection cell by CTLs 1–4.048 × 10−4 mL cell−1day−1

r Breath rate of CTLs 0.0051–3.912 mL cell−1day−1

m Capacity of immune cells 6.25–235999.9 mL cell−1

c Development rate of CTLs 0.0051–3.912 mL cell−1day−1

d1 Death rate of uninfected cell 0.007–0.1 day−1

d2 Death rate of infected cell 0.2–0.3 day−1

d3 Death rate of immune cell 0.001–0.3 day−1

Figure 2 presents phase diagrams of the solutions for system (1.4) with r = 0.3 and different values
of τ. One can see that the positive equilibrium E∗2 = (49.42, 0.12, 9.77) is local asymptotically stable
when τ = 8 < τ∗ = 8.655 and the bifurcated periodic solutions occur through Hopf bifurcations when
τ = 9 > τ∗. Furthermore, using the given parameter values (6.1), we can obtain c1(0) = −19.651 +

26.769i by some calculations and then we know that µ2 > 0, β2 < 0, T2 < 0 by (5.11). According to the
conclusion in [31], we know that the Hopf bifurcation at τ∗ = 8.655 is supercritical, and the bifurcating
periodic solution is stable.

In order to investigate the stability switch of equilibrium, we take the following parameters

s = 10, β = 0.2, d1 = 0.2, d2 = 0.3, d3 = 0.2, p = 0.05, c = 0.5, r = 1.6,m = 50. (6.2)

We obtain there exists positive equilibrium E∗2 = (18.8775, 1.6487, 69.5102) and the characteristic
equation of system (1.4) have two pure virtual roots ω1 = 0.4464 and ω2 = 1.4748. Then by (4.7) we
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get
τ1

0 = 0.8365, τ1
1 = 8.1911, τ1

2 = 12.4513;

and
τ2

0 = 3.9309, τ2
1 = 14.9113.

Noting that τ2
1 > τ

1
2, we know that E∗2 is asymptotically stable when τ ∈ [0, τ1

0)∪ (τ2
0, τ

1
1) and is unstable

when τ ∈ (τ1
0, τ

2
0) ∪ (τ1

1,+∞). Figure 3 presents time series diagrams of the solutions for system (1.4)
with different values of τ. One can see that there exists stability switch of equilibrium E∗2 as τ increases
and some periodic solutions are bifurcated by Hopf bifurcation.
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Figure 1. Bifurcation diagrams of system (1.4) with respect to τ and different r. Parameter
values are given by (6.1).
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Figure 2. Phase diagrams of the solutions for system (1.4) with r = 0.3 and different values
of τ. The other parameters values are given by (6.1).
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Figure 3. Time series diagrams of the solutions for system (1.4) showing stability switch
with increase of τ. Parameter values are given by (6.2).

Table 2. Global properties of system (1.4) with τ > 0.

Case Conditions Equilibria and its stability
r = 0 R0 < 1 Eyz

0 is GAS
1 < R0 < 1 +

βd3
cd1

Eyz
0 is US, Ez

0 is GAS
R0 > 1 +

βd3
cd1

Eyz
0 and Ez

0 are US, E∗ (Hopf)
r < d3 R0 < 1 Eyz

0 is GAS
1 < R0 < 1 +

β(d3−r)
cd1

Eyz
0 is US, Ez

0 is GAS
R0 > 1 +

β(d3−r)
cd1

Eyz
0 and Ez

0 are US, E∗ (Hopf)
r = d3 R0 < 1 Eyz

0 is GAS
R0 > 1 Eyz

0 and Ez
0 are US, E∗ (Hopf)

r > d3 R0 < 1 Eyz
0 is US, Ey

0 is GAS
1 < R0 < 1 +

pm(r−d3)
rd2

Eyz
0 and Ez

0 are US, Ey
0 is GAS

R0 > 1 +
pm(r−d3)

rd2
Eyz

0 , Ez
0 and Ey

0 are US, E∗ (Hopf)

Note: GAS means globally asymptotically stable; US means unstable.

7. Conclusions and discussions

In this paper, a viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs)
and activation time delay of immune cells is proposed. We mainly focus on two topics. First, we
study the global dynamics of system (1.4) through constructing appropriate Lyapunov functions.
Then we examine the impact of the activation time delay of immune cells on the existence of periodic
solutions. The global dynamical properties of system (1.4) can be summarized in the following
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Table 2. Numerical simulations verify the theoretical analyses. In particular, we find that for different
values of the delay in CTL response, the system can stabilize at the positive equilibrium when the
delay is small, or stabilize at a stable periodic oscillation when the delay is large. The amplitudes of
bifurcated periodic solutions increase with the increase of activation time delay of immune cells and
decrease with the increase of r (Figure 1). It is also found that there exists stability switch
phenomenon under some conditions (Figure 3). The results indicate that the self-proliferation
intensity and activation time delay of immune cells can significantly affect the kinetics of viral
infection.

Some aspects of the viral infection problem remain to be studied in the future. For instance, we
plan to extend our analysis to global Hopf bifurcation analysis. Some other factors that influence
the dynamics of viral infection including the heterogeneity of space and movement of cells may be
investigated.

Acknowledgments

The authors would like to thank the reviewers and the editor for their careful reading, helpful
comments and suggestions that greatly improved the paper. This work is supported by the National
Natural Science Foundation of China (Grant Nos. 11701472, 11771448, 11871403).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. A. Lifton, et al, Control of
viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science, 283 (1999),
857–860.

2. L. C. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection
of CD4+ T cells, Math. Biosci., 200 (2006), 44–57.

3. X. Y. Song, A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math.
Anal. Appl., 329 (2007), 281–297.

4. R. J. De Boer, A. S. Perelson, Target cell limited and immune control models of HIV infection: A
comparison, J. Theoret. Biol., 190 (1998), 201–214.

5. Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed
delays, J. Math. Anal. Appl., 375 (2011), 14–27.

6. J. L. Wang, J. M. Pang, T. Kuniya, Global threshold dynamics in a five-dimensional virus model
with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241
(2014), 298–316.

7. M. A. Nowak, S. Bonhoefier, A. M. Hill, R. Boehme, H. C. Thomas, H. McDade, Viral dynamics
in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398–4402.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.



4404

8. A. Korobeinikov, S. Giles, Global properties of basic virus dynamics models, Bull. Math. Biol., 66
(2004), 879–883.

9. M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,
Science, 272 (1996), 74–79.

10. H. Zhu, X. Zou, Dynamics of a HIV-1 Infection model with cell-mediated immune response and
intracellular delay,Discr. Cont. Dyn. Syst. Ser. B, 12 (2009), 511–524.

11. K. Wang, W. Wang, H. Pang, X. Liu, Complex dynamic behavior in a viral model with delayed
immune response, Physica D, 226 (2007), 197–208.

12. Yukihiko Nakata, Global dynamics of a cell mediated immunity in viral infection models with
distributed delays, J. Math. Anal. Appl., 375 (2011), 14–27.

13. H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multi-stability in a model for CTL response to HTLV-
I infection and its consequences in HAM/TSP development and prevention, Bull. Math. Biol., 72
(2010), 681–696.

14. R. M. Anderson, R. M. May, S. Gupta, Non-linear phenomena in host-parasite interactions,
Parasitology, 99 (1989), 59–79.

15. A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics,
J. Math. Biol., 51 (2005), 247–267.

16. C. Chiyaka, W. Garira, S. Dube, Modelling immune response and drug therapy in human malaria
infection, Comput. Math. Method. Med., 9 (2008), 143–163.

17. A. S. Perelson, Modelling viral and immune system dynamics, Nature Rev. Immunol., 2 (2002),
28–36.

18. A. Korobeinikov, Immune response and within-host viral evolution:Immune response can
accelerate evolution, J. Theor. Biol., 456 (2018),74–83.

19. H. Q. Zhang, H. Chen, C. C Jiang, K. F. Wang, Effect of explicit dynamics of free virus and
intracellular delay, Chaos, Solitons Fractals, 104 (2017), 827–834.

20. Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular
delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527.

21. K. Allali, S. Harroudi, D. F. M. Torre, Analysis and optimal control of an intracellular delayed
HIV model with CTL immune response, Math. Comput. Sci., 12 (2018), 111–127.

22. H. J. Liu, J. F. Zhang, Dynamics of two time delays differential equation model to HIV latent
infection, Physica A, 514 (2019), 384–395.

23. M. Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response
to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774–1793.

24. D. W. Huang, X. Zhang, Y. F. Guo, H. L. Wang, Analysis of an HIV infection model with treatment
sand delayed immune response, Appl. Math. Model., 40 (2016), 3081–3089.

25. D. Wodarz, J. P. Christensen, A. R. Thomsen, The importance of lytic and nonlytic immune
responses in viral infections, Trends Immunol., 23 (2002), 194–200.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.



4405

26. C. Bartholdy, J. P. Christensen, D. Wodarz, A. R. Thomsen, Persistent virus infection despite
chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with
lymphocytic chroriomeningitis virus, J. Virology, 74 (2000), 10304–10311.

27. K. Wang, Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Comm.
Pure Appl. Anal., 10 (2011), 1537–1548.

28. S. Bonhoeffer, J. M. Coffin, M. A. Nowak, Human immunodeficiency virus drug therapy and virus
load, J. Virology, 71 (1997), 3275–3278.

29. M. Nagumo, Uber die lage der integralkurven gewohnlicher differentialgleichungen, Proc. Phys.
Math. Soc., 24 (1942), 551–559.

30. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.

31. B. Hassard, D. Kazarinoff, Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge:
Cambridge University Press, 1981.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4384–4405.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary results
	Global stability analysis of boundary equilibria
	Stability of positive equilibrium and Hopf bifurcation
	Direction and stability of the Hopf bifurcation
	Numerical simulations
	Conclusions and discussions

