Citation: Oleh Krehel, Toyohiko Aiki, Adrian Muntean. Homogenization of a thermo-diffusion system with Smoluchowski interactions[J]. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739
[1] | Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739 |
[2] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[3] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[4] | Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013 |
[5] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[6] | M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831 |
[7] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[8] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[9] | Mostafa Bendahmane, Kenneth H. Karlsen . Martingale solutions of stochastic nonlocal cross-diffusion systems. Networks and Heterogeneous Media, 2022, 17(5): 719-752. doi: 10.3934/nhm.2022024 |
[10] | Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001 |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084
![]() |
[2] |
B. Andreianov, M. Bendahmane and R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics, Mathematical Models and Methods in Applied Sciences, 21 (2011), 307-344. doi: 10.1142/S0218202511005064
![]() |
[3] |
M. Beneš and R. Štefan, Global weak solutions for coupled transport processes in concrete walls at high temperatures, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 93 (2013), 233-251. doi: 10.1002/zamm.201200018
![]() |
[4] |
M. Beneš, R. Štefan and J. Zeman, Analysis of coupled transport phenomena in concrete at elevated temperatures, Applied Mathematics and Computation, 219 (2013), 7262-7274. doi: 10.1016/j.amc.2011.02.064
![]() |
[5] | A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 374, American Mathematical Soc., 2011. |
[6] | S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Series in physics, North-Holland Publishing Company - Amsterdam, 1962. |
[7] | M. Elimelech, J. Gregory, X. Jia and R. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Elsevier, 1998. |
[8] | L. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998. |
[9] |
T. Fatima and A. Muntean, Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
![]() |
[10] |
T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation, Networks and Heterogeneous Media, 7 (2012), 705-740. doi: 10.3934/nhm.2012.7.705
![]() |
[11] |
R. Golestanian, Collective behavior of thermally active colloids, Physical Review Letters, 108 (2012), 038303. doi: 10.1103/PhysRevLett.108.038303
![]() |
[12] |
Z.-X. Gong and A. S. Mujumdar, Development of drying schedules for one-side-heating drying of refractory concrete slabs based on a finite element model, Journal of the American Ceramic Society, 79 (1996), 1649-1658. doi: 10.1111/j.1151-2916.1996.tb08777.x
![]() |
[13] |
U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of Differential Equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
![]() |
[14] | O. Krehel, A. Muntean and P. Knabner, On modeling and simulation of flocculation in porous media, In A.J. Valochi (Ed.), Proceedings of XIX International Conference on Water Resources. (pp. 1-8) CMWR, University of Illinois at Urbana-Champaign, 2012. |
[15] | O. Krehel, A. Muntean and P. Knabner, Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Technical Report No. 14-12, CASA Report, Eindhoven, 2014. |
[16] | J. Lions, Quelques méthodes de résolution des problèmes aux limites non linèaires}, Dunod, Paris, 1969. |
[17] |
A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM Journal on Mathematical Analysis, 40 (2008), 215-237. doi: 10.1137/050645269
![]() |
[18] |
N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor boltzmann-poisson system, SIAM Journal on Mathematical Analysis, 38 (2007), 1788-1807. doi: 10.1137/050630763
![]() |
[19] |
C. C. Mei and B. Vernescu, Homogenization Methods for Multiscale Mechanics., World Scientific, 2010. doi: 10.1142/7427
![]() |
[20] | M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, 322 (1996), 899-904. |
[21] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623. doi: 10.1137/0520043
![]() |
[22] | W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices of the AMS, 45 (1998), 9-18. |
[23] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. |
[24] |
N. Ray, A. Muntean and P. Knabner, Rigorous homogenization of a stokes-nernst-planck-poisson system, Journal of Mathematical Analysis and Applications, 390 (2012), 374-393. doi: 10.1016/j.jmaa.2012.01.052
![]() |
[25] |
S. Rothstein, W. Federspiel and S. Little, A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices, Biomaterials, 30 (2009), 1657-1664. doi: 10.1016/j.biomaterials.2008.12.002
![]() |
[26] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, Journal of Theoretical Biology, 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
![]() |
[27] | M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem, 92 (1917), 129-168. |
[28] |
J. Soares and P. Zunino, A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks, Biomaterials, 31 (2010), 3032-3042. doi: 10.1016/j.biomaterials.2010.01.008
![]() |
[29] |
V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Physical Chemistry Chemical Physics, 11 (2009), 897-912. doi: 10.1039/b813825g
![]() |
1. | Michal Beneš, Igor Pažanin, Homogenization of degenerate coupled transport processes in porous media with memory terms, 2019, 42, 0170-4214, 6227, 10.1002/mma.5718 | |
2. | Pietro Artale Harris, Emilio N. M. Cirillo, Adrian Muntean, Weak solutions to Allen–Cahn-like equations modelling consolidation of porous media, 2017, 82, 0272-4960, 224, 10.1093/imamat/hxw013 | |
3. | Ansgar Jüngel, Mariya Ptashnyk, Homogenization of degenerate cross-diffusion systems, 2019, 267, 00220396, 5543, 10.1016/j.jde.2019.05.036 | |
4. | Oleh Krehel, Adrian Muntean, Peter Knabner, Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, 2015, 86, 03091708, 209, 10.1016/j.advwatres.2015.10.005 | |
5. | Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma, On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit, 2021, 26, 1553-524X, 2451, 10.3934/dcdsb.2020190 | |
6. | Michal Beneš, Lukáš Krupička, Weak solutions of coupled dual porosity flows in fractured rock mass and structured porous media, 2016, 433, 0022247X, 543, 10.1016/j.jmaa.2015.07.052 | |
7. | Vo Anh Khoa, Adrian Muntean, Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit, 2016, 439, 0022247X, 271, 10.1016/j.jmaa.2016.02.068 | |
8. | Toyohiko Aiki, Adrian Muntean, Large-time behavior of solutions to a thermo-diffusion system with Smoluchowski interactions, 2017, 263, 00220396, 3009, 10.1016/j.jde.2017.04.024 | |
9. | Michal Beneš, 2018, 1978, 0094-243X, 030009, 10.1063/1.5043659 | |
10. | Laurent Desvillettes, Silvia Lorenzani, Homogenization of the discrete diffusive coagulation–fragmentation equations in perforated domains, 2018, 467, 0022247X, 1100, 10.1016/j.jmaa.2018.07.042 | |
11. | Michal Beneš, Igor Pažanin, Homogenization of degenerate coupled fluid flows and heat transport through porous media, 2017, 446, 0022247X, 165, 10.1016/j.jmaa.2016.08.041 | |
12. | Adrian Muntean, Sina Reichelt, Corrector Estimates for a Thermodiffusion Model with Weak Thermal Coupling, 2018, 16, 1540-3459, 807, 10.1137/16M109538X | |
13. | Bruno Franchi, Silvia Lorenzani, Homogenization of Smoluchowski-type equations with transmission boundary conditions, 2024, 24, 2169-0375, 952, 10.1515/ans-2023-0143 |