Homogenization of a thermo-diffusion system with Smoluchowski interactions

  • Received: 01 April 2014 Revised: 01 September 2014
  • Primary: 35B27, 35K59; Secondary: 80M40, 80A25.

  • We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale convergence techniques, allows the investigation of deposition effects in porous materials in the presence of thermal gradients.

    Citation: Oleh Krehel, Toyohiko Aiki, Adrian Muntean. Homogenization of a thermo-diffusion system with Smoluchowski interactions[J]. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739

    Related Papers:

    [1] Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739
    [2] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [3] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [4] Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013
    [5] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [6] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
    [7] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [8] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [9] Mostafa Bendahmane, Kenneth H. Karlsen . Martingale solutions of stochastic nonlocal cross-diffusion systems. Networks and Heterogeneous Media, 2022, 17(5): 719-752. doi: 10.3934/nhm.2022024
    [10] Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001
  • We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale convergence techniques, allows the investigation of deposition effects in porous materials in the presence of thermal gradients.


    [1] G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084
    [2] B. Andreianov, M. Bendahmane and R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics, Mathematical Models and Methods in Applied Sciences, 21 (2011), 307-344. doi: 10.1142/S0218202511005064
    [3] M. Beneš and R. Štefan, Global weak solutions for coupled transport processes in concrete walls at high temperatures, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 93 (2013), 233-251. doi: 10.1002/zamm.201200018
    [4] M. Beneš, R. Štefan and J. Zeman, Analysis of coupled transport phenomena in concrete at elevated temperatures, Applied Mathematics and Computation, 219 (2013), 7262-7274. doi: 10.1016/j.amc.2011.02.064
    [5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 374, American Mathematical Soc., 2011.
    [6] S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Series in physics, North-Holland Publishing Company - Amsterdam, 1962.
    [7] M. Elimelech, J. Gregory, X. Jia and R. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Elsevier, 1998.
    [8] L. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.
    [9] T. Fatima and A. Muntean, Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
    [10] T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation, Networks and Heterogeneous Media, 7 (2012), 705-740. doi: 10.3934/nhm.2012.7.705
    [11] R. Golestanian, Collective behavior of thermally active colloids, Physical Review Letters, 108 (2012), 038303. doi: 10.1103/PhysRevLett.108.038303
    [12] Z.-X. Gong and A. S. Mujumdar, Development of drying schedules for one-side-heating drying of refractory concrete slabs based on a finite element model, Journal of the American Ceramic Society, 79 (1996), 1649-1658. doi: 10.1111/j.1151-2916.1996.tb08777.x
    [13] U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of Differential Equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
    [14] O. Krehel, A. Muntean and P. Knabner, On modeling and simulation of flocculation in porous media, In A.J. Valochi (Ed.), Proceedings of XIX International Conference on Water Resources. (pp. 1-8) CMWR, University of Illinois at Urbana-Champaign, 2012.
    [15] O. Krehel, A. Muntean and P. Knabner, Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Technical Report No. 14-12, CASA Report, Eindhoven, 2014.
    [16] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linèaires}, Dunod, Paris, 1969.
    [17] A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM Journal on Mathematical Analysis, 40 (2008), 215-237. doi: 10.1137/050645269
    [18] N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor boltzmann-poisson system, SIAM Journal on Mathematical Analysis, 38 (2007), 1788-1807. doi: 10.1137/050630763
    [19] C. C. Mei and B. Vernescu, Homogenization Methods for Multiscale Mechanics., World Scientific, 2010. doi: 10.1142/7427
    [20] M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, 322 (1996), 899-904.
    [21] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623. doi: 10.1137/0520043
    [22] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices of the AMS, 45 (1998), 9-18.
    [23] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.
    [24] N. Ray, A. Muntean and P. Knabner, Rigorous homogenization of a stokes-nernst-planck-poisson system, Journal of Mathematical Analysis and Applications, 390 (2012), 374-393. doi: 10.1016/j.jmaa.2012.01.052
    [25] S. Rothstein, W. Federspiel and S. Little, A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices, Biomaterials, 30 (2009), 1657-1664. doi: 10.1016/j.biomaterials.2008.12.002
    [26] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, Journal of Theoretical Biology, 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [27] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem, 92 (1917), 129-168.
    [28] J. Soares and P. Zunino, A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks, Biomaterials, 31 (2010), 3032-3042. doi: 10.1016/j.biomaterials.2010.01.008
    [29] V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Physical Chemistry Chemical Physics, 11 (2009), 897-912. doi: 10.1039/b813825g
  • This article has been cited by:

    1. Michal Beneš, Igor Pažanin, Homogenization of degenerate coupled transport processes in porous media with memory terms, 2019, 42, 0170-4214, 6227, 10.1002/mma.5718
    2. Pietro Artale Harris, Emilio N. M. Cirillo, Adrian Muntean, Weak solutions to Allen–Cahn-like equations modelling consolidation of porous media, 2017, 82, 0272-4960, 224, 10.1093/imamat/hxw013
    3. Ansgar Jüngel, Mariya Ptashnyk, Homogenization of degenerate cross-diffusion systems, 2019, 267, 00220396, 5543, 10.1016/j.jde.2019.05.036
    4. Oleh Krehel, Adrian Muntean, Peter Knabner, Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, 2015, 86, 03091708, 209, 10.1016/j.advwatres.2015.10.005
    5. Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma, On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit, 2021, 26, 1553-524X, 2451, 10.3934/dcdsb.2020190
    6. Michal Beneš, Lukáš Krupička, Weak solutions of coupled dual porosity flows in fractured rock mass and structured porous media, 2016, 433, 0022247X, 543, 10.1016/j.jmaa.2015.07.052
    7. Vo Anh Khoa, Adrian Muntean, Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit, 2016, 439, 0022247X, 271, 10.1016/j.jmaa.2016.02.068
    8. Toyohiko Aiki, Adrian Muntean, Large-time behavior of solutions to a thermo-diffusion system with Smoluchowski interactions, 2017, 263, 00220396, 3009, 10.1016/j.jde.2017.04.024
    9. Michal Beneš, 2018, 1978, 0094-243X, 030009, 10.1063/1.5043659
    10. Laurent Desvillettes, Silvia Lorenzani, Homogenization of the discrete diffusive coagulation–fragmentation equations in perforated domains, 2018, 467, 0022247X, 1100, 10.1016/j.jmaa.2018.07.042
    11. Michal Beneš, Igor Pažanin, Homogenization of degenerate coupled fluid flows and heat transport through porous media, 2017, 446, 0022247X, 165, 10.1016/j.jmaa.2016.08.041
    12. Adrian Muntean, Sina Reichelt, Corrector Estimates for a Thermodiffusion Model with Weak Thermal Coupling, 2018, 16, 1540-3459, 807, 10.1137/16M109538X
    13. Bruno Franchi, Silvia Lorenzani, Homogenization of Smoluchowski-type equations with transmission boundary conditions, 2024, 24, 2169-0375, 952, 10.1515/ans-2023-0143
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3880) PDF downloads(98) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog