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ABSTRACT. We study the solvability and homogenization of a thermal-diffusion
reaction problem posed in a periodically perforated domain. The system de-
scribes the motion of populations of hot colloidal particles interacting together
via Smoluchowski production terms. The upscaled system, obtained via two-
scale convergence techniques, allows the investigation of deposition effects in
porous materials in the presence of thermal gradients.

1. Introduction. We aim at understanding processes driven by coupled fluxes
through media with microstructures. In this paper, we study a particular type of
coupling: we look at the interplay between diffusion fluxes of a fixed number of
colloidal populations and a heat flux, the effects included here are incorporating an
approximation of the Dufour ad Soret effects (cf. Section 2.3, see also [6]. The type
of system of evolution equations that we encounter in Section 2.4 resembles very
much cross-diffusion and chemotaxis-like systems; see e.g. [29, 10]. The structure of
the chosen equations is useful in investigating transport, interaction, and deposition
of a large numbers of hot multiple-sized particles in porous media.

Practical applications of our approach would include predicting the response of
refractory concrete to high-temperatures exposure in steel furnaces, propagation of
combustion waves due to explosions in tunnels, drug delivery in biological tissues,
etc.; see for instance [3, 4, 25, 28, 12, 11]. In the paper [15] we study quantita-
tively some of these effects, focusing on colloids deposition under thermal gradients.
Within this framework, our focus lies exclusively on two distinct theoretical aspects:

2010 Mathematics Subject Classification. Primary: 35B27, 35K59; Secondary: 80M40, 80A25.
Key words and phrases. Homogenization, well-posedness, colloids, thermal-diffusion, cross-
diffusion, combustion.

739


http://dx.doi.org/10.3934/nhm.2014.9.739

740 OLEH KREHEL, TOYOHIKO AIKI AND ADRIAN MUNTEAN

(i) the mathematical understanding of the microscopic problem (i.e. the well-
posedness of the starting system);

(ii) the averaging of the thermo-diffusion system over arrays of periodically-distri-
buted microstructures (the so-called, homogenization asymptotics limit; see,
for instance, [5, 19] and references cited therein).

The complexity of the microscopic system makes numerical simulations on the macro
scale very expensive. That is the reason that the aspect (ii) is of concern here.
Obviously, the study does not close with these questions. Many other issues like
derivation of corrector estimates, design of efficient convergent numerical multiscale
schemes, multiscale parameter identification etc. need also to be treated. Possible
generalizations could point out to coupling heat transfer with Nernst-Planck-Stokes
systems (extending [24]) or with semiconductor equations [18]. The paper is struc-
tured in the following manner. We present the basic notation and explain the
multiscale geometry as well as some of the relevant physical processes in Section 2.
Section 3 contains the proof of the solvability of the microstructure model. Finally,
the homogenization procedure is performed in Section 4. The strong formulation of
the upscaled thermo-diffusion model with Smoluchowski interactions is emphasized
in Section 4.3.

2. Notations and assumptions.

2.1. Model description and geometry. The geometry of the problem is depicted
in Figure 1. The standard cell is shown in Figure 2.

(0,T) = time interval of interest

Q = (0,L) x --- x (0, L) bounded domain in R™ for L > 0

€ = % for any integer ¢

o0 = piecewise smooth boundary of Q2

€; = 4th unit vector in R"

Y ={>" Néi: 0< X <1} unit cell in R™

Yy = open subset of Y that represents the solid grain

Y, =Y \Y,

r = 0Y, piecewise smooth boundary of Yj

Xk =X +> " ki€, where k = (k1,...,ky,) EZ" and X C Y
& = U{(eYp)k : (Yp)k C Qf,k € Z"} pore skeleton

Qe =0 \ﬁg pore space

re = 0025 boundary of the pore skeleton

The cells regions without the grain eY/* are filled with water and we denote their
union by Q¢. Colloidal species are dissolved in the pore water. They react between
themselves and participate in diffusion and convective transport. The colloidal
matter cannot penetrate the grain boundary I'®, but it deposits there reducing the
amount of mass floating inside Q°. Here 9Q° = 0Q U I'®, where I'* =I', UT'}; and
'y NIs = 0. The boundary I'y is insulated to the heat flow, while I's, admits flux.

The unknowns are:

e (¢ — the temperature in °.
e u? — the concentration of the species that contains ¢ monomers in Q°.
e v — the mass of the deposited species on I'°.
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FIGURE 1. Porous medium geometry ¢ = Q\Q§, where the pore
skeleton €)f is marked with gray color and the pore space €° is
white.
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FIGURE 2. The unit cell geometry. The colloidal species u; and
temperature §° are defined in Q° | while the deposited species v
are defined on I'* = I", UI'y;. The boundary conditions for 6° differ
on I'p and I', while the boundary conditions for u$ are uniform
on I'®.

Furthermore, for a given § > 0 we introduce the mollifier:

J Cel/(sP=8%) it |s| < 6,
55)= 10 if |s| > 6,

where the constant C' > 0 is selected such that

/ Js =1,
Rd

see [8] for details.
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Using J; from (1), define the mollified gradient:

Vif =V / Js(z — ) f)dy] (2)
B(z,0)

The following statement holds for all 1 <p < oco:

|W6f “Glloroe) < 05||f||L°°(QE)HQHLP(Qe)d for f € L>(Q%),g € Lp(Qg)da (3)
Hvéflle(Qs) < cé||fHL2(QE) for f S LZ(QE). (4)

In the equations below all norms are L?(2°) unless specified otherwise, with ¢
independent of the choice of ¢.

2.2. Smoluchowski population balance equations. We want to model the
transport of aggregating colloidal particles under the influence of thermal gradi-
ents. We use the Smoluchowski population balance equation, originally proposed
in [27], to account for colloidal aggregation:

N

1 .

Rl(S) = 5 E ﬁkjSij — E Bij8i8j7 1€ {]., . .,N}; N > 2. (5)
fetj=i J=1

Here s; is the concentration of the colloidal species that consists of ¢ monomers, N
is the number of species, i.e. the maximal aggregate size that we consider, R;(s)
is the rate of change of s;, and ;; > 0 are the coagulation coeflicients, which tell
us the rate aggregation between particles of size ¢ and j [7]. Colloidal aggregation
rates are described in more detail in [14].

2.3. Soret and Dufour effects. The system we have in mind is inspired by the
model proposed by Shigesada, Kawasaki and Teramoto [26] in 1979 when they have
studied the segregation of competing species. For the case of two interacting species
u and v, the diffusion term looks like:

0w = A(dyu + auw), (6)

where the second term in the flux is due to cross-diffusion. The second term can be
expressed as:
A(uv) = uAv + vAu + 2Vu - Vo. (7)

As a first step in our approach, we consider only the last term of (7), i.e. Vu - Vo,
as the driving force of cross-diffusion and we postpone the study of terms uAv and
vAu until later.

From mathematical point of view, still it is not easy to treat the term Vu - Vu.
Hence, in the paper we approximate this term by Vou - Vo for § > 0.

2.4. Setting of the model equations. We consider the following balance equa-
tions for the temperature and colloid concentrations:

(P9):

N
016° + V - (—k°VO7) — 7 Vous - VO =0, in (0,7) x Q°, (8)
1=1

Qs + V- (—d5Vus) — 05V00° - Vs = R;(uf), in (0,7) x QF, (9)
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with boundary conditions:

—K°VO* - v =0, on (0,7) x I'Yy, (10)
— KEVE° v = egob°, on (0,T) x I', (11)
—Kk°VO° v =0, on 012, (12)
—d:Vui -v =0, on 02, (13)

where v is the outward normal vector on the boundary and a boundary con-
dition for colloidal deposition:

— diVui - v = e(auf — bvi), on (0,7) x I'®, (14)
Ov§ = a;ui — bv; on (0,7) x T'*. (15)
As initial conditions, we take for i € {1,...,N}:
0°(0, ) = 6°°(x), in QF, (16)
us(0,z) = uf (), in OF, (17)
v5(0,2) = v5° (), on I'®. (18)

TABLE 1. Physical parameters of (P<).
k% heat conduction coefficient
d;  diffusion coefficient
7¢  Soret coefficient
0¢  Dufour coefficient
g; Robin boundary coefficient, i € {0,..., N}
a; Deposition coefficient 1,7 € {1,...,N}
b; Deposition coefficient 2, i € {1,...,N}

We refer to (8)- (18) as (P°) — our reference microscopic model. Note that
the Soret and Dufour coefficients determine the structure of the particular cross-
diffusion system (see [6], [26] [2], [3], [22], [29]). The coeflicients a; and b; describe
the deposition interaction between u; and v§. Consequently, each u; has a different
affinity to sediment as well as a different mass.

All functions defined in Q° are taken to be e-periodic, i.e. k*(x) = x(x/e) and
SO on.

Note the use of the mollified gradient in the cross diffusion terms in (8) and (9).
This is a choice that we have to make at this point in order to obtain the necessary
estimates for our equations. From a physical point of view, smoothed gradients
causing advection can be interpreted as there being no turbulence.

2.5. Assumptions on data.

(A1): &, T, d;, 0; € L>®(Y) for each i € {1,...,N}. Moreover, kg < K < Ry,
T < T, dy < di <ds, 6 <d.onY fori € {l,..., N}, where kg, ks, do, d
and J, are positive constants. Also, a; and b; are positive constants for i €
{1,..., N}, and we put ag = min(ay,as,...,an), ax = max(a,az,...,an),
and b, = max(by, by, ..., byn).

(Ag): 050 € L2(F) N HY(Q), ui° € LT(Q°) N HY(Q9), vf° € LP(T?) for
i€ {l,...,N} and € > 0. Moreover, ||6°°]|1 () < Co, Huf’oHHl(Qs) < Cy,
and va’0||Lm(p5) < (Cpforie{l,...,N} and € > 0. Here Cj is a positive
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constant independent of €. Also, L (Q°) = {z € L>(2°) : 2 > 0 a.e. on Q°}
and L°(I') = {z € L>®(I'*) : 2 > 0 a.e. on I'*}.

Remark 2.1. By the definitions of «°, dS, 7¢, §5 and (A;), it holds that ko <
KE < Ry T¢ < Ty, dp < dS < dy, 0F <6, on QF for i € {1,...,N} and each ¢ > 0.

3. Global solvability of problem (P¢).

Definition 1. The triplet (6%, u$, v$) is a solution to problem (P¢)if the following

holds: s
0°,us € H*(0,T; L*(Q°)) N L>(0,T; H'(Q°)) N L>=((0,T) x QF), 19)
vf € HY(0,T; L*(T°)) N L*=((0,T) x T¢),

for all p € H(QF) :

N
/at9€¢+//<;5vo€ . v¢+5go/9€¢ = Z/ﬁv%j VO, (20)
QE

E i=13.
Q re, Q

for all ¢, € H'(Q°) :

/ DSt + / EVE - Vi + ¢ / (atf — bivs) s
QE

QE FE
= / 55V00° - Vuse; + / Ri(u€)s,
Qe Qe
for all ¢; € L*(T°) :
[owtien= [ (@ = vatsen (22)
re re
together with (16), (17) and (18) for a fixed value of € > 0.

Remark 3.1. We note that each term appearing in Definition 1 is finite, since
Vous and V°6° are bounded in Q° due to (3).

To prove the existence of solutions to problem (P¢), we introduce the following
auxiliary problems as iterations steps of the coupled system:

(P1):
N
007+ V - (=K°VO7) = 7° Y VO, - VO° =0, in (0,T) x Q°,
i=1
—Kk°VH v =0, on (0,7) x 'y,
— K°VO® - v =egpb°, on (0,T) x I'%,
—Kk°VE v =0, on (0,T) x 99,
6°(0, ) = 6°%(x), in Q°F,

and
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(P2):
s + V- (—d5Vus) — 65V°00 - Vus = RM (uf), in (0,7) x QF,
—diVu; v =0, on (0,T) x 09,
— diVus - v = e(aui — bvs), on (0,T) x T'?,
u; (0,2) = é’o(w), in Q°,
Ov§ = a;ui — bv; on (0,7) x I'®,
v; (0,x) = vf’o(x), on I'*.
Here
RM(s) := Ri(oam(s1), 00 (52), ..., 00 (sn)), for s € RY (23)
denotes our choice of truncation of R;, where
0, r<Qo,
om(r)=4qr, relo,M], (24)
M, r>M,

where M > 0 is a fixed threshold. Note that if M is large enough, the essential
bounds obtained later in this paper will remain below M. This means that the
existence result is obtained also for the uncut rates.

In the following, assuming (A;)-(A42), we show the existence, positivity and
boundedness of solutions to (P;) and (F%).

When we denote the solutions of P; () by 6 and of P(6) by (us, v§), respectively,
we can define the solution operators (6¢,u$) = T(0,4;) and v§ = To(f, ;). We will
show that the operator T is a contraction in the appropriate functional spaces
and use the Banach fixed point theorem to prove the existence and uniqueness of
solutions to (P¢).

Notation 1. Let K(T, M) := {z € L*(0,T; L?(%)) : |z| < M a.e. on (0,T) x Q°}.

Lemma 3.2. Existence of solutions to (). Let u; € K(T,M), and assume
that (A1)-(Az) hold. Then there exists 6 € H*(0,T; L*(2)) N L>(0,T; H*(Q))
that solves (Py) in the sense:

for all p € HY(QF) and a.e. in [0,T):

/ D10°p + / KEVO® - Vo +ego / 0°p = Z / Vou; - V659, (25)

i=1¢.
and

6°(0,z) = 6°°(x) a.e. in QF. (26)
Proof. Let {&;} be a Schauder basis of H!(Q¢). Then for each n € N there exists

050( Z ao "¢, () such that 059 — 0= in H'(QF) as n — oo. (27)
We denote by 95 the Galerkin approximation of 6%, that is:

0: (t,x) := Za for all (¢,x) € (0,T) x Q°. (28)
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By definition, ¢, must satisfy (25) for all ¢ € span{{;}7_;, i.e.:

N
/aw;w/#ve;.v¢+ggo/9;¢>= Z/Tsvéai-vegqs. (29)
Qe Qe re

The coefficients o' (t) can be found by testing (29) with ¢ := & and using (27) to
solve the resulting ODE system:

i=lge

00l (t) + > _(Aij + Bij — Cij)ali (t) =0, ie{l,....,n},  (30)
j=1
al’(0) = o). (31)
The coefficients in (30) and (31) are defined by the following expressions
Ay ==/F»€V€i~V£j, i,j€{1,...,n},
Qe
Bij = 590/&5;'7 i,7 €{L,...,n},
I'z
N
Cij = Z/T‘EV‘SM -VE&i& i,j €{1,...,n}.
k=1¢

Since the system (30) is linear, there exists for each fixed n € N a unique solution
al € CL([0,T)).

To prove uniform estimates for 65 with respect to n, we take in (29) ¢ = 65. We
obtain:

N N

1

5at||9;||2 + R0l VO5 12 + 290105172y < Z/ﬂvéai VOO =Y Ar
i=1¢. i=1

Using the Cauchy-Schwarz inequality and Young’s inequality in the form
ab < na? + b?/4n, where n > 0, we get:

1, os 1 s
A; <l Vo5 |* + @Ilv‘suﬂill2 < nl[VOLI* + %Hvéui‘lid‘(fls)HHZHQL‘*(QE)'

The mollifier property (3) yields |\V‘5ﬂiHi4(Q€) < ||w;]|%,. Using Gagliardo-Niren-
berg inequality (see [23] e.g.), we get:

165124 () < cll6 121V 117/2. (32)
Applying Young’s inequality, we obtain:
el IV < 0l VO + e 165 7. (33)

Finally, we obtain the structure:
1 N
SOllOL1 + (50 = 2Nm)[[VOZI* + ego 107172 s, < cn > llal* 1651
i=1

For a small 7 > 0 Gronwall’s lemma gives:

t
1621 + o / VoS ()2 < © for t € (0,7),



A THERMO-DIFFUSION SYSTEM WITH SMOLUCHOWSKI INTERACTIONS 747
where C' > 0 is independent of n and e, since u; are uniformly bounded. This
ensures that

{65} is bounded in L*>(0,T; L*(Q°)) N L*(0, T; H'(9)). (34)

To show uniform estimates for 0,05 with respect to n, we can take ¢ = 0,05
in (29). Indeed, by the formula (28) of 05, 9,05, = >°7_,(0sa})&; so that 0,05, €
span{¢; }}‘:1. Then by using the Cauchy-Schwarz and Young’s inequalities, as well
as the mollifier property (3) we get:

N
1
10652 + 30UVREVOE I+ 22005 ey < 72 Y [ 1970 V8:0165)
i=lge

N
< (5 3 |ui||mga>> (1104052 + C, V05 ]12) for 1 > 0. (35)
i=1
By taking a small > 0 and using (34), it holds that:
t
Kol V5 ||? +/ 0:65 1> < C for all t € (0,7),
0

where C' > 0 depends on §, but is independent of n and e. Together with (34) this
ensures that:

{65} is bounded in H'(0,T; L?(92°)) N L>(0,T; H*(QF)). (36)

Hence, we can choose a subsequence 65, — 6 in H*(0,T; L*(Q)) and 65, — 6° in
L>(0,T; H(QF)) as k — oc.
Now, using

om(t,2) =3 B (08 (@) (37)

as a test function in (29) and integrating with respect to time we get:

T T T
//ate,ikum//mve;k -va—i-sgo//e;ikvm
0 Q= 0 Q= 0 Te, (38)
N T
= //TsV‘sai VO, vm.
=17 e
Using (36), we pass to the limit as k — oo to obtain: For each m
T T T N T
//8t98vm+//KEV95~va+EgO//Qav:Z//T‘EV‘SEi-V(‘)Evm. (39)
0 Qe 0 Qe 0 T, =10 G-

Note that (39) holds for all v € L2(0,T; H(Q¢)) since we can approximate v with
v in L2(0,T; HY(QF)), hence
T T T N T
//ateawr//ffves-w+ago//9% = Z//vaéai-ve%,
0 Qe 0 Qe 0 T, =10 g

holds for all v € L2(0,T; H*(Q°)).
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Finally, we show the initial condition holds. Indeed, the Aubin-Lions lemma
guarantees that 65— 6% in C([0,7]; L*(2¢)). Then on account of 65 (0) — 6= in
L2(0¢) as k — oo, we get 6°(0) = 60, O

Lemma 3.3. Positivity and boundedness of solutions to (P). Let u; €
K(T,M), M > 0, and assume (A1)-(A2).  Then 0 < 6° < [|60°9] L (s a.e.
n (0,T) x Q°.

Proof. Let 6° := 651 — 0%~ where 2T := max(z,0) and 2~ := max(—z,0). Testing
(25) with ¢ := —0=~, and using (3) gives:

N
1 - - - _ e
0ell6= 12+ rol VO 11 + egoll 0= 1 F2irsy < 275D illoolIVO* 705 [|1(0r)

i=1
N

=< <C$TE > IIﬂilloo> 165711 + 0| ve=~||* for > 0.
i=1

Choosing 7 < kg and taking into account that 85~ (0) = 0, Gronwall’s lemma gives
|65~ ||> < 0. This means §° > 0 a.e. in  for all t € (0,7).
Let ¢ = (6° — Mo)™ in (25) with My > [6°(0)|| Loe (<y: For n >0

1 14 1 &
iatH(o — Mo)™[|* + 50|V (685 — Mo)™* 1> + egol| (6 *MO)JFH%%P;)

N
+ g0 / Mo(6° — Mo)* < 7.} / VOm; - V(0F — Mo)*(6° — Mo)*
re, =10

N
< (T*C‘sz Iﬂilloo> (eqll(0= = Mo)*|I* + [V (6° — Mo)*||) .
i=1

Discarding the positive terms on the left side and then applying Gronwall’s lemma
leads to:

(6% = Mo)* (1)]* < [1(6 = Mo)* (0)]” exp (‘5 2 wllwf) |

i=1
Since [|(6° — My)*(0)|| = 0, we obtain (#° — My)*(t) = 0. Thus the proof of the

lemma is completed. O

Lemma 3.4. Existence of solutions to (/). Let § € K(T,M),M > 0 and
(A1)-(A2) hold. Then (Py) has solutions us € H(0,T; L*(Q°))NL>(0,T; H(£2))
and v§ € HY(0,T; L*(T¢)) in the following sense:

For all ¢; € HY(QF), it holds:

/ DS + / VS - Vi + e / (an — b )os
Qe Qe I'e (40)
:/5§v5é-w§¢i+/}z§4(ua)wi
Qe Qe
us(0,2) = uS%(x) a.e in QF, (41)
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and for all p; € L*(I'¢):

/atv "2} —/ a; i bi”f)‘ﬂh (42)

Te

05(0,2) = v2%(x)  a.e. onI°. (43)

Proof. Let {¢;} — Schauder basis of H'(2¢). Then, for each n € N, there exists
= Z a?,’;lgj (z) such that ufg —u? in HY(QF) as n — oc. (44)
We denote by us,, the Galerkin approximation of g, that is:

ug , (t, ) i= Zazj(t)fj(x) for all (¢,x) € (0,T) x Q°. (45)

€
ui,n

must satisfy (40), and hence,

/atuf,nwi + /dEVUZ n le +e /( z n bivf)wl
Qs Qs re (46)
= /52-5V50_. Vu; i + / RM (u€ )y, for all ¢; € span{§;}7_;.

Qe Qe

Accordingly, let {n;} — an orthonormal basis of L?(I'*). Then for each n € N there
exists

Z gn 2 () such that vin — 7% in L*(T) as n — oo. (47)
We denote by v;,, the Galerkin approximation of v, that is:
x) = Zﬂgj(t)nj(a:), for all (t,x) € (0,T) x I'®. (48)
j=1

v; ,, must satisfy (42), and hence,

/8751)Z nPi = /( ug , — bivf’n)%, for all ¢; € span{nj}?zl. (49)

Te
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aj';(t) and B};(t) can be found by substituting u;,, and vf, into (40) — (43) and
using & and 7 for k € {1,...,n} as test functions:

Orar'y,(t) + Z(Aijk + Ciji — Diji ) (t) — Z EijkBi;(t)
j=1

j=1
i—1 n n
= /ngBa,i—aUM (Z &Z,b(t)§b> oM (Z a?_a,c(t)§c> (50)
Qe a=1 b=1 c=1
N n n
- /kaﬁa,iUM ( Oé?,b(t)fb> oM <Z aZ,c(t)§c> )
Qe a=1 b=1 c=1
af;(0) = a)"?, (51)
DBL(E) = Y Gigeal;(t) — Hig 75 (0), (52)
j=1
75(0) = B (53)

The coefficients arising in (50) are defined by:

Ay = / (EVE; - Ve,
QE
Ciji := €ai/§j£kv D, = /55V6§' VE;&k,
e Oe
Eij, = 5bi/§k77ja Giji = ai/fﬂ?m
I'e Te

Hijp = bi/ﬂjﬂk.
e
The left-hand side of this system of ODEs is linear, while the right-hand side is
globally Lipschitz. Thus there exists a unique solution of';(t), 87*;(t) € H'(0,T) to
(50) - (53) for t € (0,T).
To show uniform estimates inn for uf, and vf ,, we take ¢; = uj,, and ¢; = o],

in (46) and (49) respectively. We get the inequality:
1
53t||u§,n\|2 + do||Vug , |I” + eaolluf |1 72 re)
.
< b [ ol + 8. 1Bl T+ [ R G0
e Qe
< llu 172 ey + CM05 132 0ey + 1l Vg, |12
+ CO0| o [[ti ] + CM [Juin,

1
iat”l’f,n”%z(rs) + be”in”%Z(re)
<nllug 122 grey + C7MIV5nl 2 (e

<Cn(IVus oI + 65 1) + C™ 05 172 ey for n > 0.
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After taking a small 7 and adding the two inequalities, Gronwall’s lemma gives:

t
a4 do [V el <€ forallze 7)., (50
0
where C' > 0 depends on §, M and T, but is independent of n and &, which ensures:
{u$ .} is bounded in L>°(0,T; L*(Q°)) N L*(0,T; H (%)), (55)
{v;,.} is bounded in L>(0,T; L*(T'%)). (56)

To show uniform estimates for dyuf,, and O:v;,, with respect to n, we take 1; =

Opus,, and ¢; = Oyvf,, in (46) and (49) respectively, noticing that they are in

span{¢;}7_;. We obtain:

3

a
Zat”u;:",n

2

e
ot + [ ou(7us, 2 + e

Qe

:g/bi(‘)tuinvf)n +/6§V5§.Vuf)n8tuf7n —I—/RZM(ufl)atuin
re Qe Qe

:sat/biuinv;n —6/biuf,n8tvf,n +/65V5§~Vuif’n8tuin —|—/RZM(qu)8tuf7n,
re re Qe Qe

(57)

b;
Bullvs o 22 0ey = a / S B . (58)

||3tvf,n\|%2(rs) )
FE

Adding them, and finally integrating the result over (0,t), we get:

t t
/ 100s |12 + / 10,051
0 0

dg gagp b;
o+ SNV (02 + 205 (O oy + 105 (O

< bullug n (O p2re) 105, () [ L2 re) + ballug o (0] L2(re) 05,5, (0) | 22 (re)
t t
€ € d* €
+ n/o 10ev5 12 +€26’7b3/0 5 all* + 5 1V, (0)]

EQy by
5 45 1, (0)1 2 re) + 5””1’6771(0)“%2@‘5)

t t
+n/0 100us 1 + 5fcéc”|\9||oo/o IV 1

+

¢
+oMom 4 na*/ ||8tuf,n|\2 for t € (0,7 and n > 0.
0

Denoting the initial condition terms on the right as Cy and using (55) and (56), we
get:

t t
d
| =l + [ @ = miowi,? + FIve, o

T
<o +a*5*c5c€||§||oo/\\Vuf7n||2 FOMCE forte (0,7 (59)
0
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Then by using (55), again, we have:

IVus, (0)]2 + / 10 |1? + / |0ws |2 < C  forte (0,T],
0 0

where C' > 0 depends on §, M and T, but is independent of n and €. Namely, this
gives:
{u$ .} is bounded in H'(0,T; L*(Q)) N L>(0,T; H' (), (60)
{v;,,} is bounded in H'(0,T; L*(I%)). (61)
Hence, we can choose subsequences u5 ,, — uf in H'(0, T L*(°)) and us ,, . — u in
C([0,T], L?(©2¢)) and weakly* in L>°(0,T; H (Q¢)) and V5, — v; in H'(0, T} L*(T9))
as j — oo. Since RM is Lipschitz continuous, the rest of the proof follows the same

line of arguments as in Lemma 3.2. O

Lemma 3.5. Positivity and boundedness of solutions to (/%). Let €
K(T,M), M > 0 and assume (A ) (A3). Then 0 <uf < M;(T+1) a.e. in (0,T) %
Q5,0 <vf < My(T+1)a n (0,T) x I'®, whereM > 0 and M; > 0 are
independent of M.

Proof. Testing (40) with ¢; = —u;"~ and the definition of RM give:

1 _ _ _ _ _
SOHE I+ doll Vs 2 gl gy + caolluf ™ Faqeey + = [ biofus
l"E

<0l [ 19570~ [ A

Qe J= 1
N
§ &+, e+, &~
“r/ BU’LLZ uj u; -
Qe j=1

The second term on the right is always negative, while the third is always zero. We
can discard them and apply Cauchy-Schwarz and Young’s inequalities to the first
term on the right, as well as discard the positive terms on the left to obtain:

1 _ _ . _ C e
SO I + (g =)V ™| < 8xc®c"|6)loc [l |2 +b*/vf’ u;'~ for n > 0.

(62)

Testing (42) with ¢; = —0v;"" gives:

1 _ _ e
§3t||1’i€’ ||%2(1“s) < bullv ||2L2(1"E)+a*/v? u; (63)
FE

We rely on Cauchy-Schwarz, Young’s and trace inequalities to estimate the last
term. We obtain:

/”fﬁ“?i < lof " lleeeyllug ™ lleawey < Moy e rey +nllu; ™ 172000
FE
< Mg (2 (rey + nClu ™ 1* + [V~ [|?) for n > 0.
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Adding (62) and (63) and choosing 1 + nC < dy and taking into account that
u$” (0) = 0 and v~ (0) = 0, Gronwall’s lemma gives [[u$* " ||? + ||v] 7 [|? < 0, that

K2

is uf > 0 a.e. in Q° and v > 0 a.e. in I'® for all ¢t € (0,T7. B
Next, let i = 1 and 1 := (u§ — My)" in (40) and ¢1 = (v — M;)™" in (42).
Apply (3) for the cross-diffusion term to get:

1
Oll(us = M) P 4 do|V (uf = M) FI* + eaol (uf — M) [ Te ey

+6/(a1M1 by ) (i — My)* + e/bl(vi W) (uf — M)t

I'e Te

< 5/51(1)? — M) (uf = M)t + 6.0V (u = M) (uf — M) Tl L10s)
FE

+ / RY (uf)(uS — M),

1 _ § ) _

§3t\|(vf — M) (|72 pey + bull (0] — My) (|72 pey + /al(ui — M)~ (vf — My)*
FE

< /al(vi W) (uE — M)+ /(a1M1 by ) (oF — B)*

Ie Ie

Here, by the definition we note that R} (uf) < 0. Also, we choose M; and M; such
that ayM; — b1 M; = 0 and add the two inequalities, while dropping the positive
terms on the left and using Cauchy-Schwarz and Young’s inequalities on the right
to obtain:

1

0l (ur — MY+ (do — )|V (u1 = My) 1P + eaol| (ur — Mi) (|72 (pey
1 _

+50I(v — M) 7 ey

(s +eb ) (ll(uf = M) ey + (05 = M) L2 rey)
+e (0216130 | (ur — M) |? for > 0.

IA

Then by taking a small 7 > 0 Gronwall’s lemma gives:

I(uf = M) F @O + [[(v5 = M1) ¥ [z )
< (ICu = M) O + [[(v5 = M1)*(0)[[ 72 re ) exp (C(65, 6,0, M)t) .
Since we choose My > 0 to satisfy ||(u§ — My)T(0)|| = 0, and M; > 0 to satisfy
[ (v§ — My1)T(0)||L2(rey = 0, we get 0 < u§ < My and 0 < vf < M;.

Let i = 2 and v := (u§ — Ma(t 4+ 1))" in (40) and ¢y := (v5 — Ma(t +1))* in
(42) with CLQMQ = b2M25

1 _
0I5 = Mot + D)7+ [[(v5 = Mot + 1) * |2 re)

d
+ DUV (u5 — Mot + 1)) |
o+ 2al (1§ — Ma(t + 1)) [aqeey + ball (05 — Wt + 1) [2a(re)
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< Ol(us — Ma(t + 1)) *|1* + /Ré”(ue)(UE — Ma(t+1))"
Qe
— M, /(u§ — My(t+1))" — Mz/ (v5 — Ma(t+1))".
Qs ’
Here, we note that
Bri M7

1
RM(u®) < 55110M(U€)2 < ZBnu? <

N |
N |

Similarly, we have:
1 _
0l = Mot + D) 1* + [[(v5 = Mot + 1) *[[Z2re)

< Cu5 ~ Ma(t-+ D) ? + (B0 ME — M) [ (05— Mae+ 1))*
Qe
< Cll(ug — Ma(t + 1)),
By applying Gronwall’s lemma with %ﬂan < My, we see that u§ < Mo(T + 1)
in (0,7) x Q°f and v§ < Ma(T + 1) on (0,T) x I'*. Recursively, we can obtain the
same estimates for u and v§ for i > 3. O

Lemma 3.6. The boundedness of the concentration gradient for (/). Let
0 € K(T, My) and assume (A1)-(Az) to hold. Then there exists a positive constant

C(My) such that ||[Vus(t)|] < C(Mo) and fOT ||0us (t)||2dt < C(My) fort € (0,T).
Proof. Let uf,, be an approximate solution defined in the proof of Lemma 3.4 for

each n. Then from (59) there exists a positive constant C'(Mp) depending on M
such that

T
/ \\atuf7n||2 < C(My), for each n. (64)
0

By letting n — oo we have proved this Lemma. O

Lemma 3.7. The boundedness of the temperature gradient for (P;).Let
u; € K(T, My) and assume (A1)-(As) to hold. Then there exists a positive constant

C(My) such that || V65 (£)|| < C(My) and [ 0|0 (t)|[2dt < C(M) for t € (0,T).

Proof. From (35) we can prove this lemma in the similar way to that of Lemma 3.6.
O

Theorem 3.8. Existence and uniqueness of weak solutions (P°)Let (A;)-
(As) hold. Then there exists a unique solution to (P<).
Proof. For any M > 0, Xy := K(M,T) x K(M,T)N is a closed set of X :=
L2(0,T; L2(QF))N*L. Let 61,00,%;1,u;0 € K(M,T), for i € {1,...,N}, and put
g = 9_1 — 0_2, ’ELZ‘ = ﬂi,l — 1_1,,'72, (Gf,uf’l) = T(e_l,ﬂl) and (0;,’&;2) = T(§27ﬂg)7
0§, = To((01, 1) and viy = Ty((f2,52). Moreover, we define 6° = 65 — 05 and
u; = Uf,1 - U?a and vf = Uf,1 - Uf,2~

By Lemma 3.3 and Lemma 3.5, T : X3y — X, for M > maX(HGE’OHLoc(QE),Ml,
My(T +1),...,Mn(T +1)). Hence, we want to prove the existence of a positive
constant C' < 1 such that

T (01, @;,1) — T(02,1;2)|| x < C||(01,05,1) — (02,;2)]| x
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for small 7" > 0. Substituting 05, 05, u |, u; 5, v, v5 into the formulation:

/atai(og —05) +//£5V0§V(0§ —65) +sg0/a§(9§ —65)
Qe Qe rs,
N
=3 [ TV0u - V5 (65 - 65),
i=1Ge

/atag(eg — 09 +/Ffwgv<9§ s +€go/0§(9§ )
Qe Te

Qe iy

N
= Z/vaéam - V05(05 — 65).
i=1¢e

Adding the last two equations we obtain:

1
SOOI + K= IVO%I* + goll6° 172 e,

N
<3 /(vsam N0~ Vo, V050~ 05) .
i=1 e

A
The term A can be expressed as:
A= /(véa,,1 V05 — Vo, o - VO5) (605 — 05)
Qe
+ /(véai,2 V05 — Va5 - VO5) (05 — 05)
Qe

- / Voa; - VO560° + / Vo - VOO° .
Qs Qe

A1 A2

With the help of Lemma 3.7, the terms B and C' can be estimated as follows:

Ay < EM|a|® + C(M)% 16717,
1
Az < |2l (]| VO + %H@EIIQ) for n > 0.

Looking at the formulation for the concentrations, we have:

£ € £ =3 13 € 1>
/atui,l(ui,l —uiy) + /di Vg1 - V(ui g —ug,)
Qe Qe

£ £ 1> £ £ £
+ 5‘”/“1,1(“1,1 —uiy) — 5bi/vi,1(uz’,1 — U o)

Ie Ie

- / 5:6:08, - uSy (uSy —uSy) + / Ri(u) (S — ),

Qe Qe

755



756 OLEH KREHEL, TOYOHIKO AIKI AND ADRIAN MUNTEAN
1> £ £ £ £ £ £
/atui,2(ui,2 - ui,l) + /di Vui,z : V(“i,z - uu)
Qe Oe

+ay/%ﬂ@g—ﬁﬂ—fm/ﬁﬂﬁ;—@ﬂ

FE FE
— [69%0 utp(u, — 0+ [ R, - )
Qe Qe
We also test the deposition equation with v; to obtain:

1
300 sy = [ asofus = il ey
FE
After adding the three above equations, we obtain:

1 1
§5t||uf||2 + §3t|\vﬂ|%2(rs) +do|| Vi ||? + 5a0||uf||2L2(rs)

< (ax +€by) / [vfus| + / |(V59_1 Vg, — AVAT VuiQ)uﬂ
Ie Qe

+ [ [(Ri(u1) — Ri(u2))uil,
/

1 1 g g g
SO + S0l 72 ey + ol VUi 1® + (a0 = m)[uf 1 Za ey

(ax +eby)?

< ™ ||vf|\%z(pa) + s / V20, - Vusus
Qe

By

w0, [19u5, V00 + [ I(Ra(u) = Riu)uc,
Qs Qs

Bs Bs
where the sub-expressions can be estimated as:
1 _
By <1l|Vui ||* + %C‘slwllliolluz?ll2 for n >0,
By < "C(M)||0]* + C(M)us||*.

Note that with the boundedness of u$ we can treat RM as a Lipschitz continuous
function with the Lipschitz constant Cp:

By < Opllui|*.
Adding up the estimates for the temperature and concentrations:
d
(1 + 107112 + 16%11%) + dolIVui[[* + o V6|
< erfluf |2 + callvf |2 + esll6°)* + M ([l ]|* + 16]1)-
Gronwall’s lemma gives the estimate:

161 + [lus (1)[* < C (H9||2Lz(o,T;L2(Qs)) + ||’uiH%2(O,T;L2(QE))) -
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Integrating over (0,7), we have:

T
J1eOI + 1O < €T (100009 + 103 ri207) -
0

Accordingly, T is a contraction mapping for 77 such that CT' < 1. Then the
Banach fixed point theorem shows that (P¢)admits a unique solution in the sense
of Definition 1 on [0,7”]. Next, we consider (P¢)on [T”,T]. Then we can solve
uniquely this problem on [T”,27']. Recursively, we can construct a solution of
(P?)on the whole interval [0, T. O

4. Passing to ¢ — 0 (the homogenization limit).

4.1. Preliminaries on periodic homogenization. Now that the well-posedness
of our microscopic system is available, we can investigate what happens as the
parameter € vanishes. Recall that € defines both the microscopic geometry and the
periodicity in the model parameters.

Definition 2. (Two-scale convergence [21],[1]). Let (u®) be a sequence of func-
tions in L2(0,T; L?(£2)), where € is an open set in R™ and ¢ > 0 tends to 0. (u?)
two-scale converges to a unique function ug(t, z,y) € L2((0,T) x Q2 x Y) if and only
if for all ¢ € C§°((0,T) x 2, CZF(Y)) we have:

T T
lim//ueqﬁ(t,x,g)dl’dt: L///uo(t,:L’,y)(;zb(t,:v,y)dyd:rdt. (65)
e—0 5 |Y|

0 Q 0 QY

We denote (65) by u® 2 .

The space C3°(Y') refers to the space of all Y-periodic C*°-functions. The spaces
H;E(Y) and C%(T') have a similar meaning; the index # is always indicating that
is about Y-periodic functions.

Theorem 4.1. (Two-scale compactness on domains)

(i) From each bounded sequence (uf) in L*(0,T;L?(fY)), a subsequence may be
extracted which two-scale converges to ug(t,z,y) € L?((0,T) x Q x Y).

(ii) Let (uf) be a bounded sequence in L*(0,T; H'(Q)), then there exists i €
L2((0,T) x & H#(Y)) such that up to a subsequence (u®) two-scale converges

to up € L2(0,T; L2(Q)) and Vus = Vyug + V.
Proof. See e.g. [21],[1]. O

Definition 3. (Two-scale convergence for e-periodic hypersurfaces [20]). A se-
quence of functions (uf) € L?((0,T) x I'c) is said to two-scale converge to a limit
up € L*((0,T) x Q° x T) if and only if for all ¢ € C5°((0,T) x Q% C(T)) we have

T T

- . LA

31_13%5//11 o(t, z, €> B4 ///uo(t,x,y)q’)(tx,y)dvydxdt. (66)
0T, 0QrT

Theorem 4.2. (Two-scale compactness on surfaces)

(i) From each bounded sequence (u®) € L*((0,T) x I'.) one can extract a subse-
quence u® which two-scale converges to ug € L?((0,T) x Q x T).
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(i) If a sequence (u®) is bounded in L ((0,T) x I'.), then u® two-scale converges

to aug € L®((0,T) x 2 xT)
Proof. See [20] for proof of (i), and [17] for proof of (ii). O

Lemma 4.3. Let (A1)-(As)hold. Denote by us and 6° the Bochner extensions'
in the space L?(0,T; HY(Q)) of the corresponding functions originally belonging to
L?(0,T; HY(QF)). Then the following statement holds:

(i) us — u; and 05 — 0 in L*(0,T; H*()),

(i) us = u; and 65 > 0 in L=((0,T) x Q),

(iii) Opus — Oyu; and 9,05 — 0,0 in L*(0,T; L*(Q)),

(iv) u§ — u; and 0° — 6 strongly in L2(0,T; H?(Q)) for £ < B <1 and /2||u§ —

ui”LQ((O,T)XFg) — 0 ase— 0,

(v) u§ 2w, Vu§ A Vu + Vyul where ul € L?((0,T) x Q;H;E(Y)),

(vi) 05 20, V0= 2 V.0 + V,0" where 0" € L*((0,T) x Q; H(Y)),

(vii) v8 2 v; € L®((0,T) x Q x ') and 8ywf = dyv; € L2((0,T) x Q x T).

Proof. We obtain (i) and (ii) as a direct consequence of the fact that u and 6° are
uniformly bounded in L*(0,T; H*(Q))NL>®((0,T) x Q). A similar argument gives
(iii). We get (iv) using the compact embedding H*(Q2) — H?(Q) for 8 € (3,1) and
0 < B < a <1, since  has Lipschitz boundary. Note that (iv) implies the strong
convergence of u$ up to the boundary.

Denote W := {w € L?(0,T; H'(Q)) and d,w € L2*(0,T;L*(2))}. We have
us,0° € W. Using Lions-Aubin lemma [16] we see that W is compactly embedded
in L2(0,T; H?(Q)) for B € [0.5,1]. We then use the trace inequality for perforated
medium from [13], namely for all ¢ € H!(Q¢) there exists a constant C' independent
of € such that:

ellgllz ey < CUlEN7200) + X IVIIT2 (0r))- (67)
Applying (67) to us — u;, we get:

Velluf = willZzqomyxrey < Clluf — wil T2 0 7.6 00
< Clluf = willF2 (0,7, 50 () (68)
where ||uf —u; HiQ(O’T;Hﬁ(Q)) — Oase — 0. As for the rest of the statements (v)-(vii),
since u$ are bounded in L>°(0,T; H'(2)), up to a subsequence we have that u$ EN Uu;

in L2(0,T; L*(Q)), and Vui > Vyu; + Vyul, where u} € L*((0,T) x Q; Hy(Y)).

By Theorem 4.2, v = v; € L((0,T) x Q x %) and 9yvf = dyv; € L2((0,T) x Q x
re). O

4.2. Two-scale homogenization procedure.

Theorem 4.4. Let (A;)-(Az)hold. The limit functions 6, u;, v;, 01 and u} satisfy
(72), (73) and (74) for any a € C>=((0,T) x Q) and B € C*>((0,T) x Q;CF(Y)).

LFor our choice of microstructure, the interior extension from H!(Q¢) into H!(Q) exists and
the corresponding extension constant is independent of the choice of ¢; see the standard extension
result reported in Lemma 5 from [13].
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Proof. Testing (P)with oscillating functions ¢(t,r) = a(t,x) + ef(t, r, £), where
a € C®((0,T) x ) and g € C((0,T) x CF(Y)), we obtain:

/8t95(a+€6) +/56(§)ve6(vxa+svzﬂ+vyﬁ)
QE

QE
+gos/0€a+5ﬂ Z/ D)V VO (a+eh),  (69)
1= 195
/(“)tuf(a—i-fsﬁ)+/df(g)Vuf(an+€Vzﬂ+Vyﬂ)
Qe Qe

+ 6/(aiu§ —bvi) (o +ePB)

FE
/55 YOO . Vs (o + £8) + / (1) (a + 2B), (70)
QE
/ Brvi(o+ef) =€ / (asusf — bif) (e + B). (71)

Te

Using the concept of two-scale convergence for ¢ — 0 in (69), (70) and (71) yields:

/@9044— |Y1|//Yl )(VO +V,6")(Vaa(z) + V,B(z,y))

5, . Dy
+ 90 |Y|/ Z|YI|//YIT(1,)V ui - (VO+ V0,  (72)

Oruior + — di(y)(Vu; + Vyu})(vwa +V,0)
|Y1| aJvi

Q
+ //( bivy)
7 a;U; — 00 )
Y1 o)

_ L / 5:(y)V8 - (Vus + V,yul)a + / Ri(u)a, (73)
Y1l Ja Jv, Q

/ /8,51110 = L/ /(aiui — bv;)a. (74)
QJr V1] 2J

Note that we have used strong convergence for passing to the limit in the aggregation
term in (73). O

Now we just need to find 6! and u}.

Lemma 4.5. The limit functions 61 and u} depend linearly on 6 and u; as follows:

3
0" = 0,007, (75)
Jj=1

§
i
M e

<.
Il
—
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Moreover, 87 and ﬁf solve the elliptic problems on the cell: (77) and (78), respec-
tively:
Ok

_ Yj
KV 0 v = —kv; onT, (77)
07 is periodic in 'Y,
i ody
—Vy - (di(y)Vyal) = o in Y7,
. j
d;Vyul v =—dv, onT, (78)

07 is periodic in'Y,
Proof. To do this we choose o« = 0 in (72) and (73). This gives for all g €
C*((0,T) x Q;CF(Y)) a system of decoupled equations:

//Y )(VO+ V04V, 8(z,y) = 0, (79)

|| (w4 V019, 5(,0) = 0. (30)
Y1
From these equations we can easily get the assertion of this lemma. O

4.3. Strong formulation for the limit functions. Here, we give the strong
formulation (P°) for limit functions 6, u; and v; obtained by Lemma 4.3.

Lemma 4.6. (Strong formulation). Assume (A;)-(A3) to hold. Then the triplet
(0, u;,v;) of limit functions of weak solutions to the microscopic model is a the weak
solution of the following macroscopic problem:

N
||Y |9 > (TVu;) - V6 in (0,T) x Q,
i=1
—(KV0)-v=0 on (0,T) x 09,
where K and T* are matrices given by K = Kol + (K;;)i; and T = Tol + (T )ik
respectively, 1 is the identity matriz,

1 067
Koy=— [ rdy, Ki;j=-—— [ kz—dy,

Vil Jy, Tl )y, Oy

, 1 , 1 00
T = — ndy, T; = — Tim—dy,
T Ml Jy, Y *m) Ly, oy Y

and
i — V - (D'Vu;) + Aju; — Bv; = (F'Vau;) - V20 + R;(u) in (0,T) x Q,
—(D'Vu,) v =0 on (0,T) x 09,

where D' and F* are matrices defined by D' = D1+ D} and F! = F;1 + F},

1 . 1
D; = didy, Df = (— [ did,, wWdy)e.
‘Y1| 0 (|Y1| Y, Yk )]
F; = didy, F'= (7 [ 0:0y,u]dy)jk,
Vil Jy il Jy, !

1
AiZi/an Bizi/bia
V1| Jr Vil Jr
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and initial conditions:

6(0,z) = 6°(x) in €, (81)
ui (0, 2) = ud(z) in £, (82)
v;(0, ) = v) (x) onT. (83)

Proof. First, choose o € C*°((0,T) x ) and f =0 in (72) to obtain:

O0a + — // V9+V Oy 09 Voz
W w o s 5 (=)

Jj=1

N 3
1 _.
+ o —// Vou; - (VO +V 9, 009, 84
go |Y1 / 2 il le(w u; - ( v 0:,007)a (84)

j=1

Integrating (84) w.r.t. y leads to:

/ateour KVoOV, a+go|Y| 9a Z/TV u; - VO  (85)
Q 1

We can similarly derive from (73) that:

/8tula+/]D)Vu1V Oz+/(A u; — Bivy)a 7/1{”V‘50 VUZOZ+/R(U)057
Q Q Q

/ 8tUiOz = / (Azuz — BiUi)Oé. (87)
Q Q

See also [17] and [9] for a similar application of the two-scale convergence method.
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