Citation: Luis Ángel Lara González, Gabriel Peña-Rodríguez, Yaneth Pineda Triana. Effective thermal properties of a magnetite-polyester composite conformed in the presence of a constant magnetic field[J]. AIMS Materials Science, 2019, 6(4): 549-558. doi: 10.3934/matersci.2019.4.549
[1] | Ngo I, Jeon S, Byon C (2016) Thermal conductivity of transparent and flexible polymers containing fillers: a literature review. Int J Heat Mass Tran 98: 219–226. doi: 10.1016/j.ijheatmasstransfer.2016.02.082 |
[2] | Hussain ARJ, Alahyari AA, Eastman S, et al. (2017) Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl Therm Eng 113: 1118–1127. doi: 10.1016/j.applthermaleng.2016.11.041 |
[3] | Wong CP, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 74: 3396–3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3 |
[4] | Feng Y, Qin M, Feng W, et al. (2016) Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Compos Part A-Appl S 91: 351–369. doi: 10.1016/j.compositesa.2016.10.009 |
[5] | Mishras S, Shimpi NG (2005) Comparison of nano CaCO3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties. J Sci Ind Res India 64: 744–751. |
[6] | Kutz M (2011) Applied Plastics Engineering Handbook: Processing and Materials, William Andrew. |
[7] | Xu JZ, Gao BZ, Kang FY (2016) A reconstruction of maxwell model for effective thermal conductivity of composite materials. Appl Therm Eng 102: 972–979. doi: 10.1016/j.applthermaleng.2016.03.155 |
[8] | Tong XC (2011) Advanced Materials for Thermal Management of Electronic Packaging, London: Springer. |
[9] | Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17: 163–174. doi: 10.1016/j.mattod.2014.04.003 |
[10] | Burgen N, Laachachi A, Ferriol M, et al. (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61: 1–28. doi: 10.1016/j.progpolymsci.2016.05.001 |
[11] | Weidenfeller B, Hofer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos Part A-Appl S 33: 1041–1053. doi: 10.1016/S1359-835X(02)00085-4 |
[12] | Younes H, Christensen G, Liu M, et al. (2014) Alignment of carbon nanofibers in water and epoxy by wxternal magnetic field. J Nanofluids 3: 33–37. doi: 10.1166/jon.2014.1081 |
[13] | Horton M, Hong H, Li C, et al. (2010). Magnetic alignment of Ni-coated single wall carbon nanotubes in heat transfer nanofluids. J Appl Phys 107: 1–4. |
[14] | Liu M, Younes H, Hong H, et al. (2019) Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 166: 81–87. doi: 10.1016/j.polymer.2019.01.031 |
[15] | Younes H, Christensen G, Luan X, et al. (2012) Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J Appl Phys 111: 064308. doi: 10.1063/1.3694676 |
[16] | Ku J, Valdez-Grijalva MA, Deng R, et al. (2019) Modelling external magnetic fields of magnetite particles: from micro- to macro-scale. Geosciences 9: 133. doi: 10.3390/geosciences9030133 |
[17] | Vargas Z, Filipcsei G, Zrinyi M (2006) Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47: 227–233. doi: 10.1016/j.polymer.2005.10.139 |
[18] | Vargas Z, Filipcsei G, Zrinyi M (2005) Smart composites with controlled anisotropy. Polymer 46: 7779–7787. doi: 10.1016/j.polymer.2005.03.102 |
[19] | Boon MS, Mariatti M (2014) Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design. J Magn Magn Mater 355: 319–324. doi: 10.1016/j.jmmm.2013.12.002 |
[20] | Pedroso AG, Rosa DS, Atvars TDZ (2002) Manufacture of sheets using post-consumer unsaturated polyester resin/glass fibre composites. Prog Rubber Plast Re 18: 111–125. |
[21] | Oladunjove M, Sanuade OA (2012) Thermal diffusivity, thermal effusivity and specific heat in soils in Olurungo Powerplan, soutwestern Nigeria. IJRRAS 13: 502–521. |
[22] | Ma X, Omer S, Zhang W, et al. (2008) Thermal conductivity measurement of two microencapsulated phase change slurries. Int J Low-Carbon Tec 3: 245–253. doi: 10.1093/ijlct/3.4.245 |
[23] | Gustavsson M, Karawaracki E, Gustafsson SE (1994) Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev Sci Instrum 65: 3856–3859. doi: 10.1063/1.1145178 |
[24] | Maldonado LM, Rodríguez GP (2014) Effect of ceramic dental waste in thermo-physical properties of materials composed with polyester resins. Ingeniería Investigación y Desarrollo 14: 2–5. Available from: https://doi.org/10.19053/1900771X.3442. |
[25] | Schilling F, Weidenfeller B, Ho M (2002) Thermal and electrical properties of magnetite filled polymers. Compos Part A-Appl S 33: 1041–1053. doi: 10.1016/S1359-835X(02)00085-4 |
[26] | Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33: 3125–3131. doi: 10.1063/1.1728579 |
[27] | Razzaq MY, Anhlt M, Fromann L, et al. (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mat Sci Eng A-Struct 444: 227–235. doi: 10.1016/j.msea.2006.08.083 |
[28] | Gong L, Wang Y, Cheng X, et al. (2014) International journal of heat and mass transfer a novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Tran 68: 295–298. doi: 10.1016/j.ijheatmasstransfer.2013.09.043 |
[29] | Pena-Rodríguez G, Rivera-Suarez PA, Gónzalez-Gómez CH, et al. (2018) Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite. TecnoLogicas 21: 13–27. |