Review Special Issues

Materials for hydrogen storage and the Na-Mg-B-H system

  • Received: 01 December 2014 Accepted: 29 January 2015 Published: 06 February 2015
  • This review on materials for hydrogen storage in the solid state gives a brief discussion underlying reasons and driving forces of this specific field of research and development (the why question). This scenario is followed by an outline of the main materials investigated as options for hydrogen storage (the what exactly). Then, it moves into breakthroughs in the specific case of solid state storage of hydrogen, regarding both materials (where to store it) and properties (how it works). Finally, one of early model systems, namely NaBH4/MgH2 (the case study), is discussed more comprehensively to better elucidate some of the issues and drawbacks of its use in solid state hydrogen storage.

    Citation: Daphiny Pottmaier, Marcello Baricco. Materials for hydrogen storage and the Na-Mg-B-H system[J]. AIMS Energy, 2015, 3(1): 75-100. doi: 10.3934/energy.2015.1.75

    Related Papers:

    [1] Jinyu Wei, Bin Liu . Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Mathematical Biosciences and Engineering, 2021, 18(1): 564-582. doi: 10.3934/mbe.2021031
    [2] Robert Stephen Cantrell, Chris Cosner, Yuan Lou . Evolution of dispersal and the ideal free distribution. Mathematical Biosciences and Engineering, 2010, 7(1): 17-36. doi: 10.3934/mbe.2010.7.17
    [3] Ling Xue, Sitong Chen, Xinmiao Rong . Dynamics of competition model between two plants based on stoichiometry. Mathematical Biosciences and Engineering, 2023, 20(10): 18888-18915. doi: 10.3934/mbe.2023836
    [4] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [5] Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1
    [6] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [7] Meng Zhao, Wan-Tong Li, Yang Zhang . Dynamics of an epidemic model with advection and free boundaries. Mathematical Biosciences and Engineering, 2019, 16(5): 5991-6014. doi: 10.3934/mbe.2019300
    [8] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [9] Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543
    [10] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
  • This review on materials for hydrogen storage in the solid state gives a brief discussion underlying reasons and driving forces of this specific field of research and development (the why question). This scenario is followed by an outline of the main materials investigated as options for hydrogen storage (the what exactly). Then, it moves into breakthroughs in the specific case of solid state storage of hydrogen, regarding both materials (where to store it) and properties (how it works). Finally, one of early model systems, namely NaBH4/MgH2 (the case study), is discussed more comprehensively to better elucidate some of the issues and drawbacks of its use in solid state hydrogen storage.


    Biological dispersal means that organisms move from one location to another within a habitat. This phenomenon has an important impact on population dynamics, disease and distribution of species [1,2,3,4]. It is well known that the interactions between dispersal and spatial heterogeneity could create very interesting phenomena. Moreover, a number of ecologists and evolutionary biologists have been interested in this issue for many years.

    Over the last few decades, researchers from both biology and mathematics have used some specific mathematical models to describe population dynamics in spatial ecology and evolution. On one hand, taking into account the effects of random perturbations, some researchers investigated some models which described more realistically ecosystems through stochastic approaches, see [5,6,7,8,9]. On the other hand, some researchers considered the impacts of the random diffusion on the population dynamics and used the reaction-diffusion equations to model population dynamics. Among these models, the two species Lotka-Volterra competition-diffusion system perhaps is the most salient example. The following classical Lotka-Volterra competition-diffusion system

    $ {ut=d1Δu+u[m(x)ubv],inΩ×R+,vt=d2Δv+v[m(x)cuv],inΩ×R+,νu=νv=0,onΩ×R+,u(x,0)=u0,v(x,0)=v0,inΩ,
    $
    (1.1)

    models two competing species. Here $ u(x, t) $ and $ v(x, t) $ represent the densities of two species at location $ x $ and time $ t $. $ d_{1} $ and $ d_{2} $ are random diffusion rates of species $ u $ and $ v $, respectively, which are therefore assumed to be non-negative. The habitat $ \Omega $ is a bounded domain in $ \mathbb{R}^{N} $ with smooth boundary $ \partial\Omega $. $ \partial_{\nu} = \nu\cdot\nabla $, where $ \nu $ denotes the unit outer normal vector on $ \partial\Omega $ and the no-flux boundary condition means that no individual can move in or out through the boundary of the habitat. $ m $ represents their common intrinsic growth rate which also reflects the environmental richness of the resources at location $ x $. $ b $ and $ c $ represent inter-specific competition coefficients with $ (b, c) \in (0, 1)\times(0, 1) $ and both intra-specific competition coefficients are normalized to 1.

    Let $ g $ belong to $ \mathcal{C}^{\gamma}(\overline{\Omega}) $ for some $ \gamma $ satisfying $ 0 < \gamma < 1 $ with $ \int_{\Omega}gdx\geq0 $ and $ g\not\equiv0 $. It is well known that there is a unique positive solution to the following problem

    $ {dΔϖ+ϖ(g(x)ϖ)=0,inΩ,νϖ=0,onΩ,
    $
    (1.2)

    which is denoted by $ \varpi_{d, g} $ (see, e.g., [1]). This implies that system (1.1) admits two semi-trivial steady states, denoted by $ (\omega_{d_{1}}, 0) $ and $ (0, \omega_{d_{2}}) $, for every $ d_1 > 0 $ and $ d_2 > 0 $.

    For system (1.1), when $ b = c = 1 $, one well-known and widely accepted result is due to Hastings [10]. It was shown by Hastings [10] that the species with slower diffusion rate has advantage against its competitor with larger diffusion rate, regardless of the initial values, which is contrary to the case of $ m\equiv $ constant. When $ m\equiv $ constant, there is a compact global attractor consisting of a continuum of steady states $ \{((1-s)m, sm)|s\in[0, 1]\} $ connecting the two semi-trivial steady states to system (1.1) for every $ d_{1}, d_{2} > 0 $.

    In an attempt to understand this phenomenon, Lou [11] adopted the weak competition approach to study the system (1.1). Lou [11] verified that there exists a critical value for competition coefficient $ c_{*} $ in $ (0, 1) $ such that (ⅰ) for every $ c $ less than this critical value, if $ d_{1}, d_{2} > 0 $, the steady state $ (\varpi_{d_{1}}, 0) $ is unstable; (ⅱ) for every $ c $ satisfying $ c_{*} < c < 1 $, there exists $ \bar{d_{1}} > 0 $ and $ \bar{d_{2}} > 0 $ such that $ (\varpi_{d_{1}}, 0) $ is unstable. Meanwhile, when $ c $ is in $ (c_{*}, 1) $, there exists a constant $ b_{*} $ in $ (0, 1] $ such that for some $ (d_{1}, d_{2}) $ in $ (0, +\infty)\times(0, +\infty) $, $ (\varpi_{d_{1}}, 0) $ is globally asymptotically stable provided that $ b $ satisfies $ 0 < b\leq b_{*} $. He and Ni [12] made a great breakthrough on the estimate of linear stability of any coexistence stead state, and based on this, they provided a complete classification on all possible long time dynamical behaviors of system (1.1). We refer to [13,14,15,16] for more investigations.

    In addition to random dispersal, it is quite reasonable to suppose that species could take directed movements due to certain external environment force or self-propelling in some environments. On one hand, species will move downstream due to the unidirectional water flow in a river [17,18,19]. On the other hand, the individuals are very smart so that they can sense and follow gradients in resource distribution [20,21,22,23] which can be modeled by the following competition-diffusion-advection system

    $ {ut=(d1uαum1)+u[m1(x)ubv],inΩ×R+,vt=(d2vβvm2)+v[m2(x)cuv],inΩ×R+,(d1uαum1)ν=(d2vβvm2)ν=0,onΩ×R+,u(x,0)=u0,v(x,0)=v0,inΩ,
    $
    (1.3)

    where $ d_1 $ and $ d_2 $ are random diffusion rates of species $ u $ and $ v $, respectively. $ \alpha $ and $ \beta $ measure the speed of movement upward along the gradient of resources. $ m_{1} $ and $ m_{2} $ are intrinsic growth rates of $ u $ and $ v $, respectively. The boundary condition means that the environment is isolated. This system has been frequently used as a standard model to study the evolution of conditional dispersal and a number of related works have been done, see, e.g., [24,25,26] for $ \alpha, \beta > 0 $, [27,28,29] for $ \alpha > 0 = \beta $ when $ m_{1} = m_{2} $ and $ b = c = 1 $. For more investigations, we refer to [30,31,32,33,34].

    Recently, Wang [21] studied system (1.3), and he established $ \Sigma_{u} $ and $ \Sigma_{v} $ (which can be seen in the following definition) for $ m_1 $ and $ m_2 $ are non-constant under $ d_{1}, d_{2}, \alpha $ and $ \beta $ satisfying certain conditions and $ (b, c) $ in $ (0, 1]\times(0, 1] $. Xu and Jiang [22] investigated the dynamics of system (1.3) on the condition that $ m_1 $ is not a constant, $ m_{2} = \overline{m} $ is a constant ($ \nabla\overline{m}\equiv0 $) and $ b = c = 1 $. In this case, advection rate $ \beta $ has no effect on system (1.3). They showed that there exists a critical value for the diffusion rate $ d_{2}^{*} $ in $ (0, +\infty) $, and their results can be interpreted biologically in the following statements:

    $ (i) $ The species $ u $ can always invade when the species $ v $ is rare for every $ d_1, d_2 > 0 $, and $ \alpha\geq0 $.

    $ (ii) $ For $ \alpha/d_{1}\leq1/\max_{\overline{\Omega}}m_{1} $, the species $ v $ can invade when the species $ u $ is rare, and the two species will coexist if $ d_{2} $ is larger than $ d_{2}^{*} $.

    $ (iii) $ If $ m_{1} $ is positive in $ \overline{\Omega} $ and $ \alpha/d_{1}\geq1/\min_{\overline{\Omega}}m_{1} $, then the two species always coexist for every $ d_{2} > 0 $. In this case, the species $ u $ has relatively strong advection, and then it leaves sufficient habitat for $ v $ to evolve.

    How does the inter-specific competition coefficients $ b $ and $ c $ affect the dynamics of system (1.3) when $ m_1 $ is not a constant and $ m_2 $ is constant? What values of the inter-specific competition coefficient $ b $ and $ c $ are favorable for the coexistence of the two species? In this paper, we shall discuss these topics in detail. Throughout this paper, the basic assumption on $ b $ and $ c $ includes part of the range $ bc\leq1 $, which contains the weak competition case ($ 0 < b, c < 1 $) as well as $ b = c = 1 $. At first, we make the following assumption.

    $ {\bf{(M)}} \; m_{1} $ belongs to $ \mathcal{C}^{2+\gamma}(\overline{\Omega}) $ for some $ \gamma $ satisfying $ 0 < \gamma < 1 $, and $ m_{2} = \overline{m} $ is a non-negative constant, $ m_{1}\not\equiv m_{2} $. Moreover,

    $ \overline{m} = \frac{1}{|\Omega|}\int_{\Omega}m_1dx > 0. $

    Assumption $ {\bf{(M)}} $, biologically, implies that the total resources for two competitors are fixed at exactly the same level. Due to the assumption that $ m_2 $ is a non-negative constant, it holds $ \nabla m_2 = 0 $, then the advective rate of species $ v $ (i.e., $ \beta $) has no effect on the dynamics of system (1.3). Moreover, throughout this paper, we assume that $ d_1, d_2 > 0, d_1\neq d_2 $ and $ \alpha > 0 $.

    Besides the assumption $ {\bf{(M)}} $, we define $ \omega: = \alpha/d_{1}. $

    Then system (1.3) becomes

    $ {ut=d1(uωum1)+u[m1(x)ubv],inΩ×R+,vt=d2Δv+v[¯mcuv],inΩ×R+,(uωum1)ν=νv=0,onΩ×R+,u(x,0)=u0,v(x,0)=v0,inΩ.
    $
    (1.4)

    We assume that the initial data $ u_0, v_0 $ of system (1.4) are non-negative and not identically zero, then by maximum principle [35], we can obtain $ u > 0, v > 0 $. Under the assumption $ {\bf{(M)}} $, for all $ d_{1}, d_{2} > 0 $ and $ \alpha > 0 $, there exist two semi-trivial steady states to system (1.4) (see [1,36]), denoted by $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ and $ (0, \overline{m}) $ respectively, where $ \bar{u}_{d_{1}, \omega, m_{1}} $ is the unique positive solution ([37]) of

    $ {d1(ˉuωˉum1)+ˉu(m1ˉu)=0,inΩ,(ˉuωˉum1)ν=0,onΩ,
    $
    (1.5)

    and $ \overline{m} $ is the unique positive solution of

    $ {d2Δˉv+ˉv(¯mˉv)=0,inΩ,νˉv=0,onΩ.
    $
    (1.6)

    To study the dynamics of system (1.4), we should study the stability of semi-trivial steady states $ (\bar{u}, 0) $ and $ (0, \overline{m}) $. The stability of $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is determined by the principal eigenvalue of the following linear problem

    $ {d2Δψ+(¯mcˉud1,ω,m1)ψ+λ1ψ=0,inΩ,νψ=0,onΩ,
    $
    (1.7)

    which is denoted by $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) $. The stability of $ (0, \overline{m}) $ is determined by the principal eigenvalue of the following linear problem

    $ {d1(ψωψm1)+ψ(m1b¯m)+λ1ψ=0,inΩ,(ψωψm)ν=0,onΩ,
    $
    (1.8)

    which is denoted by $ \lambda_{1}(d_{1}, \omega, m_{1}-b\overline{m}) $.

    Moreover, $ (\bar{u}, 0) $ is linearly stable if $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}) > 0 $ and it is unstable if $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}) < 0 $. Similarly, $ (0, \overline{m}) $ is linearly stable if $ \lambda_{1}(d_{1}, \omega, m_{1}-b\overline{m}) > 0 $ and it is unstable if $ \lambda_{1}(d_{1}, \omega, m_{1}-b\overline{m}) < 0 $.

    To describe the first result, according to [12], for every $ d_{1} > 0, d_{2} > 0 $ and $ \omega \leq 1/\max_{\overline{\Omega}}m_{1} $, we first introduce several notations:

    $ \Sigma_{u} : = \{(d_{1}, d_{2}) \in \Gamma: (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is linearly stable$\}$,

    $ \Sigma_{v} : = \{(d_{1}, d_{2}) \in \Gamma: (0, \overline{m}) $ is linearly stable$\}$,

    $ \Sigma_{-} : = \{(d_{1}, d_{2}) \in \Gamma: $ both $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ and $ (0, \overline{m}) $ are linearly unstable$\}$,

    where $ \Gamma : = \mathbb{R}^{+}\times \mathbb{R}^{+}\; \mathrm{and}\; \mathbb{R}^{+} = (0, \infty). $

    Define

    $ {Lu:=infd1>0,0<ω1max¯Ωm1¯m¯ˉud1,ω,m1[0,+),Su:=supd1>0,0<ω1max¯Ωm1sup¯Ω¯mˉud1,ω,m1(0,+],
    $
    (1.9)

    and

    $ \Xi: = \{(b,c)|b,c > 0\; \mathrm{and}\; bc\leq1\}\cup\{(b,c)|0 < c\leq \frac{1}{S_u}\}\cap\{(b,c)|0 < b\leq 1\}. $

    In particular, if $ {\bf{(M)}} $ holds, then

    $ 0 < L_u < \frac{\overline{m}}{\overline{m_{1}}} = 1\leq S_u < \infty. $

    To characterize the set $ \Sigma_{u} $ in terms of $ c > 0 $, for each $ c > 0 $ and $ \omega \leq 1/\max_{\overline{\Omega}}m_{1} $, we define

    $ Ic:={d1:Ω(¯mcˉud1,ω,m1)dx<0}:=I0cI1c,
    $
    (1.10)

    where

    $ {I0c:={d1:¯mcˉud1,ω,m1()on¯Ω},I1c:={d1Ic:sup¯Ω(¯mcˉud1,ω,m1)>0}.
    $
    (1.11)

    In fact, we have the following equivalent descriptions:

    $ {Σu:={(d1,d2)Γ:λ1(d2,¯mcˉud1,ω,m1)>0},Σv:={(d1,d2)Γ:λ1(d1,ω,m1b¯m)>0},Σ:={(d1,d2)Γ:λ1(d2,¯mcˉud1,ω,m1)<0andλ1(d1,ω,m1b¯m)<0}.
    $
    (1.12)

    The first result is as follows.

    Theorem 1.1. Suppose that $ {\bf{(M)}} $ holds and suppose $ \omega \leq 1/\max_{\overline{\Omega}}m_{1} $. Let $ L_{u} $ and $ S_{u} $ be defined as in Eq (1.9), and let $ (b, c) $ be in $ \Xi $. Then we have $ \Sigma_{v} = \emptyset $, and the following results hold:

    $ (i) $

    $ Σu={,0<cLu,{(d1,d2):d1Ic,d2>d2(d1)>0},Lu<c<Su,Γ,cSu,
    $
    (1.13)

    where $ d_{2}^{*}(d_{1}, \omega) $ is defined as follows:

    $ d_{2}^{*}(d_{1}) = \left\{ 0,d1I0c,1μ1(d2,¯mcˉud1,ω,m1),d1I1c,
    \right. $

    $ I_{c}, I_{c}^{0} $ and $ I_{c}^{1} $ are defined in Eqs (1.10) and (1.11);

    $ (ii) $ there exists at least one stable positive coexistence steady state for system (1.4) if $ (d_1, d_2) \in\Sigma_{-} $, where

    $ Σ={Γ,cLu,,cSu,{(d1,d2):I1c,d2<1μ1(d2,¯mcˉud1,ω,m1)},Lu<c<Su.
    $
    (1.14)

    Remark 1.1. In Theorem 1.1, we consider the case of $ \omega \leq 1/\max_{\overline{\Omega}}m_{1} $. We divides the region of $ bc $-plane discussed in Theorem 1.1 into three parts. Species $ v $ can invade the space occupied by the species $ u $ so that would coexist with species $ u $ when $ c\leq L_u $ and $ 0 < b\leq1 $. When $ c $ takes on the intermediate value, that is $ L_u < c < S_u $, whether the two species will coexist or not is dependent on the values of random diffusion rates $ d_1, d_2 $ and the ratio $ \omega $. This result generalizes (Theorem 1.2 [22]) in which the authors discussed the case where the inter-specific competition coefficients $ b $ and $ c $ were $ 1 $. If $ c\geq S_u $, then $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is linearly stable. These results are similar to the non-advection case (Theorem 3.3 [12]). It means that in an advective environment, as long as the ratio of advection rate to random diffusion rate is appropriately small, advection contributes to dispersal much less than random diffusion, and a sufficient amount of diffusive movement can counterbalance the advection.

    When $ \omega\geq 1/\min_{\overline{\Omega}}m_{1} $, the following result holds.

    Theorem 1.2. Suppose that $ {\bf{(M)}} $ holds, and $ m_{1} $ is positive for all $ x $ in $ \overline{\Omega} $. If $ \omega \geq 1/\min_{\overline{\Omega}}m_{1} $, then there exists at least one stable positive coexistence steady state for system (1.4) provided that $ (b, c)\in(0, 1]\times(0, 1] $.

    Remark 1.2. Theorem 1.2 implies that, when $ \alpha/d_{1}\leq 1/\max_{\overline{\Omega}}m_{1} $, for every $ (b, c)\in(0, 1]\times(0, 1] $ and $ d_2 > 0 $, species $ v $ can invade the space occupied by the species $ u $, thereby the two species could coexist. This result generalizes (Theorem 1.5 [22]) for $ b = c = 1 $ case. From a biological point of view, if the ratio of advection rate $ \alpha $ to random diffusion rate $ d_1 $ of species $ u $ is appropriately large, advection plays a dominant role in dispersal for species $ u $. Species $ v $ adopts random diffusion strategy. Due to the advection, the species $ u $ concentrates at somewhere richer in resources, therefore, there leaves sufficient resources for species $ v $ to survival. Thereby, the two species coexist.

    Figure 1 illustrates the region which is part of $ bc $-plane considered in Theorems 1.1 and 1.2.

    Figure 1.  Shapes of $ \Sigma_{u} $, $ \Sigma_{v} $ and $ \Sigma_{-} $.

    The rest of this paper is organized as follows. In Section 2, we present some preliminary results which will be used in verifying our results. Section 3 is devoted to establishing our main results. We give a short discussion in Section 4.

    Since system (1.4) generates a monotone dynamical system, the potential population dynamics, to a large extent, can be determined by the qualitative properties of its steady states. For a monotone dynamical system, we have the following conclusions (see, e.g., (Proposition 9.1 and Theorem 9.2 [38]):

    $ (I) $. If both semi-trivial steady states of a monotone dynamical system are unstable, then there is at least one locally stable coexistence steady state;

    $ (II) $. If a monotone dynamical system has no coexistence steady state, then one of the semi-trivial steady state is unstable and the other is globally asymptotically stable.

    Let $ \mu_{1}(h) $ denote the unique nonzero principal eigenvalue of

    $ {Δφ+μh(x)φ=0,inΩ,νφ=0,onΩ,
    $
    (2.1)

    where $ h\not\equiv $ constant and could change sign.

    The following lemma collects some important properties of $ \mu_{1}(h) $. The proof can be found in [39,40,41].

    Lemma 2.1. The problem (2.1) admits a nonzero principal eigenvalue $ \mu_{1} = \mu_{1}(h) $ if and only if $ \int_{\Omega}hdx\neq 0 $ and $ h $ changes sign. More precisely, if $ h $ changes sign, then

    $ (i) \; \int_{\Omega}hdx = 0 \Leftrightarrow 0 $ is the only principal eigenvalue;

    $ (ii) \; \int_{\Omega}hdx > 0 \Leftrightarrow \mu_{1}(h) < 0 $;

    $ (iii) \; \int_{\Omega}hdx < 0 \Leftrightarrow \mu_{1}(h) > 0 $;

    $ (iv) \; \mu_{1}(h_{1}) > \mu_{1}(h_{2}) $ if $ h_{1} \leq h_{2} $ a.e., and $ h_{1} $ and $ h_{2} $ both change sign;

    $ (v) \; \mu_{1}(h) $ is continuous in $ h $; more precisely, $ \mu_{1}(h_{l})\rightarrow h $ in $ L^{\infty}(\Omega) $.

    In order to analyze the principal eigenvalue of problem (1.7), for convenience, we consider the following more general form of eigenvalue problem:

    $ {dΔψ+h(x)ψ+λ1ψ=0,inΩ,νψ=0,onΩ.
    $
    (2.2)

    Denote the principal eigenvalue of problem (2.2) by $ \lambda_{1}(d, h) $. By the variational approach, $ \lambda_{1}(d, h) $ can be characterized by

    $ \lambda_{1}(d,h) = \inf\limits_{\psi\in H_{1}(\Omega)\backslash{0}} \frac{\int_{\Omega}d|\nabla\psi|^{2}dx-h\psi^{2}dx}{\int_{\Omega}\psi^{2}dx}. $

    The following lemma collects some important properties of $ \lambda_{1}(d, h) $ as well as the connection between $ \lambda_{1}(d, h) $ and $ \mu_{1}(h) $ (see [40]).

    Lemma 2.2. The first eigenvalue $ \lambda_{1}(d, h) $ of problem (2.2) depends smoothly on $ d > 0 $ and continuously on $ h \in L^{\infty}(\Omega) $. Moreover, it has the following properties:

    $ (i) \; \int_{\Omega}hdx \geq 0 \Rightarrow \lambda_{1}(d, h) < 0 $ for all $ d > 0 $;

    $ (ii) $

    $ Ωhdx>0{λ1(d,h)<0,foralld<1μ1(h),λ1(d,h)=0,foralld=1μ1(h),λ1(d,h)>0,foralld>1μ1(h);
    $
    (2.3)

    $ (iii) \; \lambda_{1}(d, h) < \lambda_{1}(d, k) $ if $ h \geq k $ and $ h\not\equiv k $. In particular $ \lambda_{1}(d, h) > 0 $ if $ h\geq(\not\equiv)0 $.

    To study the stability of the semi-trivial steady state $ (0, \overline{m}) $, it is needed to introduce the following linear eigenvalue problem

    $ {d(ψωψm)+h(x)ψ+λ1ψ=0,inΩ,(ψωψm)ν=0,onΩ.
    $
    (2.4)

    Denote the principal eigenvalue of problem (2.4) by $ \lambda_{1}(d, \omega, h) $. Then $ \lambda_{1}(d, \omega, h) $ can be expressed by the following variational formula (see, e.g., [1])

    $ \lambda_{1}(d,\omega,h) = \inf\limits_{\psi\in H_{1}(\Omega)\backslash{0}}\frac{\int_{\Omega}d e^{\omega m}|\nabla\psi|^{2}dx-\int_{\Omega}e^{\omega m}h\psi^{2}dx}{\int_{\Omega}e^{\omega m}\psi^{2}dx}, $

    where $ h\in C(\overline{\Omega}) $ is not a constant. Then we obtain the following result [1].

    Lemma 2.3. Let $ \lambda_{1}(d, \omega, h) $ be the principal eigenvalue of problem (2.4). Suppose that $ h $ is a continuous function on $ \overline{\Omega} $ and $ h $ is not a constant. Then we have the following result

    $ h_{1}\geq h_{2} \Rightarrow \lambda_{1}(d,\omega,h_{1})\leq \lambda_{1}(d,\omega,h_{2}), $

    and the equality holds only if $ h_{1}\equiv h_{2} $.

    The proofs of our results depend heavily on the following result.

    Lemma 2.4. Assume that $ m\in C^{2}(\overline{\Omega}) $, $ m\not\equiv constant $ and $ \int_{\Omega}mdx\geq0 $ ($ m $ may change sign). Then there exists a unique positive solution to the steady state problem

    $ {(dˉuαˉum)+ˉu(mˉu)=0,inΩ,(dˉuαˉum)ν=0,onΩ,
    $
    (2.5)

    which is denoted by $ \bar{u} $. Moreover,

    $ (i) $ if $ \alpha/d \leq 1/\max_{\overline{\Omega}}m $, then $ \int_{\Omega}\bar{u}dx > \int_{\Omega}mdx $;

    $ (ii) $ if $ m > 0 $ in $ \overline{\Omega} $, and $ \alpha/d \geq 1/\min_{\overline{\Omega}}m $, then $ \int_{\Omega}\bar{u}dx < \int_{\Omega}mdx $.

    Proof. The existence and uniqueness of positive solution $ \bar{u} $ is well-known [36]. For the proof of (ⅰ) see Lemma 3.1 in [22]. For the proof of (ⅱ), see Lemma 4.1 in [24]. For completeness, we provide a proof of (ⅰ).

    If $ \alpha/d \leq 1/\max_{\overline{\Omega}}m $, set

    $ \eta = e^{-\frac{\alpha}{d}m}\bar{u}. $

    Then $ \eta $ satisfies

    $ {d[eαdmη]+ˉu(mˉu)=0,inΩ,νη=0,onΩ.
    $
    (2.6)

    Let $ \eta(x^{*}) = \max_{\overline{\Omega}}\eta $. Then we can always choose $ x^{*}\in\Omega $. If $ x^{*}\in\partial\Omega $, then $ \eta(x) < \eta(x^{*}) $ for all $ x\in\Omega $. By the Hopf boundary lemma ([42]), $ \frac{\partial\eta}{\partial\nu}(x^{*}) > 0 $. This contradicts the boundary condition $ \partial_{\nu}\eta = 0 $ on $ \partial\Omega $, which implies that $ x^{*} $ can be chosen in $ \Omega $. For such $ x^{*} \in \Omega $, it holds that $ \Delta\eta(x^{*})\leq0, \nabla\eta(x^{*}) = 0 $. Thus, by the equation of $ \eta $, we have $ \bar{u}(x^{*})\leq m(x^{*}) $. Therefore,

    $ max¯Ωη=eαdm(x)ˉu(x)eαdm(x)m(x)dαe,
    $
    (2.7)

    where the last inequality follows from $ ye^{-\frac{\alpha}{d}y} \leq d/\alpha e $. It follows that $ \eta(x) \leq d/\alpha e $ for every $ x\in \overline{\Omega} $. Then due to $ \alpha/d \leq 1/\max_{\overline{\Omega}}m $, we have

    $ ˉu=eαdm(x)η(x)eαdmax¯Ωmmax¯Ωηdα,forallx¯Ω.
    $
    (2.8)

    Define a function $ f(y) = ye^{-\frac{\alpha}{d}}y $, $ y \in [0, d/\alpha] $. Since $ f'(y) > 0 $ for $ y \in [0, d/\alpha] $, $ f $ has an inverse function, denoted by $ s $. It is obvious that $ s $ is defined in $ [0, d/\alpha e] $, and its range is $ [0, d/\alpha] $. Hence, for each $ x\in \overline{\Omega} $, $ f(\bar{u}(x)) $ and $ s(\eta(x)) $ is well-defined by Eqs (2.7) and (2.8).

    Dividing system (2.6) by $ s(\eta) $ and integrating in $ \Omega $, we obtain

    $ d\int_{\Omega}\frac{e^{\frac{\alpha}{d}m}s'(\eta)|\nabla\eta|^{2}}{s^{2}(\eta)}dx+\int_{\Omega}\frac{\bar{u}}{s(\eta)}(m-\bar{u})dx = 0, $

    which can be written as

    $ \int_{\Omega}(m-\bar{u})dx = d\int_{\Omega}\frac{e^{\frac{\alpha}{d}m}s'(\eta)|\nabla\eta|^{2}}{s^{2}(\eta)}dx+\int_{\Omega}\frac{\bar{u}-s(\eta)}{s(\eta)}(m-\bar{u})dx. $

    Next we prove the following inequality

    $ [ˉus(η)](mˉu)0,inΩ.
    $
    (2.9)

    If $ \bar{u}(x) < m(x) $, we have $ f(\bar{u}(x)) = \bar{u}(x)e^{-\frac{\alpha}{d}\bar{u}(x)} > \bar{u}(x)e^{-\frac{\alpha}{d}m(x)} = \eta(x) $, then by the strictly monotone increasing property of $ s $, it holds that $ \bar{u}(x) > s(\eta(x)) $, and then Eq (2.9) follows.

    If $ \bar{u}(x) \geq m(x) $, we have $ f(\bar{u}(x)) = \bar{u}(x)e^{-\frac{\alpha}{d}\bar{u}(x)}\leq \bar{u}(x)e^{-\frac{\alpha}{d}m(x)} = \eta(x) $. It follows that $ \bar{u}(x)\leq s(\eta(x)) $, and Eq (2.9) holds either in this case.

    Hence, we obtain $ \int_{\Omega}\bar{u}dx > \int_{\Omega}mdx $ if $ \alpha/d \leq 1/\max_{\overline{\Omega}}m $.

    Firstly, we prove the unstability of $ (0, \overline{m}) $ for every $ d_{1}, d_{2} > 0 $, and $ \omega > 0 $ by employing a method similar to that used in [22].

    Lemma 3.1. Suppose that $ {\bf{(M)}} $ holds. Then for every $ d_{1}, d_{2} > 0 $ and $ \omega > 0 $, $ (0, \overline{m}) $ is unstable provided $ b $ in $ (0, 1] $ and $ c > 0 $.

    Proof. Let $ \lambda_{1}(d_{1}, \omega, m_{1}-b\overline{m}) $ be the principal eigenvalue of problem (1.8) and let $ \psi > 0 $ be the corresponding eigenfunction. Then

    $ {d1(ψωψm1)+ψ(m1b¯m)+λ1ψ=0,inΩ,(ψωψm1)ν=0,onΩ.
    $
    (3.1)

    Consider

    $ {d1(ψωψm1)+ψ(m1¯m)+λ1ψ=0,inΩ,(ψωψm1)ν=0,onΩ.
    $
    (3.2)

    Set $ \phi = e^{-\omega m_{1}}\psi $. Then $ \phi $ satisfies

    $ {d1(eωm1ψ)+eωm1(m1¯m)ψ+λ1eωm1ψ=0,inΩ,νψ=0,onΩ.
    $
    (3.3)

    Dividing Eq (3.3) by $ \psi $ and integrating in $ \Omega $, we have

    $ d1Ωeωm1|ψ|2ψ2dx+Ω(m1¯m)eωm1dx+λ1Ωeωm1dx=0.
    $
    (3.4)

    Define

    $ \Omega^{+} = \{x\in\Omega|m_{1}(x)\geq\overline{m}\},\; \; \; \; \; \; \Omega^{-} = \{x\in\Omega|m_{1}(x) < \overline{m}\}, $

    then $ \Omega = \Omega^{+}\bigcup\Omega^{-} $, and

    $ Ω(m1¯m)eωm1dx=Ω+(m1¯m)eωm1dx+Ω(m1¯m)eωm1dx>Ω+(m1¯m)eω¯mdx+Ω(m1¯m)eω¯mdx=eω¯m[Ω+(m1¯m)dx+Ω(m1¯m)dx]=eω¯mΩ(m1¯m)dx=0.
    $
    (3.5)

    It follows from Eqs (3.4) and (3.5) that $ \lambda_{1}(d_{1}, \omega, m_{1}-\overline{m}) < 0 $. In view of Lemma 2.3, we derive

    $ \lambda_{1}(d_{1},\omega,m_{1}-b\overline{m})\leq \lambda_{1}(d_{1},\omega,m_{1}-\overline{m}) < 0, $

    which implies that $ (0, \overline{m}) $ is linearly unstable.

    Proof of Theorem 1.1. According to Lemma 3.1, it holds that $ \Sigma_{v} = \emptyset $. Next we give the proof of Eq (1.13) in two steps.

    $ {\bf{Step\; 1.}} \; (d_1, d_2)\in\Sigma_{u} $ indicates that $ d_{1}\in I_{c} $.

    From Eq (1.12), we know

    $ \Sigma_{u}: = \{(d_{1},d_{2}) \in \Gamma:\lambda_{1}(d_{2},\overline{m}-c\bar{u}_{d_{1},\omega,m_{1}}) > 0\}. $

    Suppose that $ d_{1}\not\in I_{c} $, where $ I_{c} $ is defined in Eq (1.10). Then $ \int_{\Omega}(\overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}})dx\geq0 $. By Lemma 2.2 (ⅰ), $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}})\leq0 $ for all $ d_{2} > 0 $, i.e., $ (d_{1}, d_{2})\not\in\Sigma_{u} $. Hence $ (d_{1}, d_{2})\in\Sigma_{u} $ implies that $ d_{1}\in I_{c} $.

    $ {\bf{Step\; 2.}} $ Characterize the set $ I_{c} $ for all $ c > 0 $ in detail.

    If $ c\leq L_{u} $, by the definition of $ L_u $ in Eq (1.9), $ \int_{\Omega}(\overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}})dx\geq0 $ for all $ d_1 > 0 $. Hence $ I_c = \emptyset $ and $ \Sigma_u = \emptyset $. Moreover,

    $ I1cifandonlyifLu<c<Su.
    $
    (3.6)

    Indeed, if $ d_1^{'}\in I_{c}^{1}\neq\emptyset $, then $ L_u < c $ and for some $ x_{0}\in\overline{\Omega} $, it follows that

    $ c < \frac{\overline{m}}{\bar{u}_{d_1^{'},\omega',m_1}(x_{0})}\leq S_u, $

    where $ \omega_{'} = \alpha/d_1^{'} $. Hence $ I_{c}^{1}\neq\emptyset $ gives rise to $ L_u < c < S_u $.

    On the other hand, if $ L_u < c < S_u $, then there exists some $ d_1^{''} > 0\; (\omega^{''} = \alpha/d_1^{''}) $ and $ y_0\in\overline{\Omega} $ such that

    $ \overline{m}-c\bar{u}_{d_1^{''},\omega^{''},m_1}(y_0) > 0\; \; \; \; \; \mathrm{and}\; \; \; \; \; \int_{\Omega}(\overline{m}-c\bar{u}_{d_1^{''},\omega^{''},m_1})dx < 0, $

    i.e., $ d_1^{''}\in I_c^{1}\neq\emptyset $. This finishes the proof of Eq (3.6).

    We now claim that $ I_c $ admits the following decomposition:

    $ {Ic=,ifcLu,Ic=(I0cI1c)R+,ifLu<c<Su,Ic=I0c=R+,ifcSu.
    $
    (3.7)

    To finish the proof of Eq (3.7), it suffices to show that if $ S_u < +\infty $ and $ c\geq S_u $, then $ I_c = I_{c}^{0} = \mathbb{R}^{+} $. By the definition of $ S_u $ in Eq (1.9), we deduce that

    $ \overline{m}-c\bar{u}_{d_{1},\omega,m_{1}}\leq0,\; \; \; \; \; \; \; \; \mathrm{in}\; \Omega. $

    Hence to show that $ I_c = I_{c}^{0} = \mathbb{R}^{+} $, it suffices to show that $ \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}\not\equiv0 $ for $ c\geq S_u $. Since $ \overline{m} $ is a constant, this is obviously true if $ c > S_u $. This finishes the proof of Eq (3.7).

    Therefore

    $ cSuIc=I0c¯mcˉud1,ω,m1≤≢0λ1(d2,¯mcˉud1,ω,m1)>0,
    $
    (3.8)

    i.e., $ \Sigma_{u} = \Gamma. $

    Now assume that $ L_{u} < c < S_{u} $ and $ d_{1}\in I_{c} $. If $ d_{1}\in I_{c}^{0} $, by Lemma 2.2 (ⅲ), $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) > 0 $, then for any $ d_{1}\in I_{c}^{0} $, $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is linearly stable. If $ d_{1}\in I_{c}^{1} $, then $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) > 0 $ for all $ d_2 > 1/\mu_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) $ by Lemma 2.2 (ⅱ). Thus after defining

    $ d_{2}^{*}(d_{1}) = \left\{ 0,d1I0c,1μ1(d2,¯mcˉud1,ω,m1),d1I1c,
    \right. $

    we obtain that, when $ L_{u} < c < S_{u} $, $ (d_1, d_2)\in\Sigma_{u} $ if and only if $ d_1\in I_c^{1}, d_2 > 1/\mu_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) $ or $ d_1\in I_c^{0}, d_2 > 0 $.

    Finally, we prove Eq (1.14).

    If $ c\leq L_u $, then $ \int_{\Omega}(\overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}})dx\geq0 $ for all $ d_{1} > 0 $. Hence by Lemma 2.2 (i), $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}})\leq0 $ for all $ (d_1, d_2)\in\Gamma $ and $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) = 0 $ if and only if $ c = L_u $ and $ \overline{m}\equiv L_u \bar{u}_{d_{1}, \omega, m_{1}} $. Due to the fact that $ \overline{m} $ is a constant, it is easy to see that the equality $ \overline{m}\equiv L_u \bar{u}_{d_{1}, \omega, m_{1}} $ is not true, which implies that for all $ (d_1, d_2)\in\Gamma, \; \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) < 0 $, i.e., $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is unstable. If $ c\geq S_u $, by Eq (3.8), $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) > 0 $, then for all $ (d_1, d_2)\in\Gamma $, $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is linearly stable. If $ L_u < c < S_u $, for $ d_1\in I_{c}^{0} $, $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) > 0 $ for all $ d_2 > 0 $. For $ d_1\in I_{c}^{1} $, $ \lambda_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) < 0 $ for all $ d_2 < 1/\mu_{1}(d_{2}, \overline{m}-c\bar{u}_{d_{1}, \omega, m_{1}}) $. Then

    $ \Sigma_{-} = \left\{ Γ,cLu,,cSu,{(d1,d2):d1I1c,d2<1μ1(d2,¯mcˉud1,ω,m1)},Lu<c<Su.
    \right. $

    By the theory of monotone dynamical system, we derive that system (1.4) has at least one coexistence steady state for $ \Sigma_{-} $. This finishes the proof of Theorem 1.1.

    Proof of Theorem 1.2. If $ {\bf{(M)}} $ holds, $ m_{1} > 0 $ in $ \overline{\Omega} $, and $ \omega \geq 1/\min_{\overline{\Omega}}m_{1} $, then by Lemma 2.4, the unique positive solution $ \bar{u}_{d_{1}, \omega, m_{1}} $ of Eq (1.9) satisfies $ \int_{\Omega}\bar{u}_{d_{1}, \omega, m_{1}}dx < \int_{\Omega}m_{1}dx $.

    Indeed, by the theory of monotone dynamical system, we only need to prove that $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is unstable. It is sufficient to show that the principal eigenvalue $ \lambda_{1} $ of the problem

    $ {d2Δψ+(¯mcˉud1,ω,m1)ψ+λ1ψ=0,inΩ,νψ=0,onΩ,
    $
    (3.9)

    is negative.

    Consider the following principal eigenvalue problem

    $ {d2Δψ+(¯mˉud1,ω,m1)ψ+λ1ψ=0,inΩ,νψ=0,onΩ.
    $
    (3.10)

    Dividing system (3.10) by $ \psi $, integrating in $ \Omega $, we obtain

    $ \int_{\Omega}(\bar{u}_{d_{1},\omega,m_{1}}-\overline{m})dx-d_{2}\int_{\Omega}\frac{|\nabla\psi|^{2}}{\psi^{2}}dx = \int_{\Omega}\lambda_{1}dx. $

    Since $ \omega\geq 1/\min_{\overline{\Omega}}m_{1}(x) $, it holds that $ \int_{\Omega}(\bar{u}_{d_{1}, \omega, m_{1}}-\overline{m})dx = \int_{\Omega}(\bar{u}_{d_{1}, \omega, m_{1}}-m_{1})dx < 0 $. Then $ \lambda_{1}(d_{2}, \overline{m}-\bar{u}) < 0 $. From Lemma 2.2 (ⅲ)

    $ \lambda_{1}(d_{2},\overline{m}-c\bar{u}_{d_{1},\omega,m_{1}})\leq\lambda_{1}(d_{2},\overline{m}-\bar{u}) < 0, $

    for $ c\in (0, 1] $.

    Then $ (\bar{u}_{d_{1}, \omega, m_{1}}, 0) $ is unstable. From the proof of Lemma 3.1, we know that $ (0, \overline{m}) $ is unstable for $ (b, c)\in(0, 1]\times(0, 1] $ and by the theory of monotone system, system (1.4) has at least one stable positive coexistence steady state.

    We study the dynamics of a Lotka-Volterra competition-diffusion-advection model. The two competing species $ u $ and $ v $ adopt the dispersal strategies of a combination of random dispersal and biased movement upward along the resource gradient $ \nabla m_{i} $ (i = 1, 2) (the species are very smart and they will move toward regions richer in resources). In this paper, it is assumed that the two species have the same level of total resources but the species $ v $ adopts the homogeneous distribution and its competitor, the species $ u $, adopts heterogenous distribution. This means that $ \nabla m_{2}\equiv0 $ which implies that the species $ v $ only experiences random dispersal but has no biased movement.

    Based on the above assumptions, we mainly study the effect of the inter-specific competition coefficients on the dynamics of system (1.4). From Lemma 3.1, $ (0, \overline{m}) $ is unstable for each one of the following conditions: $ d_{1}, d_{2} > 0 $, $ \alpha\geq0 $, and $ 0 < b\leq1, 0 < c $. This phenomenon indicates that the homogeneous distribution is disadvantageous for $ v $, therefore the species $ u $ can always invade the species $ v $. To study the coexistence regime for system (1.4), we discuss two cases. For the case of $ \alpha/d_{1}\geq 1/\min_{\overline{\Omega}}m_{1} $, the species $ u $ and $ v $ will coexist for every $ d_{2} > 0 $ and $ (b, c)\in(0, 1]\times(0, 1] $, see Theorem 1.1. From a biologic perspective, this case can be explained noting that the species $ u $ is characterized by a relatively strong advection, and then it leaves sufficient habitat for $ v $ to evolve. This result generalizes that in [22] for $ b = c = 1 $. For the case of $ \alpha/d_{1}\leq 1/\max_{\overline{\Omega}}m_{1} $, whether $ u $ and $ v $ will coexist depends on the values of $ d_1, d_2 $ and $ c $. In order to discuss this case, we define $ S_u, L_u $ and $ I_c $. We find that if $ c\leq L_u $, for all $ d_1 > 0 $ and $ d_2 > 0 $ the two species coexist. When $ c $ takes on the intermediate values, that is, $ L_u < c < S_u $, whether the two species will coexist or not is dependent on the values of $ d_1, d_2 $ and $ \omega $. If $ c\geq S_u $, species $ v $ can not displace species $ v $. These results are obtained in Theorem 1.2 which is more complex than Theorem 1.3 in [22].

    For $ \alpha/d_{1} $ in the interval $ (1/\max_{\overline{\Omega}}m_{1}, 1/\min_{\overline{\Omega}}m_{1}) $, the dynamics of system (1.4) becomes more complicated. Moreover, for a general form of system (1.3), the dynamical behavior is known to be very limited and this case is far away from a complete understanding.

    The authors express their gratitude to the anonymous reviewers and editors for their valuable comments and suggestions which led to the improvement of the original manuscript.

    This work was partially supported by NNSF of China (No. 11971185).

    All authors declare no conflicts of interest in this paper.

    [1] Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The Hydrogen Economy. Phys Today 57: 39-44. doi: 10.1063/1.1878333
    [2] Zuttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a Future Energy Carrier. Winheim: Wiley-VCH Verlag GmbH & Co.
    [3] Riis T, Hagen EF, Vie PJS, et al. (2006) Hydrogen Production R&D. Paris: IEA.
    [4] Turner JA (2004) Sustainable Hydrogen Production. Science 305: 972-974. doi: 10.1126/science.1103197
    [5] Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: A review. J Membrane Sci 377: 1-35. doi: 10.1016/j.memsci.2011.04.043
    [6] Giddey S, Badwal SPS, Kulkarni A, et al. (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust 38: 360-399. doi: 10.1016/j.pecs.2012.01.003
    [7] Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrogen Energy 36: 15752-15765. doi: 10.1016/j.ijhydene.2011.08.104
    [8] Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energy Rev 6: 433-455. doi: 10.1016/S1364-0321(02)00014-X
    [9] Riis T, Sandrock G, Ulleberg O, et al. (2006) Hydrogen Storage R&D. Paris: IEA.
    [10] Elam CC, Padró CEG, Sandrock G, et al. (2003) Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy 28: 601-607. doi: 10.1016/S0360-3199(02)00147-7
    [11] MHCoE For a description of the Metal Hydride Center of Excellence. Available from: http://www.sandia.gov/MHCoE.
    [12] CHCoE For a description of the Chemical Hydride Center of Excellence. Available from: http://www.hydrogen.energy.gov/annual_progress10_storage.html.
    [13] HSCoE For a description of the Hydrogen Sorption Center of Excellence. Available from: http://www.nrel.gov/basic_sciences/carbon_based_hydrogen_center.cfm#hsce.
    [14] Klebanoff L (2013) Hydrogen Storage Technology: Materials and Applications. United States of America: CRC press.
    [15] US-DOE (2010) Hydrogen and Fuel Cells: Current Technology of Hydrogen Storage. Available from: http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html.
    [16] Felderhoff M, Weidenthaler C, von Helmolt R, et al. (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9: 2643-2653. doi: 10.1039/b701563c
    [17] Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38: 73-82. doi: 10.1039/B718842K
    [18] van den Berg AWC, Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 14: 668-681.
    [19] Klebanoff LE, Keller JO (2013) 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE). Int J Hydrogen Energ 38: 4533-4576.
    [20] Lu Z-H, Xu Q (2012) Recent Progress in Boron and Nitrogen based Chemical Hydrogen Storage. Functional Materials Letters 05.
    [21] Michel KJ, Ozoliņš V (2013) Recent advances in the theory of hydrogen storage in complex metal hydrides. MRS Bulletin 38: 462-472. doi: 10.1557/mrs.2013.130
    [22] Varin RA, Czujiko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Cleveland: Springer.
    [23] Grochala W, Edwards PP (2004) Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem Rev 104: 1283-1316. doi: 10.1021/cr030691s
    [24] Eremets MI, Trojan IA, Medvedev SA, et al. (2008) Superconductivity in Hydrogen Dominant Materials: Silane. Science 319: 1506-1509. doi: 10.1126/science.1153282
    [25] Scheler T, Degtyareva O, Marqués M, et al. (2011) Synthesis and properties of platinum hydride. Phys Rev B 83: 214106. doi: 10.1103/PhysRevB.83.214106
    [26] Gao G, Wang H, Zhu L, et al. (2011) Pressure-Induced Formation of Noble Metal Hydrides. J Phys Chem C 116: 1995-2000.
    [27] Driessen A, Sanger P, Hemmes H, et al. (1990) Metal hydride formation at pressures up to 1 Mbar. J Physics: Condensed Matter 2: 9797. doi: 10.1088/0953-8984/2/49/007
    [28] Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compounds 293-295: 877-888.
    [29] Bogdanovi B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253-254: 1-9.
    [30] Bogdanović B, Brand RA, Marjanović A, et al. (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloy Compd 302: 36-58. doi: 10.1016/S0925-8388(99)00663-5
    [31] Eberle U, Arnold G, von Helmolt R (2006) Hydrogen storage in metal-hydrogen systems and their derivatives. J Power Sources 154: 456-460. doi: 10.1016/j.jpowsour.2005.10.050
    [32] Sandrock G, Gross K, Thomas G (2002) Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloy Compd 339: 299-308. doi: 10.1016/S0925-8388(01)02014-X
    [33] Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Allos Compd 298: 125-134. doi: 10.1016/S0925-8388(99)00666-0
    [34] Gross KJ, Sandrock G, Thomas GJ (2002) Dynamic in situ X-ray diffraction of catalyzed alanates. J Alloy Compd 330-332: 691-695.
    [35] Bellosta von Colbe JM, Felderhoff M, Bogdanovic B, et al. (2005) One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun 4732-4734.
    [36] Li L, Xu C, Chen C, et al. (2013) Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy 38: 8798-8812. doi: 10.1016/j.ijhydene.2013.04.109
    [37] NIST. Availabe from: http://webbook.nist.gov ed.
    [38] Zaluska A, Zaluski L, Srom-Olsen JO, et al. (1999) Method for inducing hydrogen desorption from a metal hydride. In: 5882623, Patent. United States of America.
    [39] Zaluska A, Zaluski L, Strm-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloy Compd 288: 217-225. doi: 10.1016/S0925-8388(99)00073-0
    [40] Varin RA, Czujko T, Wronski ZS, et al. (2009) Nanomaterials for hydrogen storage produced by ball milling. Can Metall Quart 48: 11-26. doi: 10.1179/cmq.2009.48.1.11
    [41] Fichtner M (2009) Properties of nanoscale metal hydrides. Nanotechnology 20: 204009. doi: 10.1088/0957-4484/20/20/204009
    [42] Bérubé V, Radtke G, Dresselhaus M, et al. (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energy Res 31: 637-663. doi: 10.1002/er.1284
    [43] Chen PX, Z.; Luo, J.; Lin, J.; Tan, K. L. (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420: 302-304. doi: 10.1038/nature01210
    [44] Hu YH, Ruckenstein E (2003) Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. J Phys Chem A 107: 9737-9739. doi: 10.1021/jp036257b
    [45] Ichikawa T, Hanada N, Isobe S, et al. (2004) Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System. J Phys Chem B 108: 7887-7892. doi: 10.1021/jp049968y
    [46] Lohstroh W, Fichtner M (2007) Reaction steps in the Li-Mg-N-H hydrogen storage system. J Alloy Compd 446-447: 332-335.
    [47] Hu YH, Ruckenstein E (2004) Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage. Ind Eng Chem Res 43: 2464-2467. doi: 10.1021/ie049947q
    [48] Zuttel A, Wenger P, Rentsch S, et al. (2003) LiBH4 a new hydrogen storage material. J Power Sources 118: 1-7. doi: 10.1016/S0378-7753(03)00054-5
    [49] Mosegaard L, Moller B, Jorgensen J-E, et al. (2008) Reactivity of LiBH4: In Situ Synchrotron Radiation Powder X-ray Diffraction Study. J Phys Chem C 112: 1299-1303.
    [50] Yu XB, Grant DM, Walker GS (2009) Dehydrogenation of LiBH4 Destabilized with Various Oxides. J Phys Chem C 113: 17945-17949. doi: 10.1021/jp906519p
    [51] Maekawa H, Matsuo M, Takamura H, et al. (2009) Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J Am Chem Soc 131: 894-895. doi: 10.1021/ja807392k
    [52] Luo C, Wang H, Sun T, et al. (2012) Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds. Int J Hydrogen Energy 37: 13446-13451. doi: 10.1016/j.ijhydene.2012.06.114
    [53] Pendolino F (2011) “Boron Effect” on the Thermal Decomposition of Light Metal Borohydrides MBH4 (M = Li, Na, Ca). J Phys Chem C 116: 1390-1394.
    [54] Pendolino F (2013) Thermal study on decomposition of LiBH4 at non-isothermal and non-equilibrium conditions. J Thermal Analysis Calorimetry 112: 1207-1211. doi: 10.1007/s10973-012-2662-2
    [55] Gross AF, Vajo JJ, Van Atta SL, et al. (2008) Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J Phys Chem C 112: 5651-5657. doi: 10.1021/jp711066t
    [56] Xu J, Yu X, Ni J, et al. (2009) Enhanced catalytic dehydrogenation of LiBH4 by carbon-supported Pd nanoparticles. Dalton Transactions: 8386-8391.
    [57] Xu J, Yu X, Zou Z, et al. (2008) Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem Commun 5740-5742.
    [58] Xu J, Qi Z, Cao J, et al. (2013) Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles. Dalton Transactions 42: 12926-12933
    [59] Luo W (2004) (LiNH2-MgH2): a viable hydrogen storage system. J Alloy Compd 381: 284-287. doi: 10.1016/j.jallcom.2004.03.119
    [60] Xiong Z, Wu G, Hu J, et al. (2004) Ternary Imides for Hydrogen Storage. Adv Mater 16: 1522-1525. doi: 10.1002/adma.200400571
    [61] Leng HY, Ichikawa T, Hino S, et al. (2004) New Metal-N-H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage. J Phy Chem B 108: 8763-8765. doi: 10.1021/jp048002j
    [62] Nakamori Y, Kitahara G, Orimo S (2004) Synthesis and dehydriding studies of Mg-N-H systems. J Power Sources 138: 309-312. doi: 10.1016/j.jpowsour.2004.06.026
    [63] Nakamori Y, Kitahara G, Miwa K, et al. (2005) Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2. Appl Phys A 80: 1-3.
    [64] Dolci F, Weidner E, Hoelzel M, et al. (2010) In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. Int J Hydrogen Energy 35: 5448-5453. doi: 10.1016/j.ijhydene.2010.03.030
    [65] Barison S, Agresti F, Lo Russo S, et al. (2008) A study of the LiNH2-MgH2 system for solid state hydrogen storage. J Alloy Compd 459: 343-347. doi: 10.1016/j.jallcom.2007.04.278
    [66] Shahi RR, Yadav TP, Shaz MA, et al. (2008) Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. Int J Hydrogen Energy 33: 6188-6194. doi: 10.1016/j.ijhydene.2008.07.029
    [67] Liang C, Liu Y, Luo K, et al. (2010) Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH2/MgH2 System. Chemistry A European Journal 16: 693-702. doi: 10.1002/chem.200901967
    [68] Liu Y, Li B, Tu F, et al. (2011) Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions 40: 8179-8186. doi: 10.1039/c1dt10108k
    [69] Lu J, Choi YJ, Fang ZZ, et al. (2010) Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture. J Power Sources 195: 1992-1997. doi: 10.1016/j.jpowsour.2009.10.032
    [70] Pottmaier D, Dolci F, Orlova M, et al. (2011) Hydrogen release and structural transformations in LiNH2-MgH2 systems. J Alloy Compd 509, Supplement 2: S719-S723.
    [71] Vajo JJ, Skeith SL, Mertens F (2005) Reversible Storage of Hydrogen in Destabilized LiBH4. J Phys Chem B 109: 3719-3722. doi: 10.1021/jp040769o
    [72] Bosenberg U, Doppiu S, Mosegaard L, et al. (2007) Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia 55: 3951-3958. doi: 10.1016/j.actamat.2007.03.010
    [73] Bosenberg U, Ravnsbk DB, Hagemann H, et al. (2010) Pressure and Temperature Influence on the Desorption Pathway of the LiBH4-MgH2 Composite System. J Phys Chem C 114: 15212-15217.
    [74] Nakagawa T, Ichikawa T, Hanada N, et al. (2007) Thermal analysis on the Li-Mg-B-H systems. J Alloy Compd 446-447: 306-309.
    [75] Shim J-H, Lim J-H, Rather S-u, et al. (2009) Effect of Hydrogen Back Pressure on Dehydrogenation Behavior of LiBH4-Based Reactive Hydride Composites. J Phys Chem Lett 1: 59-63.
    [76] Yang J, Sudik A, Wolverton C (2007) Destabilizing LiBH 4 with a Metal ( M ) Mg , Al , Ti , V , Cr , or Sc ) or Metal Hydride ( MH 2 ). J Phys Chem C 111: 19134-19140. doi: 10.1021/jp076434z
    [77] Pinkerton FE, Meyer MS, Meisner GP, et al. (2007) Phase Boundaries and Reversibility of LiBH 4 / MgH 2 Hydrogen Storage Material. J Phys Chem Lett C 111: 12881-12885. doi: 10.1021/jp0742867
    [78] Price TEC, Grant DM, Legrand V, et al. (2010) Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system—The effects of stoichiometry and decomposition environment on cycling behaviour. Int J Hydrogen Energy 35: 4154-4161. doi: 10.1016/j.ijhydene.2010.02.082
    [79] Wan X, Markmaitree T, Osborn W, et al. (2008) Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System. J Phys Chem C 112: 18232-18243. doi: 10.1021/jp8033159
    [80] Price TEC, Grant DM, Telepeni I, et al. (2009) The decomposition pathways for LiBD4-MgD2 multicomponent systems investigated by in situ neutron diffraction. J Alloy Compd 472: 559-564. doi: 10.1016/j.jallcom.2008.05.030
    [81] Walker GS, Grant DM, Price TC, et al. (2009) High capacity multicomponent hydrogen storage materials: Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4,ÄìMgH2. J Power Sources 194: 1128-1134. doi: 10.1016/j.jpowsour.2009.06.075
    [82] Yu XB, Grant DM, Walker GS (2006) A new dehydrogenation mechanism for reversible multicomponent borohydride systems--The role of Li-Mg alloys. Chem commun (Cambridge, England) 1: 3906-3908.
    [83] Dobbins T, NaraseGowda S, Butler LG (2012) Study of Morphological Changes in MgH2 Destabilized LiBH4 Systems Using Computed X-ray Microtomography. Materials 5: 1740-1751. doi: 10.3390/ma5101740
    [84] Barkhordarian G, Klassen T, Dornheim M, et al. (2007) Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloy Compd 440: L18-L21. doi: 10.1016/j.jallcom.2006.09.048
    [85] COSY-network Complex Solid State Reaction for Energy Efficient Hydrogen Storage. Available from: www.cosy-net.eu.
    [86] Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sust Energy Rev 15: 3980-4001. doi: 10.1016/j.rser.2011.07.018
    [87] Dinsdale AT (1991) SGTE Data for Pure Elements. CALPHAD 15: 317-425. doi: 10.1016/0364-5916(91)90030-N
    [88] Manchester FD (2000) Phase Diagrams of Binary Hydrogen Alloys. United State of America: ASM International.
    [89] George L, Saxena SK (2010) Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review. Int J Hydrogen Energy 35: 5454-5470. doi: 10.1016/j.ijhydene.2010.03.078
    [90] Pottmaier D, Pinatel ER, Vitillo JG, et al. (2011) Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study. Chem Mater 23: 2317-2326. doi: 10.1021/cm103204p
    [91] Barrico M, Paulmbo M, Pinatel E, et al. (2010) Thermodynamic Database for Hydrogen Storage Materials. Adv Sci Tech 72: 213-218. doi: 10.4028/www.scientific.net/AST.72.213
    [92] Stasinevich G, Egorenko A (1969) J Inorg Chem 13: 341-343.
    [93] Martelli P, Caputo R, Remhof A, et al. (2010) Stability and Decomposition of NaBH 4. The J Phys Chem C 114: 7173-7177.
    [94] Urgnani J, Torres F, Palumbo M, et al. (2008) Hydrogen release from solid state NaBH4. Int J Hydrogen Energy 33: 3111-3115. doi: 10.1016/j.ijhydene.2008.03.031
    [95] Mao JF, Yu XB, Guo ZP, et al. (2009) Enhanced hydrogen storage performances of NaBH4-MgH2 system. J Alloy Compd 479: 619-623. doi: 10.1016/j.jallcom.2009.01.012
    [96] Humphries TD, Kalantzopoulos GN, Llamas-Jansa I, et al. (2013) Reversible Hydrogenation Studies of NaBH4 Milled with Ni-Containing Additives. J Phys Chem C 117: 6060-6065. doi: 10.1021/jp312105w
    [97] Pendolino F, Mauron P, Borgschulte A, et al. (2009) Effect of Boron on the Activation Energy of the Decomposition of LiBH4. J Phys Chem C 113: 17231-17234. doi: 10.1021/jp902384v
    [98] Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100.99. Her J-H, Zhou W, Stavila V, et al. (2009) Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro-closo-Dodecaborates. J Phys Chem Lett C 113: 11187-11189. doi: 10.1021/jp904980m
    [99] 100. Friedrichs O, Remhof A, Hwang K-J, et al. (2010) Role of Li2B12H12 for the formation and decomposition of LiBH4. Chem Mater 22: 3265-3268. doi: 10.1021/cm100536a
    [100] 101. Her JH, Yousufuddin M, Zhou W, et al. (2008) Crystal structure of Li2B12H12: a possible intermediate species in the decomposition of LiBH4. Inorg Chem 47: 9757-9759. doi: 10.1021/ic801345h
    [101] 102. Hwang SJ, Bowman RC, Reiter JW, et al. (2008) NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides. J Phys Chem C 112: 3164-3169.
    [102] 103. Minella CB, Pistidda C, Garroni S, et al. (2013) Ca(BH4)2 + MgH2: Desorption Reaction and Role of Mg on Its Reversibility. J Phys Chem C 117: 3846-3852. doi: 10.1021/jp312271s
    [103] 104. Yan Y, Remhof A, Rentsch D, et al. (2013) Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3? Chem Commun 49: 5234-5236. doi: 10.1039/c3cc41184b
    [104] 105. Mao J, Guo Z, Yu X, et al. (2013) Combined effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4-MgH2 composite system. Int J Hydrogen Energy 38: 3650-3660. doi: 10.1016/j.ijhydene.2012.12.106
    [105] 106. Yan Y, Li H-W, Maekawa H, et al. (2011) Formation of Intermediate Compound Li2B12H12 during the Dehydrogenation Process of the LiBH4-MgH2 System. J Phys Chem C 115: 19419-19423. doi: 10.1021/jp205450c
    [106] 107. Garroni S, Milanese C, Pottmaier D, et al. (2011) Experimental Evidence of Na2[B12H12] and Na Formation in the Desorption Pathway of the 2NaBH4 + MgH2 System. J Phys Chem C 115: 16664-16671. doi: 10.1021/jp202341j
    [107] 108. Pottmaier D, Pistidda C, Groppo E, et al. (2011) Dehydrogenation reactions of 2NaBH4 + MgH2 system. Int J Hydrogen Energy 36: 7891-7896. doi: 10.1016/j.ijhydene.2011.01.059
    [108] 109. Pistidda C, Garroni S, Minella CB, et al. (2010) Pressure Effect on the 2NaH + MgB2 Hydrogen Absorption Reaction. J Phys Chem C 114: 21816-21823. doi: 10.1021/jp107363q
    [109] 110. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M = Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004
    [110] 111. Shi L, Gi Y, Qian T, et al. (2004) Synthesis of ultrafine superconducting MgB2 by a convenient solid-state reaction route. Physica C 405: 271-274. doi: 10.1016/j.physc.2004.02.013
    [111] 112. Varin RA, Chiu C, Wronski ZS (2008) Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH 4. J Alloy Compd 462: 201-208. doi: 10.1016/j.jallcom.2007.07.110
    [112] 113. Varin Ra, Czujko T, Chiu C, et al. (2009) Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. J Alloy Compd 483: 252-255. doi: 10.1016/j.jallcom.2008.07.207
    [113] 114. Czujko T, Varin R, Wronski Z, et al. (2007) Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2+NaBH4). J Alloy Compd 427: 291-299. doi: 10.1016/j.jallcom.2006.03.020
    [114] 115. Czujiko T, Varin R, Zaranski Z, et al. (2010) The dehydrogenation process of destabilized NaBH4-MgH2 solid state hydride composites. Arch Metall Mater 55: 539-552.
    [115] 116. Garroni S, Pistidda C, Brunelli M, et al. (2009) Hydrogen desorption mechanism of 2NaBH4+MgH2 composite prepared by high-energy ball milling. Scripta Materialia 60: 1129-1132. doi: 10.1016/j.scriptamat.2009.02.059
    [116] 117. Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100. doi: 10.1039/c0cp00877j
    [117] 118. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004
    [118] 119. Pottmaier D, Garroni S, Barò MD, et al. (2010) Hydrogen Desorption Reactions of the Na-Mg-B-H System. Adv Sci Tech72: 164-169. doi: 10.4028/www.scientific.net/AST.72.164
    [119] 120.Pottmaier D, Garroni S, Brunelli M, et al. (2010) NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction. Mater Res Soc Symp Proc 1262: W03-04.
    [120] 121. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2012) Microstructural study of hydrogen desorption in 2NaBH4 + MgH2 reactive hydride composite. Int J Hydrogen Energy 37: 2382-2387. doi: 10.1016/j.ijhydene.2011.10.070
    [121] 122. Mao J, Guo Z, Yu X, et al. (2011) Improved Hydrogen Storage Properties of NaBH4 Destabilized by CaH2 and Ca(BH4)2. J Phys Chem C 115: 9283-9290. doi: 10.1021/jp2020319
    [122] 123. Franco F, Baricco M, Chierotti MR, et al. (2013) Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides. J Phys Chem C 117: 9991-9998. doi: 10.1021/jp3126895
    [123] 124. Shane DT, Corey RL, Bowman Jr RC, et al. (2009) NMR studies of the hydrogen storage compound NaMgH3. J Phys Chem C 113: 18414-18419. doi: 10.1021/jp906414q
    [124] 125. Huang Z, Eagles M, Porter S, et al. (2013) Thermolysis and solid state NMR studies of NaB3H8, NH3B3H7, and NH4B3H8. Dalton Transactions 42: 701-708. doi: 10.1039/C2DT31365K
    [125] 126. Çakır D, de Wijs GA, Brocks G (2011) Native Defects and the Dehydrogenation of NaBH4. J Phys Chem C 115: 24429-24434. doi: 10.1021/jp208642g
    [126] 127. Pistidda C, Barkhordarian G, Rzeszutek A, et al. (2011) Activation of the reactive hydride composite 2NaBH4+MgH2. Scripta Materialia 64: 1035-1038. doi: 10.1016/j.scriptamat.2011.02.017
    [127] 128. Kato S, Borgschulte A, Bielmann M, et al. (2012) Interface reactions and stability of a hydride composite (NaBH4 + MgH2). Phys Chem Chem Phys 14: 8360-8368. doi: 10.1039/c2cp23491b
    [128] 129. Pistidda C, Napolitano E, Pottmaier D, et al. (2013) Structural study of a new B-rich phase obtained by partial hydrogenation of 2NaH + MgB2. Int J Hydrogen Energy 38: 10479-10484. doi: 10.1016/j.ijhydene.2013.06.025
    [129] 130. Milanese C, Garroni S, Girella A, et al. (2011) Thermodynamic and Kinetic Investigations on Pure and Doped NaBH4-MgH2 System. J Phys Chem C 115: 3151-3162. doi: 10.1021/jp109392e
    [130] 131. Saldan I, Gosalawit-Utke R, Pistidda C, et al. (2012) Influence of Stoichiometry on the Hydrogen Sorption Behavior in the LiF-MgB2 System. J Phys Chem C 116: 7010-7015. doi: 10.1021/jp212322u
    [131] 132. Christian M, Aguey-Zinsou K-F (2013) Synthesis of core-shell NaBH4@M (M = Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties. Chem Commun 49: 6794-6796. doi: 10.1039/c3cc42815j
    [132] 133. Mulas G, Campesi R, Garroni S, et al. (2012) Hydrogen storage in 2NaBH4+MgH2 mixtures: Destabilization by additives and nanoconfinement. J Alloy Compd 536, Supplement 1: S236-S240.
    [133] 134. Peru F, Garroni S, Campesi R, et al. (2013) Ammonia-free infiltration of NaBH4 into highly-ordered mesoporous silica and carbon matrices for hydrogen storage. J Alloy Compd 580, Supplement 1: S309-S312.
    [134] 135. Bardhan R, Hedges LO, Pint CL, et al. (2013) Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat Mater advance online publication.
    [135] 136. Schlesinger HI, Sanderson RT, Burg AB (1940) Metallo Borohydrides. I. Aluminum Borohydride. J Am Chem Soc 62: 3421-3425.
    [136] 137. Schlesinger HI, Brown HC (1940) Metallo Borohydrides. III. Lithium Borohydride. J Am Chem Soc 62: 3429-3435. doi: 10.1021/ja01869a039
    [137] 138. Schlesinger HI, Brown HC, Hoekstra HR, et al. (1953) Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides1. J Am Chem Soc 75: 199-204.
    [138] 139. Schlesinger HI, Brown HC, Abraham B, et al. (1953) New Developments in the Chemistry of Diborane and the Borohydrides. I. General Summary1. J Am Chem Soc 75: 186-190.
    [139] 140. Miwa K, Aoki M, Noritake T, et al. (2006) Correlation between thermodynamic staibilties of metal borohydrides and cation electronegavities: First principles calculations and experiments. Phys Rev B 74: 075110. doi: 10.1103/PhysRevB.74.075110
    [140] 141. Nakamori Y, Li H, Kikuchi K, et al. (2007) Thermodynamical stabilities of metal-borohydrides. J Alloy Compd 447: 296-300.
    [141] 142. Hu J, Kwak JH, Zhenguo Y, et al. (2009) Direct observation of ion exchange in mechanism activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy. Appl Phys Lett 94: 05. doi: 10.1063/1.3110966
    [142] 143. Li H-W, Matsunaga T, Yan Y, et al. (2010) Nanostructure-induced hydrogenation of layered compound MgB2. J Alloy Compd 505: 654-656. doi: 10.1016/j.jallcom.2010.06.101
    [143] 144. Pistidda C, Garroni S, Dolci F, et al. (2010) Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. J Alloy Compd 508: 212-215. doi: 10.1016/j.jallcom.2010.07.226
    [144] 145. Barkhordarian G, Jensen TR, Doppiu S, et al. (2008) Formation of Ca(BH4)2 from Hydrogenation of CaH2+MgB2 Composite. J Phys Chem C 112: 2743-2749.
    [145] 146. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2011) Microstructural analysis of hydrogen absorption in 2NaH+MgB2. Scripta Materialia 64: 351-354. doi: 10.1016/j.scriptamat.2010.10.034
    [146] 147. Garroni S, Minella CB, Pottmaier D, et al. (2013) Mechanochemical synthesis of NaBH4 starting from NaH-MgB2 reactive hydride composite system. Int J Hydrogen Energy 38: 2363-2369. doi: 10.1016/j.ijhydene.2012.11.136
    [147] 148. Nwakwuo CC, Hutchison JL, Sykes JM (2012) Hydrogen sorption in 3NaH+MgB2/2NaBH4+NaMgH3 composite. Scripta Materialia 66: 175-177. doi: 10.1016/j.scriptamat.2011.10.035
    [148] 149. Wang H, Zhang J, Liu JW, et al. (2013) Catalysis and hydrolysis properties of perovskite hydride NaMgH3. J Alloy Compd 580, Supplement 1: S197-S201.
    [149] 150. Rafi ud d, Xuanhui Q, Zahid GH, et al. (2014) Improved hydrogen storage performances of MgH2-NaAlH4 system catalyzed by TiO2 nanoparticles. J Alloy Compd 604: 317-324. doi: 10.1016/j.jallcom.2014.03.150
    [150] 151. Milošević S, Milanović I, Mamula BP, et al. (2013) Hydrogen desorption properties of MgH2 catalysed with NaNH2. Int J Hydrogen Energy 38: 12223-12229. doi: 10.1016/j.ijhydene.2013.06.083
    [151] 152. Li Y, Fang F, Song Y, et al. (2013) Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides. Dalton Transactions 42: 1810-1819. doi: 10.1039/C2DT31923C
  • This article has been cited by:

    1. Tung D. Nguyen, Yixiang Wu, Tingting Tang, Amy Veprauskas, Ying Zhou, Behzad Djafari Rouhani, Zhisheng Shuai, Impact of resource distributions on the competition of species in stream environment, 2023, 87, 0303-6812, 10.1007/s00285-023-01978-6
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7883) PDF downloads(1095) Cited by(6)

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog