Research article

Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment

  • Received: 20 September 2020 Accepted: 23 November 2020 Published: 14 December 2020
  • We investigate the global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Our result suggests that the sign of $ \int_{0}^{L}(m_{1}-m_{2})e^{kx}dx $ plays a significant role in understanding the global dynamics. In addition, the limiting behavior of coexistence steady state is obtained when diffusion rates of two species tend to zero meanwhile.

    Citation: Jinyu Wei, Bin Liu. Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 564-582. doi: 10.3934/mbe.2021031

    Related Papers:

  • We investigate the global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Our result suggests that the sign of $ \int_{0}^{L}(m_{1}-m_{2})e^{kx}dx $ plays a significant role in understanding the global dynamics. In addition, the limiting behavior of coexistence steady state is obtained when diffusion rates of two species tend to zero meanwhile.


    加载中


    [1] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley and Sons, Chichester, UK, 2003.
    [2] R. S. Cantrell, C. Cosner, Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199–214. doi: 10.1016/j.mbs.2006.09.003
    [3] W. M. Ni, The Mathematics of Diffusion, Society for Industrial and Applied Mathematics, Philedelphia, 2011.
    [4] X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981–1014. doi: 10.1002/cpa.21596
    [5] X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differ. Equations, 55 (2016), 25.
    [6] X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Differ. Equarions, 56 (2017), 132.
    [7] F. Belgacem, C. Cosner, The effects of dispersal along environmental gradients on the dynamics of population in heterogeneous environments, Canad. Appl. Math. Quart., 3 (1995), 379–397.
    [8] Y. Du, S. B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modeling phytoplankton: Ⅰ. Existence, SIAM J. Math. Anal., 40 (2008), 1419–1440. doi: 10.1137/07070663X
    [9] Y. Du, S. B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modeling phytoplankton: Ⅱ. Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441–1470. doi: 10.1137/070706641
    [10] Y. Du, S. B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling phytoplankton growth, SIAM J. Math. Anal., 42 (2012), 1305–1333.
    [11] Y. Du, L. F. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319–349. doi: 10.1088/0951-7715/24/1/016
    [12] F. Lutscher, M. A. Lewis, E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129–2160. doi: 10.1007/s11538-006-9100-1
    [13] F. Lutscher, E. McCauley, M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267–277. doi: 10.1016/j.tpb.2006.11.006
    [14] F. Lutscher, E. Pachepsky, M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749–772. doi: 10.1137/050636152
    [15] H. Berestycki, O. Diekmann, C. J. Nagelkerke, P. A. Zegeling, Can a species keep pace with a shifting climate? Bull. Math. Biol., 71 (2009), 399–429.
    [16] D. C. Speirs, W. S. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219–1237. doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
    [17] D. Tang, P. Zhou, On a Lotka-volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differ. Equations, 268 (2020), 1570–1599. doi: 10.1016/j.jde.2019.09.003
    [18] J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski, The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol., 37 (1998), 61–83. doi: 10.1007/s002850050120
    [19] A. Hasting, Can spatial variation alone lead to selection for dispersal? Theor. Popul., 24 (1983), 244–251. doi: 10.1016/0040-5809(83)90027-8
    [20] Y. Lou, D. M. Xiao, P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 953–969.
    [21] Y. Lou, P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equations, 259 (2015), 141–171. doi: 10.1016/j.jde.2015.02.004
    [22] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differ. Equations, 55 (2016), 1570–1599.
    [23] K. Y. Lam, Y. Lou, F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188–212. doi: 10.1080/17513758.2014.969336
    [24] X.Q. Zhao, P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation, Calc. Var. Partial Differ. Equations, 55 (2016), 73.
    [25] Y. Lou, X. Q. Zhao, P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), 47–82. doi: 10.1016/j.matpur.2018.06.010
    [26] P. Zhou, D. M. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusionadvection system, J. Funct. Anal., 275 (2018), 356–380. doi: 10.1016/j.jfa.2018.03.006
    [27] S. D. Fretwell, H. L. Lucas, On territorial behavior and other factors influencing habitat selection in bird, Acta Biotheor., 19 (1969), 45–52. doi: 10.1007/BF01601955
    [28] V. Huston, Y. Lou, K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differ. Equations, 211 (2005), 135–161. doi: 10.1016/j.jde.2004.06.003
    [29] K. Y. Lam, N. W. Ni, Uniqueness and complete dynamics in the heterogeneous competitiondiffusion system, SIAM J. Appl. Math., 72 (2012), 1695–1712. doi: 10.1137/120869481
    [30] M. G. Krein, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk, 3 (1948), 3–95.
    [31] X. F. Chen, Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627–658. doi: 10.1512/iumj.2008.57.3204
    [32] X. F. Chen, Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45–80. doi: 10.1512/iumj.2012.61.4518
    [33] P. Hess, S. Senn, Another approach to elliptic eigenvalue problems with respect to indefinite weight functions, Nonlinear Analysis and Optimization, Springer, Berlin, Heidelberg, 1984,106–114.
    [34] S. Senn, P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1982), 459–470. doi: 10.1007/BF01453979
    [35] V. Huston, J. López-Gómez, K. Mischaikow, G. Vickers, Limit behaviors for a competing species problem with diffusion, Dyn. Syst. Appl., 4 (1995), 343–358.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2392) PDF downloads(181) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog