Loading [Contrib]/a11y/accessibility-menu.js

A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92C99.

  • The immune response to Mycobacterium tuberculosis infection (Mtb) is the formation of unique lesions, called granulomas. How well these granulomas form and function is a key issue that might explain why individuals experience different disease outcomes. The spatial structures of these granulomas are not well understood. In this paper, we use a metapopulation framework to develop a spatio-temporal model of the immune response to Mtb. Using this model, we are able to investigate the spatial organization of the immune response in the lungs to Mtb. We identify both host and pathogen factors that contribute to successful infection control. Additionally, we identify specific spatial interactions and mechanisms important for successful granuloma formation. These results can be further studied in the experimental setting.

    Citation: Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535

    Related Papers:

    [1] Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
    [2] Chang Gong, Jennifer J. Linderman, Denise Kirschner . A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625
    [3] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [4] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661
    [5] Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez . A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2025, 22(3): 511-527. doi: 10.3934/mbe.2025019
    [6] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [7] Xu Zhang, Dongdong Chen, Wenmin Yang, JianhongWu . Identifying candidate diagnostic markers for tuberculosis: A critical role of co-expression and pathway analysis. Mathematical Biosciences and Engineering, 2019, 16(2): 541-552. doi: 10.3934/mbe.2019026
    [8] Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81
    [9] Maoxing Liu, Jie Zhang, Zhengguang Li, Yongzheng Sun . Modeling epidemic in metapopulation networks with heterogeneous diffusion rates. Mathematical Biosciences and Engineering, 2019, 16(6): 7085-7097. doi: 10.3934/mbe.2019355
    [10] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
  • The immune response to Mycobacterium tuberculosis infection (Mtb) is the formation of unique lesions, called granulomas. How well these granulomas form and function is a key issue that might explain why individuals experience different disease outcomes. The spatial structures of these granulomas are not well understood. In this paper, we use a metapopulation framework to develop a spatio-temporal model of the immune response to Mtb. Using this model, we are able to investigate the spatial organization of the immune response in the lungs to Mtb. We identify both host and pathogen factors that contribute to successful infection control. Additionally, we identify specific spatial interactions and mechanisms important for successful granuloma formation. These results can be further studied in the experimental setting.


  • This article has been cited by:

    1. Sarah B. Minucci, Rebecca L. Heise, Angela M. Reynolds, Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries, 2020, 6, 2297-4687, 10.3389/fams.2020.00036
    2. Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, 2017, 3, 24523100, 170, 10.1016/j.coisb.2017.05.014
    3. Simeone Marino, Mohammed El-Kebir, Denise Kirschner, A hybrid multi-compartment model of granuloma formation and T cell priming in Tuberculosis, 2011, 280, 00225193, 50, 10.1016/j.jtbi.2011.03.022
    4. GESHAM MAGOMBEDZE, WINSTON GARIRA, EDDIE MWENJE, THE ROLE OF DENDRITIC CELLS AND OTHER IMMUNE MECHANISMS DURING HUMAN INFECTION WITHMYCOBACTERIUM TUBERCULOSIS, 2009, 02, 1793-5245, 69, 10.1142/S1793524509000534
    5. Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews, Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models, 2016, 11, 1746-0913, 1073, 10.2217/fmb-2016-0005
    6. Peter J. White, Geoff P. Garnett, 2010, Chapter 9, 978-1-4419-6063-4, 127, 10.1007/978-1-4419-6064-1_9
    7. Jacqueline P. Ernest, Natasha Strydom, Qianwen Wang, Nan Zhang, Eric Nuermberger, Véronique Dartois, Rada M. Savic, Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis, 2021, 61, 0362-1642, 495, 10.1146/annurev-pharmtox-030920-011143
    8. Simeone Marino, Denise Kirschner, A Multi-Compartment Hybrid Computational Model Predicts Key Roles for Dendritic Cells in Tuberculosis Infection, 2016, 4, 2079-3197, 39, 10.3390/computation4040039
    9. Phillip P Salvatore, Alvaro Proaño, Emily A Kendall, Robert H Gilman, David W Dowdy, Linking Individual Natural History to Population Outcomes in Tuberculosis, 2018, 217, 0022-1899, 112, 10.1093/infdis/jix555
    10. Simeone Marino, Jennifer J. Linderman, Denise E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, 2011, 3, 19395094, 479, 10.1002/wsbm.131
    11. Martin J. Blaser, Denise Kirschner, The equilibria that allow bacterial persistence in human hosts, 2007, 449, 0028-0836, 843, 10.1038/nature06198
    12. Luca Albergante, Jon Timmis, Lynette Beattie, Paul M. Kaye, Denis Thieffry, A Petri Net Model of Granulomatous Inflammation: Implications for IL-10 Mediated Control of Leishmania donovani Infection, 2013, 9, 1553-7358, e1003334, 10.1371/journal.pcbi.1003334
    13. Nicholas Kwasi-Do Ohene Opoku, Gaston K. Mazandu, Modelling the human immune response dynamics during progression from Mycobacterium latent infection to disease, 2020, 80, 0307904X, 217, 10.1016/j.apm.2019.11.013
    14. Michael J. Pitcher, Ruth Bowness, Simon Dobson, Stephen H. Gillespie, A spatially heterogeneous network-based metapopulation software model applied to the simulation of a pulmonary tuberculosis infection, 2018, 3, 2364-8228, 10.1007/s41109-018-0091-2
    15. Mohammad Fallahi-Sichani, Simeone Marino, JoAnne L. Flynn, Jennifer J. Linderman, Denise E. Kirschner, 2013, Chapter 7, 978-1-4614-4965-2, 127, 10.1007/978-1-4614-4966-9_7
    16. Yimin Du, Jianhong Wu, Jane M. Heffernan, A simple in-host model for Mycobacterium tuberculosis that captures all infection outcomes, 2017, 24, 0889-8480, 37, 10.1080/08898480.2015.1054220
    17. Nan Zhang, Natasha Strydom, Sandeep Tyagi, Heena Soni, Rokeya Tasneen, Eric L. Nuermberger, Rada M. Savic, Mechanistic Modeling of Mycobacterium tuberculosis Infection in Murine Models for Drug and Vaccine Efficacy Studies, 2020, 64, 0066-4804, 10.1128/AAC.01727-19
    18. Pariksheet Nanda, Maral Budak, Christian T. Michael, Kathryn Krupinsky, Denise E. Kirschner, 2024, Chapter 2, 978-3-031-56793-3, 11, 10.1007/978-3-031-56794-0_2
    19. Aminat Yetunde Saula, Gwenan Knight, Ruth Bowness, 2024, Chapter 9, 978-1-0716-3980-1, 79, 10.1007/978-1-0716-3981-8_9
    20. Fatima Rahman, Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse, 2024, 15, 1664-3224, 10.3389/fimmu.2024.1437901
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3463) PDF downloads(553) Cited by(20)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog