Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes

  • Received: 01 March 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : Primary: 92D25; Secondary: 60J99.

  • Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.

    Citation: Jesus R. Artalejo, A. Economou, M.J. Lopez-Herrero. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 573-594. doi: 10.3934/mbe.2007.4.573

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Lichun Zhao, Jingna Liu, Bing Liu, Yuan Li, Huiyan Zhao . Catastrophe control of aphid populations model. Mathematical Biosciences and Engineering, 2022, 19(7): 7122-7137. doi: 10.3934/mbe.2022336
    [3] Xuehui Ji, Sanling Yuan, Tonghua Zhang, Huaiping Zhu . Stochastic modeling of algal bloom dynamics with delayed nutrient recycling. Mathematical Biosciences and Engineering, 2019, 16(1): 1-24. doi: 10.3934/mbe.2019001
    [4] Hui Jiang, Ling Chen, Fengying Wei, Quanxin Zhu . Survival analysis and probability density function of switching heroin model. Mathematical Biosciences and Engineering, 2023, 20(7): 13222-13249. doi: 10.3934/mbe.2023590
    [5] Dongmei Li, Tana Guo, Yajing Xu . The effects of impulsive toxicant input on a single-species population in a small polluted environment. Mathematical Biosciences and Engineering, 2019, 16(6): 8179-8194. doi: 10.3934/mbe.2019413
    [6] Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643
    [7] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [8] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [9] Yan Zhang, Sanyang Liu, Zhenguo Bai . Global dynamics of a di usive single species model with periodic delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2293-2304. doi: 10.3934/mbe.2019114
    [10] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
  • Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.


  • This article has been cited by:

    1. Maria Conceição A. Leite, Nikola P. Petrov, Ensheng Weng, Stationary distributions of semistochastic processes with disturbances at random times and with random severity, 2012, 13, 14681218, 497, 10.1016/j.nonrwa.2011.02.025
    2. Spiros Dimou, Antonis Economou, Demetrios Fakinos, The single server vacation queueing model with geometric abandonments, 2011, 141, 03783758, 2863, 10.1016/j.jspi.2011.03.010
    3. Antonis Economou, Stella Kapodistria, Synchronized abandonments in a single server unreliable queue, 2010, 203, 03772217, 143, 10.1016/j.ejor.2009.07.014
    4. B Goncalves, T Huillet, A generating function approach to Markov chains undergoing binomial catastrophes, 2021, 2021, 1742-5468, 033402, 10.1088/1742-5468/abdfcb
    5. Jesús R. Artalejo, 2011, Chapter 26, 978-3-642-20852-2, 379, 10.1007/978-3-642-20853-9_26
    6. Spiros Dimou, Antonis Economou, The Single Server Queue with Catastrophes and Geometric Reneging, 2013, 15, 1387-5841, 595, 10.1007/s11009-011-9271-6
    7. Nitin Kumar, U. C. Gupta, A Renewal Generated Geometric Catastrophe Model with Discrete-Time Markovian Arrival Process, 2020, 22, 1387-5841, 1293, 10.1007/s11009-019-09768-8
    8. Stella Kapodistria, Tuan Phung-Duc, Jacques Resing, LINEAR BIRTH/IMMIGRATION-DEATH PROCESS WITH BINOMIAL CATASTROPHES, 2016, 30, 0269-9648, 79, 10.1017/S0269964815000297
    9. Carlo Lancia, Gianluca Guadagni, Sokol Ndreca, Benedetto Scoppola, Asymptotics for the late arrivals problem, 2018, 88, 1432-2994, 475, 10.1007/s00186-018-0643-3
    10. Nitin Kumar, U. C. Gupta, Analysis of a population model with batch Markovian arrivals influenced by Markov arrival geometric catastrophes, 2019, 0361-0926, 1, 10.1080/03610926.2019.1682166
    11. Antonis Economou, Demetris Fakinos, Alternative Approaches for the Transient Analysis of Markov Chains with Catastrophes, 2008, 2, 1559-8608, 183, 10.1080/15598608.2008.10411870
    12. Valdivino Vargas Junior, Fábio Prates Machado, Alejandro Roldán-Correa, Dispersion as a Survival Strategy, 2016, 164, 0022-4715, 937, 10.1007/s10955-016-1571-3
    13. Tao Jiang, Baogui Xin, Baoxian Chang, Liwei Liu, Analysis of a queueing system in random environment with an unreliable server and geometric abandonments, 2018, 52, 0399-0559, 903, 10.1051/ro/2018021
    14. Ivo Adan, Antonis Economou, Stella Kapodistria, Synchronized reneging in queueing systems with vacations, 2009, 62, 0257-0130, 1, 10.1007/s11134-009-9112-2
    15. J.R. Artalejo, A. Economou, M.J. Lopez-Herrero, On the number of recovered individuals in the SIS and SIR stochastic epidemic models, 2010, 228, 00255564, 45, 10.1016/j.mbs.2010.08.006
    16. J. R. Artalejo, A. Economou, M. J. Lopez-Herrero, Stochastic epidemic models revisited: analysis of some continuous performance measures, 2012, 6, 1751-3758, 189, 10.1080/17513758.2011.552737
    17. J.R. Artalejo, M.J. Lopez-Herrero, Quasi-stationary and ratio of expectations distributions: A comparative study, 2010, 266, 00225193, 264, 10.1016/j.jtbi.2010.06.030
    18. Antonis Economou, Stella Kapodistria, Jacques Resing, The Single Server Queue with Synchronized Services, 2010, 26, 1532-6349, 617, 10.1080/15326349.2010.519670
    19. Stella Kapodistria, The M/M/1 queue with synchronized abandonments, 2011, 68, 0257-0130, 79, 10.1007/s11134-011-9219-0
    20. Nitin Kumar, U. C. Gupta, Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes, 2020, 287, 0254-5330, 257, 10.1007/s10479-019-03410-z
    21. Fábio P. Machado, Alejandro Roldán-Correa, Valdivino V. Junior, Colonization and Collapse on Homogeneous Trees, 2018, 173, 0022-4715, 1386, 10.1007/s10955-018-2161-3
    22. Antonis Economou, Stella Kapodistria, q-SERIES IN MARKOV CHAINS WITH BINOMIAL TRANSITIONS, 2009, 23, 0269-9648, 75, 10.1017/S0269964809000084
    23. F. P. Barbhuiya, Nitin Kumar, U. C. Gupta, Batch Renewal Arrival Process Subject to Geometric Catastrophes, 2019, 21, 1387-5841, 69, 10.1007/s11009-018-9643-2
    24. Valdivino Vargas Junior, Fábio Prates Machado, Alejandro Roldán-Correa, Evaluating Dispersion Strategies in Growth Models Subject to Geometric Catastrophes, 2021, 183, 0022-4715, 10.1007/s10955-021-02759-5
    25. Branda Goncalves, Thiery E. Huillet, Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters, 2022, 29, 0889-8480, 128, 10.1080/08898480.2021.1976476
    26. Luiz Renato Fontes, Rinaldo B. Schinazi, Metastability of a random walk with catastrophes, 2019, 24, 1083-589X, 10.1214/19-ECP275
    27. Iddo Ben-Ari, Alexander Roitershtein, Rinaldo B. Schinazi, A random walk with catastrophes, 2019, 24, 1083-6489, 10.1214/19-EJP282
    28. Nitin Kumar, Umesh Chandra Gupta, Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes, 2022, 24, 1387-5841, 2287, 10.1007/s11009-022-09929-2
    29. Valdivino Vargas Junior, Fábio Prates Machado, Alejandro Roldán-Correa, Extinction time in growth models subject to geometric catastrophes, 2023, 2023, 1742-5468, 043501, 10.1088/1742-5468/acc72e
    30. Costantino Di Bello, Aleksei V Chechkin, Alexander K Hartmann, Zbigniew Palmowski, Ralf Metzler, Time-dependent probability density function for partial resetting dynamics, 2023, 25, 1367-2630, 082002, 10.1088/1367-2630/aced1d
    31. Nitin Kumar, A population model with Markovian arrival process and binomial correlated catastrophes, 2023, 0361-0926, 1, 10.1080/03610926.2023.2261059
    32. F Duque, V V Junior, F P Machado, A Roldán-Correa, Extinction time in growth models subject to binomial catastrophes * , 2023, 2023, 1742-5468, 103501, 10.1088/1742-5468/acf8bc
    33. Antonio Di Crescenzo, Antonella Iuliano, Verdiana Mustaro, Gabriella Verasani, On the Telegraph Process Driven by Geometric Counting Process with Poisson-Based Resetting, 2023, 190, 1572-9613, 10.1007/s10955-023-03189-1
    34. Nitin Kumar, F. P. Barbhuiya, Transient behavior of a discrete-time renewal population growth model subject to geometric catastrophes, 2024, 0, 1547-5816, 0, 10.3934/jimo.2024012
    35. Nitin Kumar, Analysis of a renewal arrival process subject to geometric catastrophe with random batch killing, 2024, 58, 0399-0559, 933, 10.1051/ro/2023171
    36. Thierry E. Huillet, On the Balance between Emigration and Immigration as Random Walks on Non-Negative Integers, 2024, 12, 2227-7390, 3198, 10.3390/math12203198
    37. A. Logachov, O. Logachova, A. Yambartsev, Processes with catastrophes: Large deviation point of view, 2024, 176, 03044149, 104447, 10.1016/j.spa.2024.104447
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2678) PDF downloads(659) Cited by(37)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog