1.
|
Analysis of a model for the effects of an external toxin on anaerobic digestion,
2012,
9,
1551-0018,
445,
10.3934/mbe.2012.9.445
|
|
2.
|
T. Sari, M.J. Wade,
Generalised approach to modelling a three-tiered microbial food-web,
2017,
291,
00255564,
21,
10.1016/j.mbs.2017.07.005
|
|
3.
|
Simon M. Stump, Christopher A. Klausmeier,
Competition and coexistence between a syntrophic consortium and a metabolic generalist, and its effect on productivity,
2016,
404,
00225193,
348,
10.1016/j.jtbi.2016.06.019
|
|
4.
|
Miled El Hajji,
How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?,
2018,
11,
1793-5245,
1850111,
10.1142/S1793524518501115
|
|
5.
|
Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, A. Morozov,
Steady state analysis of a syntrophic model: the effect of a new input substrate concentration,
2018,
13,
0973-5348,
31,
10.1051/mmnp/2018037
|
|
6.
|
Marion Weedermann, Gail S. K. Wolkowicz, Joanna Sasara,
Optimal biogas production in a model for anaerobic digestion,
2015,
81,
0924-090X,
1097,
10.1007/s11071-015-2051-z
|
|
7.
|
Tewfik Sari, Jérôme Harmand,
A model of a syntrophic relationship between two microbial species in a chemostat including maintenance,
2016,
275,
00255564,
1,
10.1016/j.mbs.2016.02.008
|
|
8.
|
E.I.P. Volcke, M. Sbarciog, E.J.L. Noldus, B. De Baets, M. Loccufier,
Steady state multiplicity of two-step biological conversion systems with general kinetics,
2010,
228,
00255564,
160,
10.1016/j.mbs.2010.09.004
|
|
9.
|
M.J. Wade, R.W. Pattinson, N.G. Parker, J. Dolfing,
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial ‘food web’,
2016,
389,
00225193,
171,
10.1016/j.jtbi.2015.10.032
|
|
10.
|
T. Meadows, M. Weedermann, G. S. K. Wolkowicz,
Global Analysis of a Simplified Model of Anaerobic Digestion and a New Result for the Chemostat,
2019,
79,
0036-1399,
668,
10.1137/18M1198788
|
|
11.
|
The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat,
2012,
9,
1551-0018,
627,
10.3934/mbe.2012.9.627
|
|
12.
|
Marco Mauri, Jean-Luc Gouzé, Hidde de Jong, Eugenio Cinquemani, Kiran Raosaheb Patil,
Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs,
2020,
16,
1553-7358,
e1007795,
10.1371/journal.pcbi.1007795
|
|
13.
|
Matthew J. Wade,
Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes,
2020,
8,
2227-9717,
888,
10.3390/pr8080888
|
|
14.
|
Marion Weedermann, Gunog Seo, Gail Wolkowicz,
Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition,
2013,
7,
1751-3758,
59,
10.1080/17513758.2012.755573
|
|
15.
|
Alma Mašić, Hermann J. Eberl,
Persistence in a Single Species CSTR Model with Suspended Flocs and Wall Attached Biofilms,
2012,
74,
0092-8240,
1001,
10.1007/s11538-011-9707-8
|
|
16.
|
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari,
Mathematical analysis of a three-tiered food-web in the chemostat,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020369
|
|
17.
|
Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari,
Mortality can produce limit cycles in density-dependent models with a predator-prey relationship,
2022,
27,
1531-3492,
7445,
10.3934/dcdsb.2022049
|
|
18.
|
Amer Hassan Albargi, Miled El Hajji,
Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process,
2023,
20,
1551-0018,
6591,
10.3934/mbe.2023283
|
|
19.
|
Abdulrahman Ali Alsolami, Miled El Hajji,
Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus,
2023,
11,
2227-7390,
883,
10.3390/math11040883
|
|
20.
|
S. Barua, A. Dénes,
2021,
Chapter 18,
978-3-030-73240-0,
281,
10.1007/978-3-030-73241-7_18
|
|
21.
|
Tewfik Sari, Boumediene Benyahia,
The operating diagram for a two-step anaerobic digestion model,
2021,
105,
0924-090X,
2711,
10.1007/s11071-021-06722-7
|
|
22.
|
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari,
Operating diagrams for a three-tiered microbial food web in the chemostat,
2022,
85,
0303-6812,
10.1007/s00285-022-01812-5
|
|
23.
|
Sarra Nouaoura, Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari,
Mathematical Analysis of a Three-Tiered Model of Anaerobic Digestion,
2021,
81,
0036-1399,
1264,
10.1137/20M1353897
|
|
24.
|
Maximiliano Machado-Higuera, Nohora Meneses-Casas, Andres Hernandez,
2021,
Lyapunov Stability Analysis of a Two-Step Anaerobic Digestion Model,
978-1-6654-1883-6,
262,
10.1109/CCAC51819.2021.9633283
|
|
25.
|
Hajji ME,
How the competitive exclusion principle can be validated using optical density measurements collected on artificially reconstituted soil ecosystems,
2019,
001,
10.17352/ojeb.000009
|
|
26.
|
Tewfik Sari,
Best Operating Conditions for Biogas Production in Some Simple Anaerobic Digestion Models,
2022,
10,
2227-9717,
258,
10.3390/pr10020258
|
|
27.
|
Radhouane Fekih-Salem, Yessmine Daoud, Nahla Abdellatif, Tewfik Sari,
A Mathematical Model of Anaerobic Digestion with Syntrophic Relationship, Substrate Inhibition, and Distinct Removal Rates,
2021,
20,
1536-0040,
1621,
10.1137/20M1376480
|
|
28.
|
Nour El Houda Zitouni, Mohamed Dellal, Mustapha Lakrib,
Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy,
2023,
87,
0303-6812,
10.1007/s00285-023-01943-3
|
|
29.
|
Amer Hassan Albargi, Miled El Hajji,
Bacterial Competition in the Presence of a Virus in a Chemostat,
2023,
11,
2227-7390,
3530,
10.3390/math11163530
|
|
30.
|
Miled El Hajji,
Mathematical modeling for anaerobic digestion under the influence of leachate recirculation,
2023,
8,
2473-6988,
30287,
10.3934/math.20231547
|
|
31.
|
Tewfik Sari,
Commensalism and syntrophy in the chemostat: a unifying graphical approach,
2024,
9,
2473-6988,
18625,
10.3934/math.2024907
|
|
32.
|
Nabil Ben Ali, Nahla Abdellatif,
Stability and bifurcations in a model of chemostat with two inter‐connected inhibitions and a negative feedback loop,
2024,
0170-4214,
10.1002/mma.10349
|
|
33.
|
Lin Wang, Linlin Bu, Jianhua Wu,
Dynamics of a diffusive model in the anaerobic digestion process,
2025,
142,
10075704,
108523,
10.1016/j.cnsns.2024.108523
|
|