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Abstract. A mathematical model involving the syntrophic relationship of
two major populations of bacteria (acetogens and methanogens), each respon-
sible for a stage of the methane fermentation process is proposed. A detailed
qualitative analysis is carried out. The local and global stability analyses of
the equilibria are performed. We demonstrate, under general assumptions of
monotonicity, relevant from an applied point of view, the global asymptotic
stability of a positive equilibrium point which corresponds to the coexistence
of acetogenic and methanogenic bacteria.

1. Introduction. “Methane fermentation” or “anaerobic digestion” is a process
that converts organic matter into a gaseous mixture, mainly composed of methane
and carbon dioxide (CH4 and CO2) through the concerted action of a close-knit com-
munity of bacteria (cf. Figure 1) by catabolizing anaerobically degradable organic
matter to the end-products. It is often used for the treatment of concentrated waste-
waters or to stabilize the excess sludge produced in waste-water treatment plants
into more stable products. There is also considerable interest in plant-biomass-fed
digesters, since the produced methane can be valorized as a source of energy. It
is usually considered that three major metabolic groups of bacteria are involved in
such a three-steps process:

• Hydrolysis and acidogenesis. Fermentative bacteria hydrolyze materials such
as lipids, proteins, and polysaccharides, ferment most products with excretion
of acetate and other saturated fatty acids, CO2 and H2 as major end-products.

• Acetogenesis and dehydrogenation. This second step is achieved by a con-
sortium of mainly unknown species, the H2-producing acetogenic bacteria,
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which produce acetate and H2 from end-products of the first step (that is
from Volatile Fatty Acids).

• Methanogenesis. The methanogenic bacteria catabolize the end-products,
mainly acetate, CO2 and H2 produced jointly by the other two groups, to
the terminal products [11].

The mathematical modeling of the anaerobic digestion process has been an ac-
tive research area during the last three decades. Anaerobic digesters often exhibit
significant stability problems, that may be avoided only through appropriate con-
trol strategies. Such strategies require, in general, the development of appropriate
mathematical models, which adequately portray the key biological processes that
take place in the reactor. Graef et al. [6] proposed a single anaerobic bacteria model
involving only the acetoclastic methanogens. Hill et al. [7] developed a dynamic
mathematical model for simulating the anaerobic digestion process. The entire pro-
cess, from the introduction of insoluble organic material to the final production of
carbon dioxide, ammonia, and methane, was considered during the design process.
Carbonate equilibrium relationships are used to calculate pH while mass balances
are maintained on volatile matter, volatile acids, soluble organics, two groups of bac-
teria, cations, nitrogen, and carbon dioxide. Inhibition of the bacteria by ammonia
and un-ionized acids was also determined. Mosey [12] considered the hydrogen
partial pressure as the key regulatory parameter of the anaerobic digestion of glu-
cose. This influences the redox potential in the liquid phase. The model considers
four bacterial groups to participate in the conversion of glucose to CO2 and CH4:
the acid-forming bacteria, which are fast-growing and ferment glucose to produce
a mixture of acetate, propionate and butyrate, the acetogenic bacteria convert the
propionate and butyrate to acetate, the acetoclastic methane bacteria convert ac-
etate to CO2 and CH4, and the hydrogen-utilizing methane bacteria reduce CO2

to CH4. Bernard et al. proposed a two step model for control purposes including
the inhibition of the acidogenic consortium by VFA [2]. While these models were
basically developed for control purposes, the IWA1 task group on the modeling of
anaerobic digestion recently proposed the Anaerobic Digestion Model No.1 (ADM1)
which is however far too complex to be used for control design [1].

One specific characteristic of the anaerobic process is that it includes, within
the second and third steps, a number of bacteria populations exhibiting obligatory
mutualistic relationships. Such a syntrophic2 relationship is necessary for the bio-
logical reactions to be thermodynamically possible. Indeed, an excess of hydrogen
in the medium inhibits the growth of acetogenic bacteria. Their association with
H2 consuming bacteria is thus necessary for the second step of the reaction to be
fulfilled. Such a syntrophic relationship has been pointed out in a number of experi-
mental works. One of the first results was obtained by Bryant et al. who performed
the following experiments. Two bacterial species were isolated from cultures of
Methanobacillus omelianskii grown on media containing ethanol as oxidizable sub-
strate [3]. One of these, the S organism, is a gram negative, motile, anaerobic rod
which ferments ethanol with production of H2 and acetate but is inhibited by inclu-
sion of 0.5 arm of H2 in the gas phase of the medium. The other organism is a gram

1International Water Association.
2which exhibits obligatory mutualistic (symbiotic) relationship but where at least one of the

species can grow without the other at the opposite of a purely symbiotic relationship where both
species must always grow together. It is actually one of the most important differences of the
present paper with [4].
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variable, nonmotile, anaerobic rod which utilizes H2 but not ethanol for growth and
methane formation. The results indicate that M. omelianslcii maintained in ethanol
media is actually a symbiotic association of the two species (called syntrophic in
microbial ecology to specify that at least one of the species can grow alone as it
is the case for the H2 consuming microorganism). Experimental results of these
studies show that M. omelianskii as usually cultured in ethanol-carbonate medium
consists of a symbiotic association of two species of bacteria, neither of which will
grow well as pure cultures in ethanol-carbonate media even with complex sources
of growth factors such as rumen fluid, trypticase and yeast extract added. One
of these species, the S organism, oxidizes ethanol with production of H2 and ac-
etate. Its failure to grow well in ethanol media is at least partially explained by the
fact that it is inhibited by the H2 produced during growth. The other species, the
methanogenic microorganisms, utilize H2 but not ethanol as the source of electrons
for growth and methane formation.

In this paper we restrict our attention to the reactionary part of the anaer-
obic digestion involving only two major bacteria populations (acetogens x1 and
methanogens x2) and study their syntrophic relationship. The volatile fatty acids
products (s) are degraded by acetogens, forming hydrogen (p), acetate and carbon
dioxide. This same intermediate product is required by anaerobic methanogens in
order to carry out anaerobic respiration. In the absence of H2-producing bacteria
(x1), methanogens cannot grow.

Quite similar models have already been proposed in the literature as the one by
Kreikenbohm et al. (cf. [9]). However, the model considered in the present paper
is more general than the latter in the senss that the kinetics are not explicitely
described. Rather, a number of qualitative assumptions are proposed and thus the
performed analysis is more general. In addition, only the influence of the dilution
rate on the number of equilibria is looked at while, in the present paper, we describe
the qualitative behavior of the trajectories.

In Section 2, we propose a system of four differential equations as a model for this
association. The positive equilibria are determined in Section 3. Next, in Section
4, their local and global stability properties are established. The global asymptotic
stability results are demonstrated through Dulac’s criterion (see for instance [8,
Chapter 6]) that rules out the possibility of the existence of periodic solutions for
the reduced planar system and the Poincaré-Bendixon Theorem (see for instance [8,
Chapter 6]). In particular, we show that for every positive initial conditions, and
under general and natural assumptions on the substrate input concentration and on
the growth functions, the solutions converge to a positive equilibrium point which
corresponds to the coexistence of acetogenic and methanogenic bacteria. Simula-
tions are presented in Section 5. Finally, concluding remarks in Section 6 end the
paper.
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1.1. Notations and definitions. • We let R+ = [0, +∞), R
∗
+ = (0, +∞), C =

(0, +∞)4 and C = R
4
+.

• We will say that a point is positive (resp. nonnegative) if all its components are
positive (resp. nonnegative).
• We will say that a system

χ̇ = F(χ), (1)

with χ ∈ R
n which admits a positively invariant set P ⊂ R

n and an equilibrium
point E ∈ P admits E as a globally asymptotically stable equilibrium point of (1)
on P if all the solutions of (1) with initial condition χ(0) ∈ P are defined for all
t ≥ 0 and converge to E. When P = R

n
+ or P = (0, +∞)n, then we will simply say

that (1) admits E as a globally asymptotically stable equilibrium point whenever
no confusion can arise from the context.
• The argument of the functions will be omitted or simplified whenever no confusion
can arise from the context.

2. Mathematical model. Let S, X1, X2 and P denote, respectively, the concen-
trations of volatile fatty acid, acetogenic bacteria, hydrogenotrophic-methanogenic
bacteria, and hydrogen present in the reactor at time t. We neglect all species-
specific death rates and take into account the dilution rate only. Hence our model
is described by the following ordinary differential equations:















Ṡ = D(Sin − S) − k3µ1(S, P )X1 ,

Ẋ1 = µ1(S, P )X1 − DX1 ,

Ẋ2 = µ2(P )X2 − DX2 ,

Ṗ = k1µ1(S, P )X1 − k2µ2(P )X2 − DP ,

(2)

where Sin denotes the input concentration of volatile fatty acid and D is the dilution
rate. The parameters Sin, D, k1, k2, k3 are positive and constant and the functional
responses of the species µ1 : R

2
+ → R+ and µ2 : R+ → R+ are of class C1. We

introduce some assumptions.
A1. µ1(Sin − 2P, P ) > D, for all P ≥ 0 such that µ2(P ) ≤ D.
A2. µ1(0, P ) = 0, for all P ∈ R+.

A3.
∂µ1

∂S
(S, P ) > 0, for all (S, P ) ∈ R

2
+.

A4.
∂µ1

∂P
(S, P ) < 0, for all (S, P ) ∈ R

2
+.

A5. µ2(0) = 0, µ2(Sin) > D, µ′
2(P ) > 0, for all P ∈ R+.

Assumption A1 means that, in spite of being inhibiting by the product, the first
species still grows for concentrations that are limiting for the second species. It is a
necessary and sufficient condition for the existence of the positive equilibrium point
which corresponds to the coexistence of the two species. Hypothesis A2 results
from the fact that no growth can take place for acetogens without volatile fatty
acid. Hypothesis A3 means that the growth of acetogens increases with volatile
fatty acid. Hypothesis A4 reflects that acetogens is inhibited by the hydrogen H2

that it produces. The equality µ2(0) = 0 in Hypothesis A5 means that the presence
of hydrogen is necessary for the growth of methanogens and, in Hypothesis A5,
the fact that µ′

2 is positive means that the growth of methanogens increases with
hydrogen produced by acetogens. As underlined in the introduction, note that there
is a kind of mutualism between the two species which is necessary for methanogens
and optional for acetogens (called “syntrophy” in the present paper).
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We do not claim that the system (2) endowed with the hypotheses A1-A5 is a
realistic model for complete anaerobic fermentation stage. We simply study part of
the methane fermentation: we are interested in the specific role of hydrogen for a
class of microorganisms. The model (2) is a first step and its greatest advantage is
that it is completely tractable from the mathematical point of view.

We transform (2) by means of the following changes of variables and notations:

x1 = k1X1; x2 = k2X2, p = P, s =
2k1

k3
S, sin =

2k1

k3
Sin, f(s, p) = µ1(S, P ) and

g(p) = µ2(P ). The equations thus obtained are














ṡ = D(sin − s) − 2f(s, p)x1 ,
ẋ1 = f(s, p)x1 − Dx1 ,
ẋ2 = g(p)x2 − Dx2 ,
ṗ = f(s, p)x1 − g(p)x2 − Dp ,

(3)

where sin > 0, D > 0 and f : R
2
+ → R+ and g : R+ → R+ are functions of class

C1. Assumptions A1 to A5 become:
H1. f(sin − 2p, p) > D for all p ≥ 0 such that g(p) ≤ D.
H2. f(0, p) = 0, for all p ∈ R+.

H3.
∂f

∂s
(s, p) > 0, for all (s, p) ∈ R

2
+ .

H4.
∂f

∂p
(s, p) < 0, for all (s, p) ∈ R

2
+.

H5. g(0) = 0, g(sin) > D, g′(p) > 0, for all p ∈ R+.

3. Preliminary results.

3.1. Technical results. To establish our main results, we need some technical
Lemmas.

Lemma 1. If a function g : R+ → R+ satisfies Assumption H5, then there exists
a unique value p∗ ∈ (0, sin) such that

g(p∗) = D . (4)

Proof. The result is a consequence of the fact that g(0) = 0, g(sin) > D and g is
continuous and increasing.

Remark 1. We deduce from Lemma 1 that if the system (3) is such that the
function g satisfies Assumption H5 and the function f satisfies Assumptions H2 to
H4, then this system satisfies Assumption H1 if and only if f(sin − 2p∗, p∗) > D.

Lemma 2. Assumptions H1 to H5 ensure that there exists a unique value p̄ ∈
(

0, 1
2sin

)

such that

f (sin − 2p̄, p̄) = D . (5)

Proof. Assumption H2 ensures that f(0, p) = 0 for all p ≥ 0. Assumptions H1 and
H5 imply that f(sin, 0) > D and Assumptions H3 and H4 imply that the function
p → f(sin − 2p, p) is continuous and decreasing. The result is deduced.

Lemma 3. Consider a solution (s, x1, x2, p) of (3). Let

z = s + x1 + x2 + p , ζ = s + 2x1 . (6)
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Then,

ż = −D(z − sin) , (7)

ζ̇ = −D(ζ − sin) , (8)

and
{

ẋ2 = g(p)x2 − Dx2 ,
ṗ = f(2(z − x2 − p) − ζ, p) [x2 + p + ζ − z] − g(p)x2 − Dp .

(9)

Proof. The lemma can be proved through routine calculations.

3.2. Invariant and attractive sets. One can prove that the system (3) is dissi-
pative. More precisely, we establish below the following result:

Proposition 1. (i) Any solution of (3) with initial condition in C is bounded and
defined for all t ≥ 0. The sets C and C are positively invariant sets of (3).

(ii) The set ℧ =
{

(s, x1, x2, p) ∈ C : s + x1 + x2 + p = sin, s + 2x1 = sin

}

is a

positively invariant attractor of all solutions of system (3) in C.

Proof. To begin with note that since g of class C1 and g(0) = 0 there exists a
continuous function ĝ(p) such that, for all p ≥ 0, g(p) = ĝ(p)p.

Consider now a solution of (3) with an initial condition (s(0), x1(0), x2(0), p(0)) ∈
C. Let T > 0 be such that the solution is defined over [0, T ].

Since ṡ(t) = Dsin > 0 if s(t) = 0, we deduce that s(t) > 0 for all t ∈ (0, T ]. Now,
observe that for all t ∈ [0, T ] the equalities

x1(t) = x1(0) exp(

∫ t

0

(f(s(ℓ), p(ℓ)) − D)dℓ), x2(t) = x2(0) exp(

∫ t

0

(g(p(ℓ)) − D)dℓ)

(10)
hold. Therefore the sign of x1(t) and x2(t) cannot change. Next, let us assume
that p(0) > 0 and let us proceed by contradiction and prove that, for all t ∈ [0, T ],
p(t) > 0. Assume that there exists tc ∈ (0, T ] such that the solution is defined
over [0, t] and p(m) > 0 for all m ∈ [0, tc) and p(tc) = 0. We deduce that, for all
m ∈ [0, T ], the inequality

p(m) ≥ p(0) exp(

∫ m

0

[−ĝ(p(ℓ))x2(ℓ) − D]dℓ) (11)

holds. It follows that p(tc) > 0. This yields a contradiction. Therefore p(t) > 0 for
all t ∈ [0, T ].

Next, assume that p(0) = 0 and x1(0) = 0. Then the uniqueness of the solutions
implies that p(t) = 0 for all t ∈ [0, T ]. Next, assume that p(0) = 0 and x1(0) > 0.
Then ṗ(0) = f(s(0), 0)x1(0). If s(0) > 0, ṗ(0) > 0 and therefore there exists
t1 ∈ (0, T ] such that p(t) > 0 for all t ∈ (0, t1). If s(0) = 0, then ṗ(0) = 0 and,

according to Assumption H3, p̈(0) =
∂f

∂s
(0, 0)x1(0) > 0. Therefore there exists

t2 ∈ (0, T ] such that p(t) > 0 for all t ∈ (0, t2). Therefore when p(0) = 0 and
x1(0) > 0, arguing as we did when p(0) > 0, one can prove that p(t) ≥ 0 for all
t ∈ [0, T ].

It follows that, for all T > 0 such that the solution is defined over [0, T ], we have
s(t) ≥ 0, x1(t) ≥ 0, x2(t) ≥ 0, p(t) ≥ 0 for all t ∈ [0, T ]. Therefore C is a positively
invariant set of (3). Similarly, one can prove that C is a positively invariant set of
(3).
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From (6), (7) and the fact that s(t), x1(t), x2(t), p(t) are nonnegative we deduce
that s(t), x1(t), x2(t), p(t) are bounded. Therefore the finite escape time phenom-
enon does not occur. It follows that the solutions are defined for all t ≥ 0. Hence,
the first item of Proposition 1 holds.

Let us establish the second item of Proposition 1.
The equations (7) and (8) imply that ℧ is positively invariant and that, if

(s(t), x1(t), x2(t), p(t)) is a solution of C then it satisfies, for all t ≥ 0,

s(t)+x1(t)+x2(t)+p(t) = sin+K1e
−Dt where K1 = s(0)+x1(0)+x2(0)+p(0)−sin

and

s(t) + 2x1(t) = sin + K2e
−Dt where K2 = s(0) + 2 x1(0) − sin .

This allows us to conclude.

3.3. Nonnegative equilibrium points of (3). The next result is devoted to the
equilibrium points of the system (3) in C.

Theorem 1. Assume that the system (3) satisfies Assumptions H1 to H5. Then
the system (3) admits three and only three equilibrium points in C. There exists
s∗ ∈ R such that

0 < s∗ < sin , f(s∗, p∗) = D , x1∗ =
sin − s∗

2
> 0 , x2∗ =

sin − s∗
2

− p∗ > 0 (12)

with p∗ given by Lemma 1 and the equilibrium points of (3) are

E0 = (sin, 0, 0, 0), E1 = (sin − 2p̄, p̄, 0, p̄) and E∗ = (s∗, x1∗, x2∗, p∗) (13)

with p̄ defined in (5) and moreover, the constants p̄, p∗ satisfy

0 < p∗ < p̄ <
sin

2
. (14)

Assume that the system (3) satisfies Assumptions H2 to H5 but not Assumption
H1. Then the system (3) admits two and only two equilibrium points in C. These
equilibrium points are E0 = (sin, 0, 0, 0), E1 = (sin − 2p̄, p̄, 0, p̄). Moreover p̄, p∗
satisfy the inequalities

0 < p̄ ≤ p∗ < sin . (15)

Proof. We assume that (3) satisfied Assumptions H2 to H5.
Ee = (se, x1e, x2e, pe) is a nonnegative equilibrium point of (3) if and only if its

components are nonnegative and such that

D(sin − se) − 2f(se, pe)x1e = 0 ,
f(se, pe)x1e − Dx1e = 0 ,

g(pe)x2e − Dx2e = 0 ,
f(se, pe)x1e − g(pe)x2e − Dpe = 0 .

(16)

These equalities are equivalent to

f(se, pe)x1e = Dx1e ,
g(pe)x2e = Dx2e ,

se = sin − 2x1e ,
x1e = x2e + pe .

(17)
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If x1e = 0, then the last equation implies that x2e = pe = 0. We deduce easily that
Ee = E0. If x1 6= 0 and x2 = 0, then

f(sin − 2pe, pe) = D ,
se = sin − 2x1e ,

x1e = pe .
(18)

We deduce from Assumptions H3 and H4 that pe = p̄. We deduce easily that
Ee = E1.

To complete the study, only one case remains to be investigated: x1 6= 0 and
x2 6= 0. In this case,

f(se, pe) = D ,
g(pe) = D ,

se = sin − 2x1e ,
x1e = x2e + pe .

(19)

From Assumption H5 and Lemma 1, we deduce that pe = p∗ and therefore

f(sin − 2(x2e + p∗), p∗) = D ,
se = sin − 2x1e ,

x1e = x2e + p∗ .
(20)

If Assumption H1 is satisfied, necessarily f(sin − 2p∗, p∗) > D. It follows from the
continuity of f and Assumptions H2 and H3 that there exists x2e > 0 such that
f(sin − 2(x2e + p∗), p∗) = D and se = sin − 2x1e = sin − 2(x2e + p∗) > 0. Therefore
Ee is a positive equilibrium point and Ee = E∗.

If Assumption H1 is not satisfied, necessarily f(sin − 2p∗, p∗) ≤ D. It follows
from Assumption H3 that there exists no value x2e > 0 such that f(sin − 2(x2e +
p∗), p∗) = D. Therefore (3) has not positive equilibrium points. Finally, observe
that f(sin − 2p∗, p∗) ≤ f(sin − 2p̄, p̄). It follows from Assumptions H3 and H4 that
p̄ ≤ p∗. We deduce that (15) is satisfied.

4. Stability analysis. In this section, we study the asymptotic behavior of the
solutions of the system (3). One might think that, due to the attractivity of the
set ℧, one can straightforwardly deduce from the stability properties of the system
(3) restricted to the invariant set ℧ what are the stability properties of the system
(3). But this is false in general as highlighted by examples: see [16, 17]. However
fortunately, in the case we consider, it turns out that this is true: we will manage
to deduce what is the behavior of the positive solutions of (3) from the asymptotic
behavior of the solutions of the system

{

ẋ2 = λ1(x2, p) ,
ṗ = λ2(x2, p) ,

(21)

with




λ1(x2, p)

λ2(x2, p)



 =





(g(p) − D) x2

f(sin − 2 p− 2 x2, p)(p + x2) − g(p)x2 − Dp



 (22)

and with

S =
{

(x2, p) ∈ (R∗

+)2 : 0 < x2 + p <
sin

2

}

(23)

as state space. We shall prove in Section 4.2.1 that S is a positively invariant set of
(21). Observe that the system (21) is obtained by considering the system (9) with
z = ζ = sin.
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To begin with, we determine what are the local stability properties of the equilib-
ria of (3). These results are interesting for their own sake and will be instrumental
when establishing the global results.

4.1. Analysis of the local stability properties of the equilibria of (3). In
this section, we prove the following result.

Theorem 2. Assume that the system (3) satisfies Assumptions H2 to H5. Then
E0 is locally unstable. If in addition the system (3) satisfies Assumption H1, then
E1 is locally unstable and E∗ is a locally exponentially stable. If the system (3) does
not satisfy Assumption H1 and f(sin −p∗, p∗) < D, then E1 is locally exponentially
stable.

Proof. From Lemma 3 and Theorem 1, we deduce that the planar system (21)
admits F 0 = (0, 0), F 1 = (0, p̄) and, when Assumption H1 holds, F ∗ = (x∗

2, p∗)
as equilibrium points and that E0, E1, E∗ are locally exponentially stable (resp.
unstable) equilibrium points of (3) if and only if F 0, F 1, F ∗ are locally exponentially
stable (resp. unstable) equilibrium points of (21). Therefore the result of Theorem
2 holds if the following lemma holds:

Lemma 4. Assume that the system (3) satisfies Assumptions H2 to H5. Then F 0

is a locally unstable equilibrium point of the associated system (21). If in addition
the system (3) satisfies Assumption H1, then F 1 is a locally unstable equilibrium
point of (21) and F ∗ is a locally exponentially stable equilibrium point of (21). If
the system (3) does not satisfy Assumption H1 and f(sin − p∗, p∗) < D, then F 1 is
a locally exponentially stable equilibrium point of (3).

To prove Lemma 4, we determine first what is the Jacobian matrix of the function
Λ(x2, p) = (λ1(x2, p) λ2(x2, p))⊤ at a point (x2, p) in the closure in S, denoted by
S. Simple calculations give the Jacobian matrix J((x2, p)) = (Jij(x2, p)) ∈ R

2×2

with

J11(x2, p) = g(p) − D ,
J12(x2, p) = g′(p)x2 ,

J21(x2, p) = −2
∂f

∂s
(sin − 2p − 2x2, p)(x2 + p) + f(sin − 2p − 2x2, p) − g(p) ,

J22(x2, p) =

(

−2
∂f

∂s
(sin − 2p − 2x2, p) +

∂f

∂p
(sin − 2p − 2x2, p)

)

(x2 + p)

+f(sin − 2p − 2x2, p) − g′(p)x2 − D .
(24)

Now, we consider successively the matrices J(F 0), J(F 1), J(F ∗).
Since

J(F 0) =





−D 0

J21(F
0) f(sin, 0) − D



 ,

the eigenvalues of J(F 0) are −D and f(sin, 0)−D. Assumptions H1 and H5 imply
that f(sin, 0)−D > 0. It follows that if Assumption H2 is satisfied then one of the
eigenvalues of J(F 0) is a positive real number. Consequently, F 0 is an exponentially
unstable equilibrium point of (21).
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Since

J(F 1) =









g(p̄) − D 0

J21(F
1)

(

−2
∂f

∂s
(sin − 2p̄, p̄) +

∂f

∂p
(sin − 2p̄, p̄)

)

p̄









,

one of the eigenvalues of J(F 1) is g(p̄) − D. If Assumption H1 is satisfied, the
inequalities (14), the equality D = g(p∗) and Assumption H5, which ensures that g
is increasing, imply that

g(p̄) − D > 0 . (25)

Consequently, F 1 is an exponentially unstable equilibrium point of (21).
If Assumption H1 is satisfied, one can check readily that

det(J(F ∗)) = 2
∂f

∂s
(s∗, p∗)(x2∗ + p∗)g

′(p∗)x2∗ (26)

and

tr(J(F ∗)) =

(

−2
∂f

∂s
(s∗, p∗) +

∂f

∂p
(s∗, p∗)

)

(x2∗ + p∗) − g′(p∗)x2∗ . (27)

Assumptions H3, H4 and H5 imply that det(J(F ∗)) > 0 and trJ(F ∗) < 0. Therefore
the matrix J(F ∗) admits two eigenvalues with a negative real part. Thus the linear
approximation of (21) at F ∗ is exponentially stable.

Finally, assume that the system (3) is such that f(sin − p∗, p∗) < D and As-
sumptions H2 to H5 are satisfied. Then g(p̄) − D = g(p̄) − g(p∗) < 0 because
p̄ < p∗. We deduce that the eigenvalues of J(F 1) are negative. Consequently, F 1 is
an exponentially stable equilibrium point of (21).

4.2. Global analysis of the system (3). In this section, we investigate what are
the global stability properties of (3). Our analysis splits up into two parts. In a
first part, we analyze the stability properties of the reduced order system (21). In
the second part, we take advantage of the result obtained in the first to establish
the global stability properties of the system (3) on C.

4.2.1. Global analysis of the system (21). In this section, we investigate what are
the global stability properties of (21). First, we need to prove that the set S defined
in (23) and S are positively invariant sets of (21) and that (21) admits neither
periodic orbits nor polycycles inside S.

Lemma 5. Assume that the system (3) satisfies Assumptions H2 to H5 and con-
sider the associated system (21). The sets S and S are positively invariant set of
(21). The system (21) admits no periodic solution inside S.

Proof. One can prove that S and S are positively invariant sets of (21) using the
fact that

ẋ2 + ṗ = [f(sin − 2p− 2x2, p) − D][p + x2] .

Next, we consider a trajectory of (21) belonging to S. Transforming the system
(21) through the change of coordinates

ξ = ln(x2) , β = ln(p + x2) = ln
(

p + eξ
)

,

the following system
{

ξ̇ = h1(ξ, β) ,

β̇ = h2(ξ, β) ,
(28)
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with
(

h1(ξ, β)
h2(ξ, β)

)

=

(

g
(

eβ − eξ
)

− D

f
(

sin − 2eβ, eβ − eξ
)

− D

)

(29)

is obtained. From Assumptions H3 and H4, we deduce that the function

Γ(ξ, β) :=
∂h1

∂ξ
(ξ, β) +

∂h2

∂β
(ξ, β)

= −eξg′
(

eβ − eξ
)

− 2eβ ∂f

∂s

(

sin − 2eβ, eβ − eξ
)

+eβ ∂f

∂p

(

sin − 2eβ, eβ − eξ
)

(30)

is such that

Γ(ξ, β) < 0 , when eβ − eξ > 0 and sin − 2eβ > 0 .

This allows us to apply Dulac’s criterion (see [8, Chapter 6]) to (28) for trajectories
belonging to the simply connected region

D =
{

(β, ξ) ∈ R
2 : ln

(sin

2

)

> β > ξ
}

.

Since Γ(β, ξ) does not change sign in D, this criterion ensures that the system (28)
has no periodic trajectory in D. Then we deduce that the system (21) has no
periodic orbit in S. Besides it cannot have polycycles because there is only one
equilibrium point in S. Next, let us proceed by contradiction to prove that the
system (21) has no periodic orbit in S. Assume that there exists in S a periodic
solution of (21) that we denote (x2(t), p(t)). We deduce easily from the fact that
S is positively invariant that necessarily either x2(t) = 0 for all t ≥ 0 or p(t) = 0
for all t ≥ 0. If x2(t) = 0 for all t ≥ 0, then necessarily, for all t ≥ 0, ṗ(t) =
[f(sin − 2p(t), p(t)) − D]p(t). Thanks to Assumptions H3 and H4, we deduce that
necessarily p(t) converges either to 0 or p̄ when the time goes to the infinity. If
p(t) = 0 for all t ≥ 0, then necessarily, for all t ≥ 0, ẋ2(t) = −Dx2(t) and x2(t)
converges to zero when the time goes to the infinity. This concludes the proof.

We are ready to establish a crucial result for planar system (21).

Theorem 3. Assume that the system (3) satisfies Assumptions H1 to H5 and
consider the associated system (21). Then the point F ∗ is a globally asymptotically
stable equilibrium of (21) on S.

Proof. Consider a solution (x2(t), p(t)) of (21) belonging to S. The system (21)
has no unbounded trajectory in S because S is a positively invariant compact set.
Therefore (x2(t), p(t)) is a bounded. Consequently, it admits a compact ω-limit
set, that we denote ω, which is included in S. According to the Poincaré-Bendixon
Theorem [8], ω either contains an equilibrium point or (21) admits a periodic so-
lution in S. Since Lemma 5 ensures there exist no periodic solutions of (21) in S,
necessarily ω contains an equilibrium point of (21). If F ∗ ∈ ω, then F ∗ = ω because
F ∗ is locally exponentially stable (see Lemma 4). Next, let us prove that F ∗ ∈ ω
by proceeding by contradiction. Assume that F ∗ /∈ ω. Then, necessarily, either
F 0 ∈ ω or F 1 ∈ ω.

Let us prove that F 0 /∈ ω. We have, for all t ≥ 0

ẋ2 + ṗ = f(sin − 2p − 2x2, p)(p + x2) − Dp − Dx2 .

From Assumption H4, we deduce that, for all t ≥ 0

ẋ2 + ṗ ≥ [f(sin − 2p − 2x2, p + x2) − D] [p + x2] .
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Then from Assumption H1 and Assumption H5, we deduce that f(sin, 0) > D and
therefore there exist T > 0 and δ > 0 such that, for all t ≥ T , p(t) + x2(t) ≥ δ. It
follows that F 0 /∈ ω.

Assume that F 1 = ω. Using (25), one can prove that it follows that there exist
two real numbers T > 0 and δ > 0 such that, for all t ≥ T , ẋ2(t) ≥ δx2(t). It
follows that (p(t) + x2(t)) is unbounded. This yields a contradiction with the fact
that S is a positively invariant compact set.

We deduce that ω is a polycycle with F1 as unique equilibrium point. Such a
polyclycle cannot exist because any polycycle contains necessarily more than only
one equilibrium point. We deduce that neither F 0 ∈ ω nor F 1 ∈ ω and therefore
we have obtained a contradiction. Therefore F ∗ ∈ ω.

This allows us to conclude that all the solutions of the system (21) in S converge
asymptotically to F ∗.

Next, we establish the following result.

Theorem 4. Assume that the system (3) satisfies Assumptions H2 to H5 and that
f(sin−p∗, p∗) < D. Consider the associated system (21). The point F 1 is a globally
asymptotically stable equilibrium of (21) on S.

Proof. Consider a solution (x2(t), p(t)) of (21) belonging to S. The system (21)
has no unbounded trajectory in S because S is a positively invariant compact set.
Therefore (x2(t), p(t)) is a bounded. Consequently, it admits a compact ω-limit
set, that we denote ω. According to the Poincaré-Bendixon Theorem [8], ω either
contains an equilibrium point or (21) admits a periodic solution in S. Since Lemma
5 ensures there exist no periodic solutions of (21) in S, necessarily ω contains an
equilibrium point of (21). Arguing as in the proof of Theorem 3, one can prove that
F 0 /∈ ω. Therefore, necessarily, F 1 ∈ ω. Since F 1 is locally exponentially stable, it
follows that F 1 = ω.

4.2.2. Global analysis of (3). In this section, we state and prove the main results
of the paper.

Theorem 5. Assume that the system (3) satisfies Assumptions H1 to H5. Then
the equilibrium point E∗ is globally asymptotically stable.

Proof. The new coordinates

z1 = s + x1 + x2 + p − sin , z2 = s + 2x1 − sin

lead us to consider the system














Ż = AZ
ẋ2 = g(p)x2 − Dx2

ṗ = f(2z1 + sin − 2x2 − 2p− z2, p) [x2 + p + z2 − z1]
−g(p)x2 − Dp

(31)

with Z = (z1, z2)
⊤, A = −D.Id2, where Id2 denotes the identity matrix of R

2×2.
To analyze the stability properties of this system, we use the convergence theorem
given in [15, Appendix F]. We let the Z-subsystem of (31) play the role of the
z-subsystem of (F.1) in [15] and the (x2, p)-subsystem of (31) play the role of the
y-subsystem of (F.1) in [15]. The set which corresponds to D in [15, Appendix F]
is the positively invariant set

D1 =

{

(x2, p, z1, z2) ∈ R
4

∣

∣

∣ x2 ≥ 0, p ≥ 0, z2 ≥ z1 − x2 − p ≥
1

2
(z2 − sin)

}

.
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Thus, the set which corresponds to Ω in [15, Appendix F] is Ω1 = S, i.e.

Ω1 =

{

(x2, p) ∈ R
2
+

∣

∣

∣
x2 + p ≤

1

2
sin

}

.

We now check that the assumptions of [15, Theorem F.1] are satisfied. To begin
with, observe that f and g are continuously differentiable. Next, we prove that (31)
is dissipative. Since the Z-subsystem of (31) is exponentially stable, every solution
of (31) with initial condition in D1 eventually enters and remains in the compact
set

{

(x2, p, z1, z2) ∈ R
2
+ × R

2
∣

∣

∣ |z2| + |z1| ≤ 1 , z2 ≥ z1 − x2 − p ≥
1

2
(z2 − sin)

}

i.e. (31) is dissipative. Assumption H1 is satisfied because the eigenvalues of A
are equal to −D < 0. From Section 4.1, we deduce easily that Assumptions H2
and H3 are satisfied. One can prove easily that Assumption H4 is satisfied if the

equilibrium point p ∈ (0,
1

2
sin) (see Lemma 2) of the system ṗ = [f(sin−2p, p)−D]p

admits a basin of attaction larger than [0,
1

2
sin]. This property is satisfied because

p → f(sin − 2p, p) is continuous and decreasing between 0 and
1

2
sin. Finally, from

Theorem 3, we deduce that Assumption H5 is satisfied.
We conclude that [15, Theorem F.1] applies. It follows that every trajectory

with initial condition in D1 converges to one of the equilibrium points (0, 0, 0, 0),
(0, 0, 0, p), (0, 0, x2∗, p∗). Consider now a solution belonging to the interior of D1 and
let us show by contradiction that this solution converges to the equilibrium point
(0, 0, x2∗, p∗). Assume that this solution converges to (0, 0, 0, 0). It follows that (3)
admits a solution (s(t), x1(t), x2(t), p(t)), with positive initial conditions, which con-

verges to E0. Therefore x1(t) = x1(0) exp

(∫ t

0

(f(s(m), p(m)) − D)dm

)

converges

to 0. Since x1(0) > 0, it follows that

∫ t

0

(f(s(m), p(m)) − D)dm converges to −∞.

This is in contradiction with the fact that lim
t→∞

[f(s(t), p(t))−D] = f(sin, 0)−D > 0.

Next, assume that this solution, that we denote (z1(t), z2(t), x2(t), p(t)), converges

to (0, 0, 0, p). Then x2(t) = x2(0) exp

(∫ t

0

[g(p(m)) − D]dm

)

converges to 0. Since

x2(0) > 0, it follows that

∫ t

0

[g(p(m)) − D]dm converges to −∞. This leads

to a contradiction with the fact that Assumption H1 of the model implies that
lim

t→∞
[g(p(t)) − D] = g(p) − D > g(p∗) − D = 0. This allows us to conclude.

Remark 2. Theorem 5 can be proved through an alternative approach (cf. [4]). It
turns out that (21) contains only locally exponentially stable and unstable equilibria,
and neither periodic orbits nor cyclic chains. Thus Thiemes’s results [16] can be
applied to deduce the asymptotic behaviors of the solutions of the complete system
(3) from the asymptotic behaviors of the solutions of the reduced system (21).

We conclude the section with a result for the case where f(sin − p∗, p∗) < D.
We do not study the particular case where f(sin − p∗, p∗) = D because this is not
a generic case and has no specific interest.
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Theorem 6. Assume that the system (3) satisfies Assumptions H2 to H5 and that
f(sin − p∗, p∗) < D. Then the equilibrium point E1 is a globally asymptotically and
a locally exponentially stable equilibrium point of the system (3) on C.

Proof. The proof of Theorem 6, which is similar and simpler than the proof of
Theorem 5, is omitted.

5. Numerical simulations. We performed numerical simulations for the partic-
ular model:







































ṡ = (8 − s) − 2
8s

2 + s

4

2 + p
x1 ,

ẋ1 =
( 8s

2 + s

4

2 + p
− 1

)

x1 ,

ẋ2 =
( 2p

0.2 + p
− 1

)

x2 ,

ṗ =
8s

2 + s

4

2 + p
x1 −

2p

0.2 + p
x2 − p .

(32)

The parameters values are chosen such that the system (32) satisfies Assumptions
H2 to H5. Let us check that Assumption H1 is satisfied too. With our general

notations, we have s∗ =
22

149
, x1∗ =

585

149
, x2∗ =

2779

745
, p∗ = 0.2, sin = 8, D = 1,

f(sin − 2p∗, p∗) =
380

33
> 1 = D.

As expected, the trajectories filling the whole positive cone converge to the pos-

itive point (x1∗, x2∗) =

(

585

149
,
2779

745

)

.

0 1 2 3 4 5 6 7 8
0

1
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4
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9

x1

x2

Figure 2. x1 − x2 behavior

6. Conclusion. We have proposed a mathematical model involving a part of the
population consortium responsible for the second and the third stages of the anaer-
obic fermentation process. The analysis of the model is mainly based on an appli-
cation of the Poincaré-Bendixon Theorem and Dulac’s criterion that rules out the
possibility of periodic solutions for a reduced planar system whose stability proper-
ties are linked with the stability properties of the overall system. It results from this
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analysis that, under general and natural assumptions of monotonicity on the func-
tional responses, the stable asymptotic coexistence of acetogenic and methanogenic
bacteria occurs.
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