A multiscale model of the bone marrow and hematopoiesis

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92B05; Secondary: 92C99.

  • The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance of a wide range of physiologic functions. Multiple human diseases result from bone marrow dysfunction. It is also the site in which liquid tumors, including leukemia and multiple myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and microenvironmental interactions that govern normal bone marrow function as well as diseases and cancers of the bone marrow would be a valuable medical advance. Our goal is the development of a spatially-explicit in silico model of the bone marrow to understand both its normal function and the evolutionary dynamics that govern the emergence of bone marrow malignancy. Here we introduce a multiscale computational model of the bone marrow that incorporates three distinct spatial scales, cell, hematopoietic subunit, whole marrow. Our results, using parameter estimates from literature, recapitulates normal bone marrow function and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, which would be an optimization of the hematopoietic function in order to maximize the number of mature blood cells produced daily within the volumetric restrictions of the marrow.

    Citation: Ariosto Silva, Alexander R. A. Anderson, Robert Gatenby. A multiscale model of the bone marrow and hematopoiesis[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 643-658. doi: 10.3934/mbe.2011.8.643

    Related Papers:

    [1] H. T. Banks, Cammey E. Cole, Paul M. Schlosser, Hien T. Tran . Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Mathematical Biosciences and Engineering, 2004, 1(1): 15-48. doi: 10.3934/mbe.2004.1.15
    [2] Jason M. Graham, Bruce P. Ayati, Prem S. Ramakrishnan, James A. Martin . Towards a new spatial representation of bone remodeling. Mathematical Biosciences and Engineering, 2012, 9(2): 281-295. doi: 10.3934/mbe.2012.9.281
    [3] Ana Isabel Muñoz, J. Ignacio Tello . On a mathematical model of bone marrow metastatic niche. Mathematical Biosciences and Engineering, 2017, 14(1): 289-304. doi: 10.3934/mbe.2017019
    [4] Urszula Ledzewicz, Heinz Schättler . Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95
    [5] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [6] Sharon L. Truesdell, Marnie M. Saunders . Bone remodeling platforms: Understanding the need for multicellular lab-on-a-chip systems and predictive agent-based models. Mathematical Biosciences and Engineering, 2020, 17(2): 1233-1252. doi: 10.3934/mbe.2020063
    [7] Wei Lin, Fengshuang Yang . Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542
    [8] Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389
    [9] E.V. Presnov, Z. Agur . The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences and Engineering, 2005, 2(3): 625-642. doi: 10.3934/mbe.2005.2.625
    [10] Tianran Yuan, Hongsheng Zhang, Hao Liu, Juan Du, Huiming Yu, Yimin Wang, Yabin Xu . Watertight 2-manifold 3D bone surface model reconstruction from CT images based on visual hyper-spherical mapping. Mathematical Biosciences and Engineering, 2021, 18(2): 1280-1313. doi: 10.3934/mbe.2021068
  • The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance of a wide range of physiologic functions. Multiple human diseases result from bone marrow dysfunction. It is also the site in which liquid tumors, including leukemia and multiple myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and microenvironmental interactions that govern normal bone marrow function as well as diseases and cancers of the bone marrow would be a valuable medical advance. Our goal is the development of a spatially-explicit in silico model of the bone marrow to understand both its normal function and the evolutionary dynamics that govern the emergence of bone marrow malignancy. Here we introduce a multiscale computational model of the bone marrow that incorporates three distinct spatial scales, cell, hematopoietic subunit, whole marrow. Our results, using parameter estimates from literature, recapitulates normal bone marrow function and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, which would be an optimization of the hematopoietic function in order to maximize the number of mature blood cells produced daily within the volumetric restrictions of the marrow.


  • This article has been cited by:

    1. Antonio Fasano, Adélia Sequeira, 2017, Chapter 8, 978-3-319-60512-8, 295, 10.1007/978-3-319-60513-5_8
    2. Joseph W. Nichols, You Han Bae, EPR: Evidence and fallacy, 2014, 190, 01683659, 451, 10.1016/j.jconrel.2014.03.057
    3. Ka Wai Lin, Angela Liao, Amina A. Qutub, Vittorio Cristini, Simulation Predicts IGFBP2-HIF1α Interaction Drives Glioblastoma Growth, 2015, 11, 1553-7358, e1004169, 10.1371/journal.pcbi.1004169
    4. Chiara Fornari, Lenka Oplustil O'Connor, Carmen Pin, Aaron Smith, James W.T. Yates, S.Y. Amy Cheung, Duncan I. Jodrell, Jerome T. Mettetal, Teresa A. Collins, Quantifying Drug‐Induced Bone Marrow Toxicity Using a Novel Haematopoiesis Systems Pharmacology Model, 2019, 8, 2163-8306, 858, 10.1002/psp4.12459
    5. Chiara Fornari, Lenka Oplustil O'Connor, James W.T. Yates, S.Y. Amy Cheung, Duncan I. Jodrell, Jerome T. Mettetal, Teresa A. Collins, Understanding Hematological Toxicities Using Mathematical Modeling, 2018, 104, 00099236, 644, 10.1002/cpt.1080
    6. Guanqun Li, Xujun Liu, Qian Du, Mei Gao, Jing An, Three dimensionalde novomicro bone marrow and its versatile application in drug screening and regenerative medicine, 2015, 240, 1535-3702, 1029, 10.1177/1535370215594583
    7. Mahnoor Naseer Gondal, Safee Ullah Chaudhary, Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics, 2021, 11, 2234-943X, 10.3389/fonc.2021.712505
    8. Rebecca S. Maynard, Charlotte Hellmich, Kristian M. Bowles, Stuart A. Rushworth, Acute Myeloid Leukaemia Drives Metabolic Changes in the Bone Marrow Niche, 2022, 12, 2234-943X, 10.3389/fonc.2022.924567
    9. M. S. Sudheesh, K. Pavithran, Sabitha M, Revisiting the outstanding questions in cancer nanomedicine with a future outlook, 2022, 4, 2516-0230, 634, 10.1039/D1NA00810B
    10. Fabrizio Angaroni, Alessandro Guidi, Gianluca Ascolani, Alberto d’Onofrio, Marco Antoniotti, Alex Graudenzi, J-SPACE: a Julia package for the simulation of spatial models of cancer evolution and of sequencing experiments, 2022, 23, 1471-2105, 10.1186/s12859-022-04779-8
    11. Víctor Pablo Galván-Chacón, Athanasia Zampouka, Bernhard Hesse, Marc Bohner, Pamela Habibovic, David Barata, Bone‐on‐a‐Chip: A Microscale 3D Biomimetic Model to Study Bone Regeneration, 2022, 24, 1438-1656, 2101467, 10.1002/adem.202101467
    12. Carmen Pin, Teresa Collins, Megan Gibbs, Holly Kimko, Systems Modeling to Quantify Safety Risks in Early Drug Development: Using Bifurcation Analysis and Agent-Based Modeling as Examples, 2021, 23, 1550-7416, 10.1208/s12248-021-00580-2
    13. Pavol Kosik, Milan Skorvaga, Igor Belyaev, Preleukemic Fusion Genes Induced via Ionizing Radiation, 2023, 24, 1422-0067, 6580, 10.3390/ijms24076580
    14. Mario Pérez-Jiménez, Imre Derényi, Gergely J. Szöllősi, The structure of the hematopoietic system can explain chronic myeloid leukemia progression, 2023, 13, 2045-2322, 10.1038/s41598-023-32400-2
    15. Yutaka Saikawa, Toshihiko Komatsuzaki, Nobuaki Nishiyama, Toshihisa Hatta, Cellular automata modelling of leukaemic stem cell dynamics in acute myeloid leukaemia: insights into predictive outcomes and targeted therapies, 2025, 12, 2054-5703, 10.1098/rsos.241202
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3850) PDF downloads(493) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog