Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92-06, 92B99; Secondary: 92D25.

  • Axiomatic modeling is ensued to provide a family of models that describe bacterial growth in the presence of phagocytes, or, more generally, prey dynamics in a large spatially homogenous eco-system. A classification of the possible bifurcation diagrams that arise in such models is presented. It is shown that other commonly used models that do not belong to this class may miss important features that are associated with the limited growth curve of the bacteria (prey) and the saturation associated with the phagocytosis (predator kill) term. Notably, these features appear at relatively low concentrations, much below the saturation range. Finally, combining this model with a model of neutrophil dynamics in the blood after chemotherapy treatments we obtain new insights regarding the development of infections under neutropenic conditions.

    Citation: Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics,axiomatic modelling and mass-action kinetics[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 475-502. doi: 10.3934/mbe.2011.8.475

    Related Papers:

    [1] Zhun Han, Hal L. Smith . Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences and Engineering, 2012, 9(4): 737-765. doi: 10.3934/mbe.2012.9.737
    [2] Robert Stephen Cantrell, Brian Coomes, Yifan Sha . A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences and Engineering, 2017, 14(4): 953-973. doi: 10.3934/mbe.2017050
    [3] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [4] Christopher Botelho, Jude Dzevela Kong, Mentor Ali Ber Lucien, Zhisheng Shuai, Hao Wang . A mathematical model for Vibrio-phage interactions. Mathematical Biosciences and Engineering, 2021, 18(3): 2688-2712. doi: 10.3934/mbe.2021137
    [5] Marie Doumic, Sophie Hecht, Diane Peurichard . A purely mechanical model with asymmetric features for early morphogenesis of rod-shaped bacteria micro-colony. Mathematical Biosciences and Engineering, 2020, 17(6): 6873-6908. doi: 10.3934/mbe.2020356
    [6] Gheorghe Craciun, Stefan Muller, Casian Pantea, Polly Y. Yu . A generalization of Birchs theorem and vertex-balanced steady states for generalized mass-action systems. Mathematical Biosciences and Engineering, 2019, 16(6): 8243-8267. doi: 10.3934/mbe.2019417
    [7] Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426
    [8] Gheorghe Craciun, Matthew D. Johnston, Gábor Szederkényi, Elisa Tonello, János Tóth, Polly Y. Yu . Realizations of kinetic differential equations. Mathematical Biosciences and Engineering, 2020, 17(1): 862-892. doi: 10.3934/mbe.2020046
    [9] Kokum R. De Silva, Shigetoshi Eda, Suzanne Lenhart . Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences and Engineering, 2017, 14(4): 1001-1017. doi: 10.3934/mbe.2017052
    [10] Allen L. Nazareno, Raymond Paul L. Eclarin, Eduardo R. Mendoza, Angelyn R. Lao . Linear conjugacy of chemical kinetic systems. Mathematical Biosciences and Engineering, 2019, 16(6): 8322-8355. doi: 10.3934/mbe.2019421
  • Axiomatic modeling is ensued to provide a family of models that describe bacterial growth in the presence of phagocytes, or, more generally, prey dynamics in a large spatially homogenous eco-system. A classification of the possible bifurcation diagrams that arise in such models is presented. It is shown that other commonly used models that do not belong to this class may miss important features that are associated with the limited growth curve of the bacteria (prey) and the saturation associated with the phagocytosis (predator kill) term. Notably, these features appear at relatively low concentrations, much below the saturation range. Finally, combining this model with a model of neutrophil dynamics in the blood after chemotherapy treatments we obtain new insights regarding the development of infections under neutropenic conditions.


  • This article has been cited by:

    1. Roy Malka, Baruch Wolach, Ronit Gavrieli, Eliezer Shochat, Vered Rom-Kedar, Evidence for bistable bacteria-neutrophil interaction and its clinical implications, 2012, 122, 0021-9738, 3002, 10.1172/JCI59832
    2. Junyan Xu, Tonghua Zhang, Keying Song, A stochastic model of bacterial infection associated with neutrophils, 2020, 373, 00963003, 125025, 10.1016/j.amc.2019.125025
    3. Yu Shi, Xiao-Feng Luo, Yong-Xin Zhang, Gui-Quan Sun, Effect of intestinal permeability and phagocytes diffusion rate on pattern structure of Crohn’s disease based on the Turing–Hopf bifurcation, 2024, 0924-090X, 10.1007/s11071-024-09594-9
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3061) PDF downloads(569) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog