Citation: Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 483-498. doi: 10.3934/mbe.2013.10.483
[1] | A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525 |
[4] | Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250 |
[5] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[6] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[7] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[8] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593 |
[9] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[10] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[1] | Bioinformatics, 21 (2005), 1668-1677. |
[2] | Proc. Roy. Soc. Lond. B, 265 (2000), 1347-1354. |
[3] | J. Virol., 71 (1997), 3275-3278. |
[4] | Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976. |
[5] | Chaos, Solitons and Fractals, 12 (2001), 483-489 |
[6] | in "Mathematics In Science And Engineering" $2^{nd}$ edition, Elsevier, Amsterdam-Boston, 202 (2005). |
[7] | Chaos, Solitons and Fractals, 41 (2009), 175-182. |
[8] | Bulletin of Mathematical Biology, 64 (2002), 29-64. |
[9] | Physica A, 342 (2004), 234-241. |
[10] | Math. Biosci., 200 (2006), 1-27. |
[11] | J. Math. Biol., 48 (2004), 545-562. |
[12] | J. Theoret. Biol., 175 (1995), 567-576. |
[13] | J. Theoret. Biol., 190 (1998), 201-214. |
[14] | SIAM J. Appl. Math., 67 (2006), 337-353. |
[15] | Discrete Continuous Dynam. Systems-B, 4 (2004), 615-622. |
[16] | Academic Press, San Diego, 1993. |
[17] | Discrete Dynamics in Nature and Society, 2011 (2011), Art. ID 673843, 13 pp. |
[18] | Math. Biosci. and Eng., 7 (2010), 675-685. |
[19] | Theor. Popul. Biol., 52 (1997), 224-230. |
[20] | J. Math. Anal. Appl., 352 (2009), 672-683. |
[21] | Math. Biosci., 152 (1998), 143-163. |
[22] | J. Math. Anal. Appl., 375 (2011), 14-27. |
[23] | Math. Biosci., 163 (2000), 201-215. |
[24] | Math. Biosci., 179 (2002), 73-94. |
[25] | Science, 272 (1996), 74-79. |
[26] | J. Theor. Biol., 184 (1997), 203-217. |
[27] | Math. Biosci., 235 (2012), 98-109. |
[28] | SIAM Rev., 41 (1999), 3-44. |
[29] | Science, 271 (1996), 1582-1586. |
[30] | Science, 271 (1996), 497-499. |
[31] | Mathematical Medicine and Biology, IMA. |
[32] | Comput. Math. Appl., 51 (2006), 1593-1610. |
[33] | Physica D, 226 (2007), 197-208. |
[34] | Comput. Math. Appl., 61 (2011), 2799-2805. |
[35] | J. Math. Anal. Appl., 375 (2011), 75-81. |
[36] | Mathematical Medicine and Biology, IMA, 25 (2008), 99-112. |
[37] | Discrete Continuous Dynam. Systems-B, 12 (2009), 511-524. |
[38] | Comput. Math. Appl., 62 (2011), 3091-3102. |
1. | David Hiebeler, Moment Equations and Dynamics of a Household SIS Epidemiological Model, 2006, 68, 0092-8240, 1315, 10.1007/s11538-006-9080-1 | |
2. | Kurt Langfeld, Dynamics of epidemic diseases without guaranteed immunity, 2021, 11, 2190-5983, 10.1186/s13362-021-00101-y | |
3. | Shunjiang Ni, Wenguo Weng, Hui Zhang, Modeling the effects of social impact on epidemic spreading in complex networks, 2011, 390, 03784371, 4528, 10.1016/j.physa.2011.07.042 | |
4. | Constantinos I. Siettos, Lucia Russo, Mathematical modeling of infectious disease dynamics, 2013, 4, 2150-5594, 295, 10.4161/viru.24041 | |
5. | Mike J. Jeger, Marco Pautasso, Ottmar Holdenrieder, Mike W. Shaw, Modelling disease spread and control in networks: implications for plant sciences, 2007, 174, 0028-646X, 279, 10.1111/j.1469-8137.2007.02028.x | |
6. | Silvio C. Ferreira, Claudio Castellano, Romualdo Pastor-Satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.041125 | |
7. | Shunjiang Ni, Wenguo Weng, Shifei Shen, Weicheng Fan, Epidemic outbreaks in growing scale-free networks with local structure, 2008, 387, 03784371, 5295, 10.1016/j.physa.2008.05.051 | |
8. | Carlo Piccardi, Renato Casagrandi, 2009, Chapter 5, 978-3-642-03198-4, 77, 10.1007/978-3-642-03199-1_5 | |
9. | Shaofen Zou, Jianhong Wu, Yuming Chen, Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks, 2011, 83, 1539-3755, 10.1103/PhysRevE.83.056121 | |
10. | David E. Hiebeler, Andrew Audibert, Emma Strubell, Isaac J. Michaud, An epidemiological model of internet worms with hierarchical dispersal and spatial clustering of hosts, 2017, 418, 00225193, 8, 10.1016/j.jtbi.2017.01.035 | |
11. | Wei-Ping Guo, Xiang Li, Xiao-Fan Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, 2007, 380, 03784371, 684, 10.1016/j.physa.2007.03.007 | |
12. | Tad Dallas, Stephanie Foré, Chemical attraction of Dermacentor variabilis ticks parasitic to Peromyscus leucopus based on host body mass and sex, 2013, 61, 0168-8162, 243, 10.1007/s10493-013-9690-x | |
13. | David E. Hiebeler, Amanda Keck Criner, Partially mixed household epidemiological model with clustered resistant individuals, 2007, 75, 1539-3755, 10.1103/PhysRevE.75.022901 | |
14. | Andreas I. Reppas, Konstantinos Spiliotis, Constantinos I. Siettos, On the effect of the path length of small-world networks on epidemic dynamics, 2012, 3, 2150-5594, 146, 10.4161/viru.19131 | |
15. | Carlo Piccardi, Renato Casagrandi, Inefficient epidemic spreading in scale-free networks, 2008, 77, 1539-3755, 10.1103/PhysRevE.77.026113 | |
16. | Ramakant Prasad, Surendra Kumar Sagar, Shama Parveen, Ravins Dohare, Mathematical modeling in perspective of vector-borne viral infections: a review, 2022, 11, 2314-8543, 10.1186/s43088-022-00282-4 | |
17. | Wenbin Gu, Wenjie Li, Feng Gao, Sheng Su, Baolin Sun, Wei Wang, Influence of human motion patterns on epidemic spreading dynamics, 2024, 34, 1054-1500, 10.1063/5.0158243 | |
18. | Wu Wang, Cong Li, Bo Qu, Xiang Li, Predicting epidemic threshold in complex networks by graph neural network, 2024, 34, 1054-1500, 10.1063/5.0209912 |