Mathematical modelling and control of echinococcus in Qinghai province, China

  • Received: 01 June 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : 62J12, 93A30, 97M10.

  • In this paper, two mathematical models, the baseline model and theintervention model, are proposed to study the transmission dynamicsof echinococcus. A global forward bifurcation completelycharacterizes the dynamical behavior of the baseline model. That is,when the basic reproductive number is less than one, thedisease-free equilibrium is asymptotically globally stable; when the number isgreater than one, the endemic equilibrium is asymptotically globally stable. Forthe intervention model, however, the basic reproduction number aloneis not enough to describe the dynamics, particularly for the casewhere the basic reproductive number is less then one. The emergenceof a backward bifurcation enriches the dynamical behavior of themodel. Applying these mathematical models to Qinghai Province,China, we found that the infection of echinococcus is in an endemicstate. Furthermore, the model appears to be supportive of humaninterventions in order to change the landscape of echinococcusinfection in this region.

    Citation: Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 425-444. doi: 10.3934/mbe.2013.10.425

    Related Papers:

    [1] Guangming Qiu, Zhizhong Yang, Bo Deng . Backward bifurcation of a plant virus dynamics model with nonlinear continuous and impulsive control. Mathematical Biosciences and Engineering, 2024, 21(3): 4056-4084. doi: 10.3934/mbe.2024179
    [2] Kai Wang, Zhidong Teng, Xueliang Zhang . Dynamical behaviors of an Echinococcosis epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1425-1445. doi: 10.3934/mbe.2017074
    [3] Yiwei He, Qianqian Cui, Zengyun Hu . Modeling and analysis of the transmission dynamics of cystic echinococcosis: Effects of increasing the number of sheep. Mathematical Biosciences and Engineering, 2023, 20(8): 14596-14615. doi: 10.3934/mbe.2023653
    [4] Tao Chen, Zhiming Li, Ge Zhang . Analysis of a COVID-19 model with media coverage and limited resources. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233
    [5] Ruixia Yuan, Shujing Gao, Jicai Huang, Xinan Zhang . Mathematical modeling the dynamics of Clonorchiasis in Guangzhou City of China. Mathematical Biosciences and Engineering, 2019, 16(2): 881-897. doi: 10.3934/mbe.2019041
    [6] Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651
    [7] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [8] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [9] A. K. Misra, Jyoti Maurya, Mohammad Sajid . Modeling the effect of time delay in the increment of number of hospital beds to control an infectious disease. Mathematical Biosciences and Engineering, 2022, 19(11): 11628-11656. doi: 10.3934/mbe.2022541
    [10] Jiaxin Nan, Wanbiao Ma . Stability and persistence analysis of a microorganism flocculation model with infinite delay. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480
  • In this paper, two mathematical models, the baseline model and theintervention model, are proposed to study the transmission dynamicsof echinococcus. A global forward bifurcation completelycharacterizes the dynamical behavior of the baseline model. That is,when the basic reproductive number is less than one, thedisease-free equilibrium is asymptotically globally stable; when the number isgreater than one, the endemic equilibrium is asymptotically globally stable. Forthe intervention model, however, the basic reproduction number aloneis not enough to describe the dynamics, particularly for the casewhere the basic reproductive number is less then one. The emergenceof a backward bifurcation enriches the dynamical behavior of themodel. Applying these mathematical models to Qinghai Province,China, we found that the infection of echinococcus is in an endemicstate. Furthermore, the model appears to be supportive of humaninterventions in order to change the landscape of echinococcusinfection in this region.


    [1] DPDx, July (2009), Web. February 2010, http://www.dpd.cdc.gov/DPDx/html/Echinococcosis.htm.
    [2] Jpn.J.Infect.Dis., 61 (2008), 242-246.
    [3] Parasitology, 131 (2005), 547-555.
    [4] in "National Survey of Important Human Parasitic Diseases" People's Health Publishing House, Beijing, (2008), 73-79.
    [5] http://www.chinacdc.cn/jkzt/tfggwssj/zzfb/crbjcykz/201004/t20100420_24967.htm.
    [6] http://disease.medlive.cn/wiki/entry/10001076_301_0.
    [7] Oxford Univ. Press, New York, 1991.
    [8] Journal of Mathematical Biology, 65 (2012), 201-236.
    [9] Mathematical Biosciences, 211 (2008), 333-341.
    [10] Applied Mathematics Letters, 17 (2004), 1105-1112,
    [11] Bulletin of Mathematical Biology, 70 (2008), 1098-1114.
    [12] Acta Tropica, 115 (2010), 119-125.
    [13] Veterinary Parasitology, 79 (1998), 35-51.
    [14] Veterinary Parasitology, 88 (2000), 35-42.
    [15] Model building analyis and interpretation, Wiley Series in Mathematical and Computational Biology, (2000).
    [16] Math. Biosci., 180 (2002), 183-201.
    [17] Canadian applied mathematics quarterly, 14 (2006), Number 2.
    [18] Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [19] Journal of Mathematical Biology, 36 (1998), 227-248.
    [20] Math. Biosci. Eng., 1 (2004), 361-404.
    [21] http://tongji.cnki.net/kns55/brief/result.aspx?stab=shuzhi.
    [22] Journal of Theoretical Biology, 254 (2008), 178-196.
    [23] Chinese Journal of Misdiagnostics, 11 (2011).
    [24] Acta Tropica, 77 (2000), 167-177.
  • This article has been cited by:

    1. Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, 2014, 100, 03784754, 88, 10.1016/j.matcom.2013.11.005
    2. Yunhu Zhang, Yanni Xiao, Modeling and analyzing the effects of fixed‐time intervention on transmission dynamics of echinococcosis in Qinghai province, 2021, 44, 0170-4214, 4276, 10.1002/mma.7029
    3. Kai Wang, Zhidong Teng, Xueliang Zhang, Dynamical behaviors of an Echinococcosis epidemic model with distributed delays, 2017, 14, 1551-0018, 1425, 10.3934/mbe.2017074
    4. David J. Gerberry, Practical aspects of backward bifurcation in a mathematical model for tuberculosis, 2016, 388, 00225193, 15, 10.1016/j.jtbi.2015.10.003
    5. Matthew A. Dixon, Uffe C. Braae, Peter Winskill, Martin Walker, Brecht Devleesschauwer, Sarah Gabriël, Maria-Gloria Basáñez, Justin V. Remais, Strategies for tackling Taenia solium taeniosis/cysticercosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniidae family transmission models, 2019, 13, 1935-2735, e0007301, 10.1371/journal.pntd.0007301
    6. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle, 2021, 2021, 1687-1847, 10.1186/s13662-021-03341-9
    7. Joshua A. Mwasunda, Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control, 2022, 41, 2238-3603, 10.1007/s40314-022-02034-7
    8. LEI WANG, KAI WANG, XIAOMEI FENG, YU ZHAO, DAQING JIANG, THE EFFECT OF STOCHASTIC VARIABILITY ON TRANSMISSION DYNAMICS OF ECHINOCOCCOSIS, 2021, 29, 0218-3390, 895, 10.1142/S0218339021500224
    9. Run Yang, Jianglin Zhao, Yong Yan, Andrei Korobeinikov, Stability Analysis and Optimal Control Strategies of an Echinococcosis Transmission Model, 2022, 2022, 1748-6718, 1, 10.1155/2022/6154866
    10. Jianguo Sun, Huina Zhang, Daqing Jiang, Mustafa R. S. Kulenovic, On the Dynamics Behaviors of a Stochastic Echinococcosis Infection Model with Environmental Noise, 2021, 2021, 1607-887X, 1, 10.1155/2021/8204043
    11. Jianglin Zhao, Run Yang, A dynamical model of echinococcosis with optimal control and cost-effectiveness, 2021, 62, 14681218, 103388, 10.1016/j.nonrwa.2021.103388
    12. Birhan Getachew Bitew, Justin Manango W. Munganga, Adamu Shitu Hassan, Mathematical modelling of echinococcosis in human, dogs and sheep with intervention, 2022, 16, 1751-3758, 439, 10.1080/17513758.2022.2081368
    13. Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov, Optimal control analysis of Taenia saginata bovine cysticercosis and human taeniasis, 2022, 16, 24056731, e00236, 10.1016/j.parepi.2021.e00236
    14. Marshall W. Lightowlers, Robin B. Gasser, Andrew Hemphill, Thomas Romig, Francesca Tamarozzi, Peter Deplazes, Paul R. Torgerson, Hector H. Garcia, Peter Kern, Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years, 2021, 51, 00207519, 1167, 10.1016/j.ijpara.2021.10.003
    15. Juan Li, Zhen Jin, Youming Wang, Xiangdong Sun, Quangang Xu, Jingli Kang, Baoxu Huang, Huaiping Zhu, Data‐driven dynamical modelling of the transmission of African swine fever in a few places in China, 2022, 69, 1865-1674, 10.1111/tbed.14345
    16. Chacha S. Chacha, Mussa A. Stephano, Jacob I. Irunde, Joshua A. Mwasunda, Cystic echinococcosis dynamics in dogs, humans and cattle: Deterministic and stochastic modeling, 2023, 51, 22113797, 106697, 10.1016/j.rinp.2023.106697
    17. Joshua A. Mwasunda, Jacob I. Irunde, Stability and bifurcation analysis of a Taenia saginata model with control measures, 2023, 13, 26667207, 100311, 10.1016/j.rico.2023.100311
    18. Weixin Chen, Xinzhong Xu, Qimin Zhang, Hopf bifurcation and fixed-time stability of a reaction–diffusion echinococcosis model with mixed delays, 2024, 03784754, 10.1016/j.matcom.2024.04.002
    19. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Ignacio Barradas, Andrei González-Galeano, Breaking the Cycle of Echinococcosis: A Mathematical Modeling Approach, 2025, 10, 2414-6366, 101, 10.3390/tropicalmed10040101
    20. Richard Lagos, Juan Pablo Gutiérrez-Jara, Beatriz Cancino-Faure, Leidy Yissedt Lara-Díaz, Aníbal Coronel, Mar Siles-Lucas, The role of host mobility in the transmission and spread of Echinococcus granulosus: A Chile-based mathematical modeling approach, 2025, 19, 1935-2735, e0012948, 10.1371/journal.pntd.0012948
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3031) PDF downloads(590) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog