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Abstract. In this paper, two mathematical models, the baseline model and
the intervention model, are proposed to study the transmission dynamics of

echinococcus. A global forward bifurcation completely characterizes the dy-

namical behavior of the baseline model. That is, when the basic reproductive
number is less than one, the disease-free equilibrium is asymptotically glob-

ally stable; when the number is greater than one, the endemic equilibrium is

asymptotically globally stable. For the intervention model, however, the basic
reproduction number alone is not enough to describe the dynamics, particu-

larly for the case where the basic reproductive number is less then one. The

emergence of a backward bifurcation enriches the dynamical behavior of the
model. Applying these mathematical models to Qinghai Province, China, we

found that the infection of echinococcus is in an endemic state. Furthermore,
the model appears to be supportive of human interventions in order to change

the landscape of echinococcus infection in this region.

1. Introduction. Echinococcosis is a zoonotic parasitic disease. It is caused by
infection with the larvae of echinococcus. The life of an echinococcus depends on
two different hosts, a definitive host, such as dogs, wolves, foxes; and an intermediate
host including sheep, deer and moose. In addition to these animals, humans are
also important intermediate hosts to echinococcus granulosusis. The reproduction
process of echinococcus starts within a definitive host. The eggs released by adult
echinococcus granulosus do not stay in the body of the definitive host. Instead,
they are passed in the feces of the definitive host. An intermediate host becomes

2010 Mathematics Subject Classification. 62J12, 93A30, 97M10.
Key words and phrases. Echinococcosis, mathematical model, backward bifurcation, global

stability.
This study is supported by the Natural Science item of China under grant No.11271246 and

the International Development Research Center of Canada (Number 104519-010).

425

http://dx.doi.org/10.3934/mbe.2013.10.425


426 LIUMEI WU, BAOJUN SONG, WEN DU AND JIE LOU

infected by accidently ingesting an egg. As a result of the infection, the life of
echinococcus continues within the body of the new host. The ingested egg then
hatches and releases an oncosphere within the body of the intermediate host. Once
the oncosphere invades the organs of the intermediate host, such as liver, brain
and lungs, it develops into a cyst. The cyst slowly grows and, in the process,
creates protoscolices. A definitive host will become infected after ingesting the
cyst-containing organs of the infected intermediate host. The protoscolices ingested
by the definitive hosts then develop into adult worms and the cycle starts all over
again [1]. The life cycle of echinococcus granulosus is shown in Figure 1.

Figure 1. The life cycle of echinococcus granulosus.

Both cystic echinococcosis (CE) and alveolar echinococcosis (AE) are endemic in
China, and they are one of the most challenging issues for public health and animal
husbandry in the western region of China [2]. The canid intestinal tapeworms
echinococcus granulosus and echinococcus multilocularis are the causative agents
of infection of echinococcosis [3].

Human CE is associated with animal husbandry. In China, echinococcosis are
found mainly in the western regions, including the Xinjiang Uygur autonomous
region, Qinghai, Gansu and Sichuan provinces. A national survey of important
parasitic diseases showed that the average prevalence of echinococcosis in these
regions was about 1.08% in 2004 [4]. But the figures in some counties were way
above the average. For example, the prevalence was as high as 9.74% from 1997 to
2001 in Chengduo county of Qinghai province; and it was 7.01% in 2006 [5]. Some
measures, deworming domestic dogs, for instance, have been in practice against
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the echinococcosis in China. To get rid of the worms from the dogs, praziquantel is
given to each dog once a month. Usually the drug is mixed with the bait so that the
dog can swallow it. Five days after the dog receives the drugs, the dog’s feces are
collected and buried or burnt in order to prevent echinococcus eggs from spreading
[6]. Other measures, such as hunting wild dogs regardless of the epidemiological
status, also can be taken.

Over the last few decades, mathematical models have been formulated in the
context of the dynamics of parasite disease[7], such as schistosomiasis and malaria [8,
9, 10, 11, 12]. Particularly interesting mathematic models in studying the spreading
of echinococcosis can be seen in [13, 14], for example. A survey of Echinococcus
granulosus, Taenia hydatigena and T. ovis for sheep and goats were undertaken
in order to investigate the transmission dynamics of these parasites in northern
Jordan [13]. It was found that Echinococcus granulosus was in an endemic steady
state with no evidence of protective immunity in the intermediate host and the
basic reproduction ratio was estimated between 1.5 and 1.8. In 2000, a study
also in northern Jordan [14] suggested that the intensity of intermediate infection
in donkeys increased with age in a linear fashion. The prevalence also increased
with age approaching an asymptotic prevalence in the oldest animals. This implies
that there was minimal regulation of the parasite population by intermediate host
immunity.

To investigate the spread of echinococcus granulosus in China, we propose and
study two epidemic models in this paper. We first construct a baseline model
considering sheep, dogs and echinococcus granulosus’s eggs and study the global
dynamics. We then discuss an intervention model which incorporates deworming
dogs. We found backward bifurcation of this model, which suggests that the tra-
ditional requirement for the basic reproduction number to be below unity though
necessary is not sufficient for disease control in this case.

The rest of this paper is organized as follows. In section 2, we develop and
analyze the baseline mathematical model. We analyze the model with intervention
in section 3. In section 4, uncertainty and sensitivity analysis are performed then we
apply the model to some regions in China. A discussion section on the implications
of the results completes the paper.

2. The baseline model. The baseline model is about the spreading of echinococ-
cus granulosusin in the cycle of dog-egg-sheep-dog. Both sheep and dogs are divided
into the susceptible and the infected, denoted by Sd , Id , Ss and Is , respectively. The
echinococcus granulosus’ eggs are denoted by E. Then the baseline model can be
described by the following system of ordinary differential equations:

dSd
dt

= Λd − ddSd − (αs + ds)βsdSdIs,

dId
dt

= (αs + ds)βsdSdIs − (αd + dd)Id,

dE

dt
= δId − deE,

dSs
dt

= Λs − dsSs − βesSsE,

dIs
dt

= βesSsE − (αs + ds)Is.

(1)
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In system (1), subscript d denotes dog and s denotes sheep. Λd describes the
recruitment rate of the dog population; dd is the natural death rate of dogs; αd is
the disease-induced death rate of infected dogs; A new infection of dogs comes from
the food that the dogs ingest (fed with haslets of infected sheep by humans). βsd
describes the likelihood that a dog is infected given that the dog eats infected sheep
haslets. Then the incidence rate of dogs is (αs + ds)βsdSdIs, which is proportional
to the death rate of sheep. It is a quadratic form but it is the product of susceptible
dogs and infected dead sheep. δ is the number of echinococcus granulosus’s eggs
produced by an infected dog. de is mortality rate of echinococcus granulosus’s eggs.
Parameters Λs, ds, αs, βes have similar meanings. All parameters in system (1) are
positive.

For system (1), it is easy to observe that the feasible region is

Γ =

{
(Sd, Id, E, Ss, Is) : 0 ≤ Sd + Id ≤

Λd
dd
, 0 ≤ E ≤ δΛd

ddde
, 0 ≤ Ss + Is ≤

Λs
ds

}
.

The closed set Γ is positively invariant to system (1).

2.1. The global stability of of the disease-free equilibrium. The disease-

free equilibrium of system (1) is U0 =
(

Λd

dd
, 0, 0, Λs

ds
, 0
)
. Using the next-generation

operator approach [15, 16], we obtain the basic reproductive number

R0 = 3

√
δβsdβesΛsΛd

dsddde(αd + dd)
. (2)

Choosing V = Id + αd+dd
δ E + βsdΛd

dd
Is as a Lyapunov function, one can show that

the disease-free equilibrium is asymptotically stable regardless of initial data, as
stated in Theorem 2.1 below.

Theorem 2.1. Consider system (1). The disease-free equilibrium U0 is globally
asymptotically stable whenever R0 < 1.

The basic reproductive number in (2) is in a mathematically concise form. To
better understand this number, we rewrite it as

R0 = 3

√(
Λd
dd

βsd(αs + ds)

αd + dd

)(
δ

de

)(
Λs
ds

βes
αs + ds

)
. (3)

This form now reflects the life cycle of echinococcus granulosus. The average number
of eggs of echinococcus granulosus that could possibly be ingested by a typical sheep
is measured by δ

de
; while Λs

ds

βes

αs+ds
accounts for the average number of infected sheep

by a typical egg and Λd

dd

βsd(αs+ds)
αd+dd

quantifies the average number of the infected dogs
by a typical infected sheep. Overall, the basic reproduction number is the geometric
mean of these fundament components.

2.2. The global stability of endemic equilibrium. In this subsection, we will
show the existence of endemic equilibrium of system (1) and it’s global stability.

Theorem 2.2. When R0 > 1, there exists a unique endemic equilibrium U∗ for
system (1); and the endemic equilibrium U∗ is globally asymptotically stable.
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Proof. Let U∗ = (S∗d , I
∗
d , E

∗, S∗s , I
∗
s ) be an endemic equilibrium for system (1). We

first use E∗ to express the remaining components of U∗.

S∗d =
Λd(ds + βesE

∗)

CE∗ + dd(ds + βesE∗)
, (4)

I∗d =
BE∗

δ(CE∗ + F + ddβesE∗)
, (5)

S∗s =
Λs

ds + βesE∗
, (6)

I∗s =
ΛsβesE

∗

(ds + αs)(ds + βesE∗)
, (7)

where

B =
δβsdβesΛsΛd
αd + dd

, C = βsdβesΛs, F = ddds. (8)

We then obtain E∗ = B−deF
δ(C+ddβes) . Since R0 = 3

√
B
deF

, if R0 > 1, then B > deF .

That is, E∗ > 0 is equivalent to R0 > 1, there exists only one endemic equilibrium
for system (1) when R0 > 1.

Obviously, the linearization matrix of system (1) around U∗ is

J =



−dd − nβsdI∗s 0 0 0 −nβsdS∗d

nβsdI
∗
s −m 0 0 nβsdS

∗
d

0 δ −de 0 0

0 0 −βesS∗s −h 0

0 0 βesS
∗
s βesE

∗ −n


. (9)

The characteristic polynomial of the linearization matrix is

(λ+ αd + dd)(λ+ de)(λ+ αs + ds)(λ+ ds + βesE
∗)(λ+ CE∗

ds+βesE∗ + dd)

−de(αd + dd)(αs + ds)(λ+ dd)(λ+ ds) = 0
(10)

Rewrite the characteristic polynomial with simple form

λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0
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where

a1 = de + h+m+ n+ l > 0,

a2 = h(de +m+ n+ l) + l(m+ n) + de(m+ n+ l) +mn > 0,

a3 = hlm+ hln+ hmn+ lmn+ hlde + hnde + lmde + hnde + lnde > 0,

a4 = hlmn+ hlmde + hlnde + hmnde + lmnde −mnde(ds + dd) > 0,

a5 = hlmnde −mndeddds
= mnde(CE

∗ + ddβesE
∗) > 0,

h = ds + βesE
∗,

l = CE∗

ds+βesE∗ + dd,

m = αd + dd,

n = αs + ds.

According to Routh-Hurwitz criteria, we can obtain

H1 = a1 > 0, H2 =

∣∣∣∣ a1 a3

1 a2

∣∣∣∣ , H3 =

∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣ ,

H4 =

∣∣∣∣∣∣∣∣
a1 a3 a5 0
1 a2 a4 0
0 a1 a3 a5

0 1 a2 a4

∣∣∣∣∣∣∣∣ , H5 =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5 0 0
1 a2 a4 0 0
0 a1 a3 a5 0
0 1 a2 a4 0
0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣
.

Through the complex calculation, we obtain

H2 = 2lmn+ 2hmn+ 2hnde + 2hmde + 2lden+ 2lmde + 2hlm+ 2hlde+

2hnl + 3mnde + (h+ l +m+ n)de
2 + (de + l +m+ n)h2 + (de + l

+h+ n)m2 + (de + l +m+ h)n2 + (de + h+m+ n)l2 > 0,

H3 > 2hlde
3(m+ n) + 2mn(hl2 + hde + l2de)(h+ l) + 2hlde(hm+ nl)(h+

l + n+ de) + (2hm2lde + 2h2nlde + h2m2l)(h+m+ de) + de(h
2m2

+h2n2 + l2m2)(m+ l + n+ h) + (4hlmnde + hl2n2)(m+ l + n+ de)

+n(l2de
2 + l2m2 + h2m2)(m+ l + h+ de) +mnde(ds + dd)(h+ l+

n+m+ de)(m+ l + n+ de) + 2lmnh2(m+ h+ n) + 2lmhn2(l + n)

+2lhnm2(m+ l + n) + 2hmdel
2(m+ l + de) + 2hlden

2(de + h+ n)

+2ln2d2
e(m+ h+ n+ de) + a1(mnde(mh+ml + nh+ nl + deh+ del)

+m2de
2h+ h2n2l + h2l2m+ l2m2h+ h2de

2m+ l2de
2h+ n2de

2h+

m2ne
2h+ h2n2m+m2de

2l + l2n2de + h2l2n+m2n2l + h2de
2l+

l2de
2m+ l2n2m+ h2de

2n+ h2l2de) > 0.
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With the same method, we also have H4 > 0. Since H5 = a5 ·H4, then H5 > 0.
Therefore, we can confirm that U∗ is locally asymptotically stable under the con-
dition R0 > 1.

Now we will focus on the global stability of U∗. Consider a Lyapunov function[17]

V = (Sd − S∗d)− S∗d ln
Sd
S∗d

+

[
(Id − I∗d )− I∗d ln

Id
I∗d

]
+ B

[
(E − E∗)− E∗ ln

E

E∗

]
+C

[
(Ss − S∗s )− S∗s ln

Ss
S∗s

]
+ D

[
(Is − I∗s )− I∗s ln

Is
I∗s

]
with B =

αd + dd
δ

, C =
de(αd + dd)

δβesS∗s
, D = βsdS

∗
d . Computing the derivative of V

along the trajectories of system (1), we obtain

dV

dt
= Λd − ddSd − (αs + ds)βsdSdIs − [Λd − ddSd − (αs + ds)βsdSdIs]

S∗d
Sd

+[
(αs + ds)βsdSdIs − (αd + dd)Id − [(αs + ds)βsdSdIs − (αd + dd)Id]

I∗d
Id

]
+B

[
δId − deE − (δId − deE)

E∗

E

]
+C

[
Λs − dsSs − βesSsE − (Λs − dsSs − βesSsE)

S∗s
Ss

]
+D

[
βesSsE − (αs + ds)Is − [βesSsE − (αs + ds)Is]

I∗s
Is

]
.

It follows from equations (4) and (6) that
de(αd + dd)

δβesS∗s
= βsdS

∗
d which further implies

C = D. So, a direct calculation leads to

V ′ = ddS
∗
d

(
2− S∗d

Sd
− Sd
S∗d

)
+R ds

βes

(
2− S∗s

Ss
− Ss
S∗s

)
+ 2RE∗ + PS∗dI∗s

+PS∗dIs +QI∗d − P
(S∗d)2I∗s
Sd

− P SdIsI
∗
d

Id
−QE

∗

E
Id −R

S∗sE
∗

Ss

−PR Is
βsdβesS∗s

−RSsI
∗
sE

S∗s Is
+ PR I∗s

βsdβesS∗s
,

(11)

where P = (αs + ds)βsd, Q = αd + dd, R =
de(αd + dd)

δ
. Noticing the first two

terms in (11) are negative and δI∗d = deE
∗, we drop them

V ′ = 2RE∗ + PS∗dI∗s +QI∗d − P
(S∗d)2I∗s
Sd

− P SdIsI
∗
d

Id
− P S

∗
dI
∗
s IdE

∗

I∗dE
−RS

∗
sE
∗

Ss

−RSsI
∗
sE

S∗s Is
+ PR I∗s

βsdβesS∗s

≤ 3PS∗dI∗s + 2RE∗ − P (S∗d)2I∗s
Sd

− P SdIsI
∗
d

Id
− P S

∗
dI
∗
s IdE

∗

I∗dE
−RS

∗
sE
∗

Ss

−RSsI
∗
sE

S∗s Is
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Applying the inequality of arithmetic and geometric means (for non-negative real

numbers a1, a2, · · · an, a1+a2+···+an
n ≥ (a1a2 · · · an)

1
n holds) to the last five negative

terms, we obtain that

V ′ ≤ −5 5
√
P3R2(S∗d)3(I∗s )3(E∗)2 + 3PS∗dI∗s + 2RE∗.

Since RE∗ = PS∗dI∗s , we have

V ′ ≤ −5RE∗ + 5RE∗ = 0.

Obviously, the largest compact invariant set in {(Sd, Id, E, Ss, Is) ∈ Γ : V ′ = 0} is
the singleton {U∗} when R0 > 1. Therefore, it follows form LaSalle’s Invariance
Principle [18] that the endemic equilibrium U∗ of system (1) is globally asymptoti-
cally stable whenever it comes to exist. This completes the proof.

Theorems 2.1 and 2.2 give a clear picture for the global dynamics of the baseline
model. The bifurcation at R0 = 1 is of forward type and it is a global one. We,
naturally, combine these two theorems into a whole theorem.

Theorem 2.3. The global dynamics of the baseline model (1) is completely de-
termined by the basic reproductive number R0, regardless of initial values. When
R0 < 1, the disease-free equilibrium is the global attractor, while if R0 > 1, the
unique endemic equilibrium is the global attractor.

3. Model with intervention. The exercises of deworming echinococcosis eggs
and killing wild dogs are considered to construct a more practical mathematical
model. The human population is introduced into the model to incorporate human
interventions. Epidemiologically, the human population is also divided into suscep-
tible and infected subpopulations, denoted by Sh and Ih respectively. H = Sh + Ih
is the total human population. Then the equations for the intervention model read

dSd
dt

= Λd − ddSd − (αs + ds)βsdSdIs,

dId
dt

= (αs + ds)βsdSdIs − (αd + dd)Id,

dE

dt
= δId − deE − chHE,

dSs
dt

= Λs − dsSs − βesSsE,

dIs
dt

= βesSsE − (αs + ds)Is,

dSh
dt

= Λh − βehShE − dhSh + µIh,

dIh
dt

= βehShE − (µ+ dh + αh)Ih.

(12)

In system (12), subscript h denotes human. Λh describes the birth rate of the
human; dh is the natural death rate of human; αh is the disease-induced death rate;
βeh describes the transmission of echinococcosis of humans; µ is the recovery rate;
ch is the intervention coefficient. The rest of all other parameters have the same
meanings as in model (1).

We assume that human efforts in deworming echinococcosis eggs and deep buried
dog feces are proportional to the human population. Hence, chHE is used to account
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for losing rate of echinococcosis eggs because of the human intervention. Humans
may get infected by accidently inhaling echinococcosis eggs, which is modeled by
the mass action law as consistently used for other incidence rates in this study.

We will explore model (12) in the following positively invariant region:

Γ =

{
(Sd, Id, E, Ss, Is, Sh, Ih) ∈ R7

+ : 0 ≤ Sd + Id ≤
Λd
dd
, 0 ≤ E ≤ δΛd

ddde
,

0 ≤ Ss + Is ≤
Λs
ds
, 0 ≤ Sh + Ih ≤

Λh
dh

}
.

3.1. The disease-free equilibrium. The disease-free equilibrium of system (12)
is U I0 = (S0

d , 0, 0,

S0
s , 0, S

0
h, 0) with S0

d = Λd

dd
, S0

s = Λs

ds
and S0

h = Λh

dh
being the asymptotic carrying

capacities for dog population, sheep and human, respectively. The intervention
pressure of humans against echinococcosis eggs is measured through ch

Λh

dh
, conve-

niently denoted by kh, which is the per-capita losing rate of the eggs due to the
human’s intervention. Applying the next-generation operator approach to model
(12) finds the basic reproduction number

RI0 = 3

√
δβsdβesΛsΛd

dsdd(αd + dd) (de + kh)
.

Theorem 3.1. The disease-free equilibrium U I0 of system (12) is locally asymptot-
ically stable if RI0 < 1.

The basic reproductive numbers for the baseline model and for the intervention

model are closely related: the relationship is RI0 = R0
3

√
de

de+kh
. When kh = 0 (no

human intervention), RI0 and R0 agree. However, when human intervention comes

to play, the basic reproductive number is reduced by a factor of 3

√
de

de+kh
< 1. Since

increasing intervention efforts results in decreasing the magnitude of echinococcus
infection, human intervention is a practical approach to controlling echinococcus.
Our simulations and sensitive analysis in later sections will further support this
result.

3.2. The endemic equilibria. Now we turn to study the existence of endemic
equilibrium of system (12).

Theorem 3.2. When RI0 > 1, there exists a unique endemic equilibrium Û for
system (12).

Proof. Let Û = (Ŝd, Îd, Ê, Ŝs, Îs, Ŝh, Îh) be an endemic equilibrium for (12). We

use Ê to express the remaining components of Û .

Ŝd =
Λd(ds + βesÊ)

CÊ + dd(ds + βesÊ)
, Îd =

BÊ

δ(CÊ + F + ddβesÊ)
,

Ŝs =
Λs

ds + βesÊ
, Îs =

ΛsβesÊ

(ds + αs)(ds + βesÊ)
,

Ŝh =
Λh(A+ µ)

A(βehÊ + dh) + µdh
, Îh =

ΛhβehÊ

A(βehÊ + dh) + µdh
,
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where the expressions for B,C, F are the same as in section 2 (see (8)), A = dh+αh.

From the expressions of Îd, Ŝh and Îh, we get that

δÎd =
BÊ

CÊ + F + ddβesÊ
(13)

ch(Ŝh + Îh)Ê =
Λh(A+ µ+ βehÊ)

A(βehÊ + dh) + µdh
(14)

Substituting these two expressions into the third equation of system (12), we arrive

at an equation about Ê alone

B

CÊ + F + ddβesÊ
=
chΛh(A+ µ+ βehÊ)

A(βehÊ + dh) + µdh
+ de. (15)

Equation (15) can be simplified into

H(Ê)2 + KÊ + L = 0, (16)

where

H = ACdeβeh +Adddeβesβeh + CΛhchβeh + Λhchddβesβeh > 0,

K = Fβeh(D + αhde) +D(A+ µ)(C + ddβes)−
ADF (RI0)3

dh
βeh,

L = DF (A+ µ)(1− (RI0)3),
D = dhde + chΛh.

The number of endemic equilibrium is determined by the number of positive
solutions of the quadratic equation (16). Since L < 0 holds if and only if RI0 > 1,
(16) has a unique positive root when RI0 > 1. Consequently, there exists a unique
endemic equilibrium for system (12) whenever RI0 > 1.

When RI0 < 1, quadratic equation (16) might have a pair of positive solutions.
This provides an opportunity for an emergence of multiple endemic equilibria.

Theorem 3.3. If Rc < (RI0)3 < 1, system (12) have two positive equilibria. where

Rc = max{Ra,Rb},

Ra =
dh[βehF (D + αhde) + (µ+A)(C + βesdd)D]

AFDβeh
,

Rb =
2dh [AFβeh(D + αhde) + (µ+A)(C + βesdd)(AD − 2dh(D + αhde))]

A2DFβeh
.

Proof. Because equilibrium of system (12) must satisfy (16), system (12) has two
endemic equilibria if and only if

L > 0, K < 0 and K2 − 4HL > 0.

First, L > 0 is guaranteed because of RI0 < 1. Then, K < 0 if and only if

Fβeh(D + αhde) +D(A+ µ)(C + ddβes) <
AFDβeh

dh
(RI0)3,
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which is equivalent to Ra < (RI0)3. Finally, let us check K2 − 4HL > 0.

K2 − 4HL = [D(µ+A)(C + βesdd)− Fβeh(D + αhde)]
2 +

(
ADFβeh

dh
(RI0)3

)2

−2ADFβeh
dh

[D(µ+A)(C + βesdd) + Fβeh(D + αhde)](RI0)3

+4[DFβeh(µ+A)(C + βesdd)(D + αhde)](RI0)3.

Hence, K2 − 4HL > 0 is equivalent to

2dh (AFβeh(D + αhde) + (µ+A)(C + βesdd)(AD − 2dh(D + αhde)))

A2DFβeh
= Rb,

and

Rb < (RI0)3

Therefore, system (12) has two positive equilibria when Rc < (RI0)3 < 1.

Theorem 3.3 has established the existence of multiple equilibria without knowing
any information about their stability. Next we use the bifurcation approach to settle
down this concern.

The following lemma provides a criteria for determining if a bifurcation is back-
ward or forward at RI0 = 1. Its general form and proof can be found in [19, 16, 20].

Lemma 3.4. [20] Consider a system of ordinary differential equations

dx

dt
= f(x, φ), f : Rn → Rn and f ∈ C2(Rn × R) (17)

Assume that

1. Dxf(0, 0) = ( ∂fi∂xi
(0, 0)) is the linearization matrix of system (17) around the

equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of Dxf(0, 0)
and all other eigenvalues have negative real parts;

2. Matrix Dxf(0, 0) has a right null vector ( a right eigenvector Dxf(0, 0) asso-
ciated with the zero eigenvalue) ω and a left null vector ν. associated with the
zero eigenvalue

Let fk be the kth component of f and

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

If both a and b are positive, equilibrium 0 is asymptotical stable and there exist
unstable positive equilibria when φ < 0 and |φ| � 1. That is, the direction of
the bifurcation at φ = 0 is backward. On the other hand, if a < 0 and b > 0,
equilibrium 0 is asymptotical stable and there exist stable positive equilibria when
φ > 0 and |φ| � 1. That is, the direction of the bifurcation at φ = 0 is forward.

Applying Lemma 3.4 to our model (12), we are able to determine direction of
the bifurcation at RI0 = 1.
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Theorem 3.5. System (12) undergoes a backward bifurcation at RI0 = 1 if

Rd =

(
ds

βes(dhde + chΛh)

)(
dd

βsdΛs + dd

)(
khβehαh

µ+ αh + dh

)
> 1. (18)

If Rd < 1, the bifurcation at RI0 = 1 is forward.

Proof. We choose βes as the bifurcation parameter. Then RI0 = 1 corresponds to

βes =
dsdd(αd + dd)(de + kh)

δβsdΛsΛd
. (19)

The linearization matrix of system (12) around U I0 is

J =



−dd 0 0 0 −a1 0 0

0 −(αd + dd) 0 0 a1 0 0

0 δ −a2 0 0 0 0

0 0 −βesS0
s −ds 0 0 0

0 0 βesS
0
s 0 −(αs + ds) 0 0

0 0 −βehS0
h 0 0 −dh µ

0 0 βehS
0
h 0 0 0 −a3



, (20)

where a1 = (αs + ds)βsdS
0
d , a2 = de + kh, a3 = µ+ αh + dh.

The characteristic polynomial of the linearization matrix is

λ(λ+ dd)(λ+ ds)(λ+ dh)(λ+ µ+ αh + dh)
·[λ2 + (αd + dd + de + kh + αs + ds)λ+ [(αd + dd)(de + kh)
+(αd + dd)(αs + ds) + (de + kh)(αs + ds)]] = 0

(21)

Explicitly, there are 5 known eigenvalues

λ1 = 0, λ2 = −ds, λ3 = −dh, λ4 = −(µ+ αh + dh), λ5 = −dd.
The other two eigenvalues λ6, λ7 are governed by the following quadratic equation

λ2 + (αd + dd + de + kh + αs + ds)λ
+[(αd + dd)(de + kh) + (αd + dd)(αs + ds) + (de + kh)(αs + ds)] = 0

which guarantees <{λ6} < 0 and <{λ7} < 0. Hence, λ1 = 0 is a simple eigenvalue
and all other eigenvalues have negative real parts, which meet the hypothesis of
Lemma 3.4. A right eigenvector associated with the simple eigenvalue λ = 0 is

ω = (ω1, ω2, ω3, ω4, ω5, ω6, ω7),

where ω1 = − (αd + dd)(de + kh)

δdd
, ω2 =

(de + kh)

δ
, ω3 = 1, ω4 = −βesΛs

d2
s

,

ω5 =
βesΛs

ds(αs + ds)
, ω6 = − (αh + dh)

dh

βeh
Λh

dh

µ+ αh + dh
, ω7 =

βeh
Λh

dh

µ+ αh + dh
.

Similarly, a left eigenvector associated with λ = 0 is

ν =

(
0,

dd
βsdΛd

,
dd(αd + dd)

δβsdΛd
, 0, 1, 0, 0

)
.
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The application of Lemma 3.4 requires the computation of two quantities a and b
using ω, ν, and the second derivatives of the vector field. The results are

a = 2ν2ω1ω5
∂2f2

∂Sd∂Is
+ 2ν3ω3ω6

∂2f3

∂Sh∂E
+ 2ν3ω3ω7

∂2f3

∂Ih∂E
+ 2ν5ω3ω4

∂2f5

∂Ss∂E

= 2ν2ω1ω5(αs + ds)βsd + 2ω3ω4βes − 2chν3ω3(ω6 + ω7)

= −2
dd

βsdΛd

(αd + dd)(de + ch
Λh

dh
)

δdd

βesΛs
ds(αs + ds)

(αs + ds)βsd − 2
β2
esΛs
d2
s

+2ch
dd(αd + dd)

δβsdΛd

αh
dh

βeh
Λh

dh

µ+ αh + dh

= −2
(αd + dd)(de + kh)βesΛs

δdsΛd
− 2

β2
esΛs
d2
s

+ 2ch
dd(αd + dd)

δβsdΛd

αh
dh

βeh
Λh

dh

µ+ αh + dh

= −2
βesΛs
ds

(
(αd + dd)(de + kh)

δΛd
+
βes
ds

)
+ 2ch

dd(αd + dd)

δβsdΛd

αh
dh

βeh
Λh

dh

µ+ αh + dh

= −2
β2
esΛs
d2
s

(
βsdΛs
dd

+ 1) + 2
dd(αd + dd)

δβsdΛd

αh
dh

βehkh
µ+ αh + dh

b = ω4
∂2f5

∂Ss∂βes
+ ω3

∂2f5

∂E∂βes

= S0
s > 0.

We rearrange the inequality a > 0 as

Rd =

(
ds

βes(dhde + chΛh)

)(
dd

βsdΛs + dd

)(
khβehαh

µ+ αh + dh

)
> 1.

That is, a > 0 holds if and only if Rd > 1. Therefore, system (12) undergoes a
backward bifurcation at RI0 = 1 if Rd > 1. When Rd < 1 the bifurcation at RI0 = 1
is forward.

Figure 2 illustrates the appearance of backward bifurcation. As can be seen that
when RI0 < 1, the stable disease-free equilibrium and a stable endemic equilibrium
co-exist, thus creating a bi-stability situation. This figure suggests that the classical
requirement for the basic reproduction numberRI0 to be below unity is not sufficient
for disease control when a backward bifurcation happens. For instance, we estimate
that Rc = 0.458 from the data of Chengduo county of Qinghai province, China.
So, the basic reproductive number RI0 should be smaller than 0.458 to eliminate
echinococcosis from this region regardless of the initial epidemic status.

Comparing Theorem 2.3 with Theorem 3.5, we find that the human intervention
is the driver behind the occurrence of the backward bifurcation. The condition for
the appearance of backward bifurcation in equation (18) is rather complicated, but
we still can look into it for simple cases. If we consider Rd(ch) as a function of ch
(all other parameters are fixed), we can find Rd(ch) is monotonic increasing with

lim
ch→∞

Rd(ch) =
dddsβehαh

βesdh(βsdΛs + dd)(µ+ αh + dh)
.

This is the absolute maximum value for Rd if all other parameters are fixed. If
dddsβeh

βesdh(βsdΛs+dd)
αh

(µ+αh+dh) < 1, then for whatever the human effort is in fighting

against echinococcosis, the bifurcation at RI0 = 1 is always forward. This is a
condition to avoid the occurrence of backward bifurcation.
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Figure 2. Illustration of a backward bifurcation. Plot of E at
equilibrium versus the bifurcation parameter βes. The blue line
presents the unstable equilibria, and the red line presents the stable
equilibria. βeh = 0.011 is fixed and other parameter values are
given in Table 1.

4. Numerical simulations.

4.1. Mean values of parameters and initial values. In the following, we shall
present some simulations for model (12) using the data from Chengduo county,
Qinghai province of China. The data concerning echinococcosis are obtained mainly
from Chinese Center for Disease Control and Prevention [5]. However, these involv-
ing the number of dogs and sheep cannot be acquired directly. We have to rely on
other resources or estimation. The mean values of estimated parameters are listed
in Table 1. The numbers of dogs, sheep, human were estimated according to the
China Yearbook [21] and Chinese Center for Disease Control and Prevention [5].
The initial values are given in Table 2.

4.2. Uncertainty and sensitivity analysis to RI0. Our analysis in previous
sections has clearly demonstrated that the quantity of RI0 plays a crucial role in
determining the dynamic behavior of our models. We, therefore, need more specific
information on this re-parameterized quantity. Table 1 roughly estimates the mean
value for each parameter. Variations of these parameters in our deterministic model
lead to uncertainty to model predictions since the basic reproductive number varies
with parameters. The variation of the basic reproductive number is studied by
looking into the distribution of RI0 using Latin Hypercube Sampling.
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Table 1. Definitions, distributions and values for the parameters

Para Description Value Source
Λd annual crop of newborn puppies 4000 estimated
Λs annual crop of newborn lambs 5000 [21]
Λh human annual birth population 2247 [21]
αd dog disease-related death rate 0.53 estimated
dd dog natural mortality rate 0.21 estimated
αs sheep disease-related death rate 0.0093 estimated
ds sheep natural mortality rate 0.00525 [21]
αh human disease-related death rate 0.04 [21]
dh human natural mortality rate 0.014 [21]
µ human recovery rate 0.02 estimated
δ number of eggs produced by per dog 200 estimated
βes eggs-to-sheep transmission rate 0.015 estimated
βsd eggs-to-human transmission rate 0.002 estimated
βeh dog-to-human transmission rate 0.0011 estimated
ch intervention coefficient 0.15 estimated
de eggs mortality rate 1 [24]

Table 2. Initial Conditions

Variable Description Initial Value
Sd susceptible dog 6000
Id infected dog 2000
E echinococcosis egg 50
Ss susceptible sheep 78680
Is infected sheep 51320
Sh susceptible human 54264
Ih infected human 1736

Each parameter is treated as a random variable with its mean value listed in
Table 1. We simply assume that all these parameters have uniform distributions.
Figure 3 draws the histograms of the parameters from running Latin hypercube
sampling 1, 000 times. With these 1, 000 runs of Latin hypercube sampling, the
derived sampling distribution of RI0 is shown in Figure 4. This sampling concludes
that the mean of RI0 is 1.83 and the standard deviation is 1.563. Hence, statistically
we are very confidential that echinococcosis is in an endemic state since RI0 > 1
unless further action is taken to change RI0. The Latin hypercube sampling also
generates P (RI0 > Rc) = 0.927, that is, the probability that RI0 is bigger than Rc
is 0.927. One can see there is little chance to bring RI0 less than Rc. Thus, more
likely we will observe endemic cases.

Next we use sensitivity analysis to analyze the influence of each parameter on the
basic reproductive number. Partial rank correlation coefficients (PRCC) between
the basic reproductive number and each parameter were derived from the previous
1, 000 runs of Latin hypercube sampling. The ordering of these PRCCs corresponds
to the level of statistical influence that the parameter has on the variability of the
RI0 [22]. The larger PRCCs in absolute value, the more important the parameter
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Figure 3. Frequencies of parameters obtained from Latin Hyper-
cube Sampling of 1,000 runs.
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Figure 4. Sampling distribution of RI0 from 1, 000 runs of Latin
hypercube sampling. The mean of RI0 is 1.83; the standard devia-
tion is 1.563; and probability that the value of RI0 bigger than Rc
is 0.927.
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in responding to the change in RI0. Plus sign or minus sign means the influence is
positive or negative respectively. For example, when the PPCC to a parameter value
is positive, then bigger value of this parameter results in bigger RI0. Parameters
in Table 3 are arranged in ascending according to the corresponding absolute value
of the PRCC, so that the top one has the greatest impact on RI0. Table 3 shows
that intervention coefficient ch has the greatest impact on RI0, followed by the
transmission rate from echinococcosis eggs to sheep βes, then the transmission rate
from sheep and dogs βsd, then δ the number of echinococcosis eggs produced by
an infected dog. Hence, our dynamical analysis together with sensitivity analysis
consistently conclude that the most effective approach to reduce the infection is to
increase the human intervention, which is within our reach because ch is controllable.

Table 3. PRCC between RI0 and each parameter

Parameters Correlation Coefficients
ch -0.9218
βes 0.9065
βsd 0.8696
δ 0.8671
dd -0.735
αd -0.6756

4.3. Model predictions for Chengduo county. Using the parameter values in
Table 1 and initial values in Table 2, we numerically solve the intervention model.
Figure 5 illustrates the infected human cases in the next 30 years. In the first few
years, the infection cases increase rapidly and reach the peak (about 6770), then
decrease steadily in the next 7 or 8 years and finally level off. Ignoring the transition
dynamics for the first few years, we can see that the infection cases are eventually
stabilized.
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Figure 5. The newly increased number of human cases Ih in the
next 30 years for Chengduo county.
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5. Discussion. Bi-stability could happen in the intervention model, but this is
very theoretical. There is little chance one can observe it. Simply looking at the
expression of Rd which indicates if a backward bifurcation can occur, we find that
when αh = 0, a backward bifurcation cannot happen. We recall that αh is the
echinococcosis induced-death rate for humans. This rate is very tiny because human
cases of echinococcosis can be successfully treated [23]. We are almost sure the
dynamical results for the intervention model is regardless of the initial values.
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Figure 6. Numerical test for the stability of the endemic equilib-
rium when RI0 > 1.

For our intervention model, we showed that there exists a unique equilibrium
when RI0 > 1. The stability of this equilibrium has not been fully studied. Theorem
3.5 only implies the endemic equilibrium is locally asymptotically stable when RI0 >
1, but very close to 1. When RI0 is not close to 1, we test the stability of the endemic
equilibrium by numerical approach. Figure 6 verifies that, indeed, the endemic
equilibrium is locally asymptotically stable.

Chengduo county has eight townships, four of which live on pure animal hus-
bandry and the other four have both agriculture and animal husbandry. The popu-
lation is 97.8% Tibetan. With their common belief in Buddhism, they avoid killing
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wild dogs. Herdsman usually raise dogs, with each household raising 2-4 dogs on
average. There are also many stray dogs in Chengduo, which makes echinococcosis
more serious [5]. Facing up to the epidemic situation in Chengduo county, both
central and local governments have sought forceful methods to reduce echinococco-
sis transmission. In this article, in order to explore effective control and prevention
measures, we proposed two models to study the transmission dynamics of echinococ-
cosis in Chengduo County. From the sensitivity analysis, we find that the human
intervention coefficient (ch), the number of echinococcosis eggs produced per in-
fected dog (δ) and the probability of infected sheep eaten by dogs (βsd) are very
important factors among others. Weak human intervention and the high probability
of infected sheep eaten by dog are two serious hidden troubles for echinococcosis in
Chengduo County.

Therefore, in order to prevent the spread of echinococcosis, deworming dogs and
reducing the chances that infected sheep are being eaten by dogs are crucial. Also
since dog feces is the source of parasite, its careful disposal can also be a very
effective method to control echinococcosis spreading.
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