Kinetic models for polymers with inertial effects

  • Received: 01 January 2009 Revised: 01 September 2009
  • Primary: 76A05, 82A51, 82D60; Secondary: 82A40.

  • Novel kinetic models for both Dumbbell-like and rigid-rod like polymers are derived, based on the probability distribution function f(t,x,n,n˙) for a polymer molecule positioned at x to be oriented along direction n while embedded in a n˙ environment created by inertial effects. It is shown that the probability distribution function of the extended model, when converging, will lead to well accepted kinetic models when inertial effects are ignored such as the Doi models for rod like polymers, and the Finitely Extensible Non-linear Elastic (FENE) models for Dumbbell like polymers.

    Citation: Pierre Degond, Hailiang Liu. Kinetic models for polymers with inertial effects[J]. Networks and Heterogeneous Media, 2009, 4(4): 625-647. doi: 10.3934/nhm.2009.4.625

    Related Papers:

    [1] Pierre Degond, Hailiang Liu . Kinetic models for polymers with inertial effects. Networks and Heterogeneous Media, 2009, 4(4): 625-647. doi: 10.3934/nhm.2009.4.625
    [2] Carlo Brugna, Giuseppe Toscani . Boltzmann-type models for price formation in the presence of behavioral aspects. Networks and Heterogeneous Media, 2015, 10(3): 543-557. doi: 10.3934/nhm.2015.10.543
    [3] Young-Pil Choi, Seok-Bae Yun . A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15(3): 389-404. doi: 10.3934/nhm.2020024
    [4] Giuseppe Toscani, Andrea Tosin, Mattia Zanella . Kinetic modelling of multiple interactions in socio-economic systems. Networks and Heterogeneous Media, 2020, 15(3): 519-542. doi: 10.3934/nhm.2020029
    [5] Rossella Della Marca, Nadia Loy, Andrea Tosin . An SIR–like kinetic model tracking individuals' viral load. Networks and Heterogeneous Media, 2022, 17(3): 467-494. doi: 10.3934/nhm.2022017
    [6] Changli Yuan, Mojdeh Delshad, Mary F. Wheeler . Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5(3): 583-602. doi: 10.3934/nhm.2010.5.583
    [7] Dieter Armbruster, Christian Ringhofer, Andrea Thatcher . A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10(3): 527-542. doi: 10.3934/nhm.2015.10.527
    [8] Raul Borsche, Axel Klar, T. N. Ha Pham . Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12(3): 381-401. doi: 10.3934/nhm.2017017
    [9] Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor . Special issue on modeling and control in social dynamics. Networks and Heterogeneous Media, 2015, 10(3): i-ii. doi: 10.3934/nhm.2015.10.3i
    [10] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
  • Novel kinetic models for both Dumbbell-like and rigid-rod like polymers are derived, based on the probability distribution function f(t,x,n,n˙) for a polymer molecule positioned at x to be oriented along direction n while embedded in a n˙ environment created by inertial effects. It is shown that the probability distribution function of the extended model, when converging, will lead to well accepted kinetic models when inertial effects are ignored such as the Doi models for rod like polymers, and the Finitely Extensible Non-linear Elastic (FENE) models for Dumbbell like polymers.


  • This article has been cited by:

    1. Mária Lukáčová-Medviďová, Hana Mizerová, Šárka Nečasová, Michael Renardy, Global Existence Result for the Generalized Peterlin Viscoelastic Model, 2017, 49, 0036-1410, 2950, 10.1137/16M1068505
    2. P. Gwiazda, M. Lukáčová-Medvidová, H. Mizerová, A. Świerczewska-Gwiazda, Existence of global weak solutions to the kinetic Peterlin model, 2018, 44, 14681218, 465, 10.1016/j.nonrwa.2018.05.016
    3. Hailiang Liu, Hui Yu, An Entropy Satisfying Conservative Method for the Fokker–Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model, 2012, 50, 0036-1429, 1207, 10.1137/110829611
    4. John W. Barrett, Endre Süli, Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead–spring chain models for dilute polymers: The two-dimensional case, 2016, 261, 00220396, 592, 10.1016/j.jde.2016.03.018
    5. Dominic Breit, Prince Romeo Mensah, Local well-posedness of the compressible FENE dumbbell model of Warner type, 2021, 34, 0951-7715, 2715, 10.1088/1361-6544/abbd82
    6. Mark Dostalík, Josef Málek, Vít Průša, Endre Süli, A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids, 2020, 5, 2311-5521, 133, 10.3390/fluids5030133
    7. Hailiang Liu, Jaemin Shin, The Cauchy--Dirichlet Problem for the Finitely Extensible Nonlinear Elastic Dumbbell Model of Polymeric Fluids, 2012, 44, 0036-1410, 3617, 10.1137/110840650
    8. Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu, Masahisa Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme, 2017, 51, 0764-583X, 1663, 10.1051/m2an/2017032
    9. John W Barrett, Sébastien Boyaval, Finite element approximation of the FENE-P model, 2018, 38, 0272-4979, 1599, 10.1093/imanum/drx061
    10. John W. Barrett, Endre Süli, Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers, 2012, 46, 0764-583X, 949, 10.1051/m2an/2011062
    11. Nader Masmoudi, 2018, Chapter 23, 978-3-319-13343-0, 973, 10.1007/978-3-319-13344-7_23
    12. Mária Lukáčová - Medvid'ová, Hirofumi Notsu, Bangwei She, Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid, 2016, 81, 02712091, 523, 10.1002/fld.4195
    13. John W. Barrett, Endre Süli, Existence of global weak solutions to finitely extensible nonlinear bead–spring chain models for dilute polymers with variable density and viscosity, 2012, 253, 00220396, 3610, 10.1016/j.jde.2012.09.005
    14. Takashi Uneyama, Fumiaki Nakai, Yuichi Masubuchi, Effect of Inertia on Linear Viscoelasticity of Harmonic Dumbbell Model, 2019, 47, 0387-1533, 143, 10.1678/rheology.47.143
    15. Nader Masmoudi, 2016, Chapter 23-1, 978-3-319-10151-4, 1, 10.1007/978-3-319-10151-4_23-1
    16. Aaron Brunk, Mária Lukáčová-Medvid’ová, Global existence of weak solutions to viscoelastic phase separation part: I. Regular case, 2022, 35, 0951-7715, 3417, 10.1088/1361-6544/ac5920
    17. Pierre Degond, Alexei Lozinski, Robert G. Owens, Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited, 2010, 165, 03770257, 509, 10.1016/j.jnnfm.2010.02.007
    18. Ioannis Markou, Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces, 2017, 12, 1556-181X, 683, 10.3934/nhm.2017028
    19. Nader Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, 2013, 191, 0020-9910, 427, 10.1007/s00222-012-0399-y
    20. Matteo Colangeli, Manh Hong Duong, Adrian Muntean, A reduction scheme for coupled Brownian harmonic oscillators, 2022, 55, 1751-8113, 505002, 10.1088/1751-8121/acab41
    21. JOHN W. BARRETT, ENDRE SÜLI, EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO KINETIC MODELS FOR DILUTE POLYMERS II: HOOKEAN-TYPE MODELS, 2012, 22, 0218-2025, 1150024, 10.1142/S0218202511500242
    22. Shiwani Singh, Ganesh Subramanian, Santosh Ansumali, Lattice Fokker Planck for dilute polymer dynamics, 2013, 88, 1539-3755, 10.1103/PhysRevE.88.013301
    23. Mária Lukáčová - Medvid’ová, Hana Mizerová, Šárka Nečasová, Global existence and uniqueness result for the diffusive Peterlin viscoelastic model, 2015, 120, 0362546X, 154, 10.1016/j.na.2015.03.001
    24. JOHN W. BARRETT, ENDRE SÜLI, EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO KINETIC MODELS FOR DILUTE POLYMERS I: FINITELY EXTENSIBLE NONLINEAR BEAD-SPRING CHAINS, 2011, 21, 0218-2025, 1211, 10.1142/S0218202511005313
    25. Prince Romeo Mensah, Vanishing centre-of-mass limit of the 2D-1D corotational Oldroyd-B polymeric fluid-structure interaction problem, 2025, 38, 0951-7715, 035027, 10.1088/1361-6544/adb9b0
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3915) PDF downloads(95) Cited by(25)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog