[1]
|
D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases, Proceedings of the National Academy of Sciences USA, 106 (2009), 21484-21489. doi: 10.1073/pnas.0906910106
|
[2]
|
J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity, The Annual Review of Ecology, Evolution, and Systematics, 38 (2007), 567-593. doi: 10.1146/annurev.ecolsys.38.091206.095818
|
[3]
|
U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity, Nature, 458 (2009), 1018-1020. doi: 10.1038/nature07950
|
[4]
|
U. Bastolla, M. Lässig, S. C. Manrubia and A. Valleriani, Biodiversity in model ecosystems, II: Species assembly and food web structure, Journal of Theoretical Biology, 235 (2005), 531-539. doi: 10.1016/j.jtbi.2005.02.006
|
[5]
|
W. Feller, On the logistic law of growth and its empirical verifications in biology, Acta Biotheoretica, 5 (1940), 51-66. doi: 10.1007/BF01602862
|
[6]
|
J. P. Gabriel, F. Saucy and L. F. Bersier, Paradoxes in the logistic equation?, Ecological Modelling, 185 (2005), 147-151. doi: 10.1016/j.ecolmodel.2004.10.009
|
[7]
|
J. R. Groff, Exploring dynamical systems and chaos using the logistic map model of population change, American Journal of Physics, 81 (2013), 725-732. doi: 10.1119/1.4813114
|
[8]
|
L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation, Mathematical Biosciences, 209 (2007), 361-385. doi: 10.1016/j.mbs.2007.02.004
|
[9]
|
C. A. Johnson and P. Amarasekare, Competitionfor benefits can promote the persistence of mutualistics interactions, Journal of Theoretical Biology, 328 (2013), 54-64. doi: 10.1016/j.jtbi.2013.03.016
|
[10]
|
E. Kuno, Some strange properties of the logistic equation defined with r and k: Inherent defects or artifacts?, Researches on population ecology, 14 (1991), 33-39.
|
[11]
|
T. R. Malthus, An Essay on the Principle of Population or a View of Its Past and Present Effects on Human Happiness; with an Inquiry into Our Prospects Respecting the Future Removal on Mitigation of the Evils which It Occasions, 1st edition, Roger Chew Weightman, Washington, 1798. Available from: http://opac.newsbank.com/select/shaw/17975.
|
[12]
|
R. May, Models for two interacting populations, in Theoretical Ecology. Principles and Applications, $2^{nd}$ edition (ed. R. May), 1981, 78-104.
|
[13]
|
J. D. Murray, Mathematical Biology I: An Introduction, $3^{rd}$ edition, Springer-Verlag, New York, 2002.
|
[14]
|
R. Pearl, The biology of population growth, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 49 (1929), 336-338. doi: 10.1007/BF01847581
|
[15]
|
E. Stokstad, Will malthus continue to be wrong?, Science, 309 (2005), p102. doi: 10.1126/science.309.5731.102
|
[16]
|
P. F. Verhulst, Recherches mathematiques sur la loi d'accroissement de la population [Mathematical researches into the law of population growth increase], Nouveaux Memoires de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42.
|
[17]
|
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560. doi: 10.1038/118558a0
|
[18]
|
D. H. Wright, A simple, stable model of mutualism incorporating handling time, The American Naturalist, 134 (1989), 664-667. doi: 10.1086/285003
|