
Mostly motivated by the crop field classification problem and the automated computational methodology for extracting agricultural crop fields from satellite data, we proposed in a bounded variation (BV) space a new approach to the piecewise smooth approximation of the slope-based vegetation indices and the closely related crop field segmentation problem of multi-band satellite images.
Citation: Ciro D'Apice, Peter Kogut, Rosanna Manzo. On generalized active contour model in the anisotropic BV space and its application to satellite remote sensing of agricultural territory[J]. Networks and Heterogeneous Media, 2025, 20(1): 113-142. doi: 10.3934/nhm.2025008
[1] | Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019 |
[2] | Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011 |
[3] | Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267 |
[4] | Thibault Liard, Raphael Stern, Maria Laura Delle Monache . A PDE-ODE model for traffic control with autonomous vehicles. Networks and Heterogeneous Media, 2023, 18(3): 1190-1206. doi: 10.3934/nhm.2023051 |
[5] | Chenchen Li, Chunyan Zhang, Lichao Feng, Zhihui Wu . Note on prescribed-time stability of impulsive piecewise-smooth differential systems and application in networks. Networks and Heterogeneous Media, 2024, 19(3): 970-991. doi: 10.3934/nhm.2024043 |
[6] | Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032 |
[7] | Mostafa Bendahmane . Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks and Heterogeneous Media, 2008, 3(4): 863-879. doi: 10.3934/nhm.2008.3.863 |
[8] | Bing Feng, Congyin Fan . American call option pricing under the KoBoL model with Poisson jumps. Networks and Heterogeneous Media, 2025, 20(1): 143-164. doi: 10.3934/nhm.2025009 |
[9] | Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou . Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13(4): 567-583. doi: 10.3934/nhm.2018026 |
[10] | Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695 |
Mostly motivated by the crop field classification problem and the automated computational methodology for extracting agricultural crop fields from satellite data, we proposed in a bounded variation (BV) space a new approach to the piecewise smooth approximation of the slope-based vegetation indices and the closely related crop field segmentation problem of multi-band satellite images.
In this paper, we deal with a new variational problem suggested by applications to satellite image segmentation. The satellite images are an important source for extracting landscape boundaries and other vegetation structures, which can provide extremely useful insights for applications in environmental monitoring, agriculture, forestry, and other related fields (see, for instance, [1,2,3]). In particular, in agricultural crop field classification, one fundamental problem is to provide a disjunctive decomposition of a fixed domain Ω⊂R2 onto a finite number of nonempty subsets Ω=Ω1∪Ω2∪⋯∪ΩK such that each of these subsets could be associated with a crop that is grown in this area, with forest regions, water zones, and so on, and this correspondence must be established at a rather a high level of accuracy. Up-to-date and accurate crop maps (or crop field classification) are needed to update agricultural statistics, to provide agricultural crop yield prediction, and are often used in environmental modeling. Typically, such an association between a given region and some agricultural crop can be made through the detection and quantitative assessment of green vegetation, which is one of the major applications of remote sensing studies. The information obtained in this way is a source of knowledge used for environmental resources management. One of the ways to get such information is the determination of the so-called vegetation indices (see [4] for a review and development). Since over the years many vegetation indices have been proposed for determining the vigor and health of vegetation, the reliability of information about vegetation directly and strictly depends on the fidelity, preciseness, and smoothness of the corresponding vegetation indices within each particular crop field.
The most commonly used vegetation index (Ⅵ) is the so-called slope-based infrared percentage vegetation index (IPVI),
IPVI:=u2,du1,d+u2,d,0≤IPVI≤1, | (1.1) |
where ui,d=ui,d(x1,x2), i=1,2, with (x1,x2)∈Ω, are functions of two variables representing the intensity of red (Red) and near-infrared (NIR) reflectance of some region Ω of R2, respectively.
Thus, each pixel x=(x1,x2)∈Ω of the original image can be associated with the corresponding IPVI-feature. The problem, which is suggested by application to remote sensing satellite image processing, consists of computing a decomposition
Ω=Ω1∪Ω2∪⋯∪ΩK∪K | (1.2) |
of the domain of the image F:Ω→R2 such that
(a) the IPVI-characteristic varies smoothly and/or slowly within each Ωj;
(b) the IPVI-characteristic varies discontinuously and/or rapidly across most of the boundary K between different Ωj.
The distinguished features of this statement that do not permit to reduce it to the standard settings of the segmentation problem (see, for instance, the Mumford-Shah energy-based model [5] or the models proposed by Alvarez [6], Guichard [7], Lions, Morel [8], Caselles [9], and others) are the following ones:
● Each region Ω1, Ω2, …, ΩK should consist of pixels that can be reasonably grouped according to the IPVI-characteristic. Simultaneously, these regions should be easy to differentiate according to the chosen image feature;
● The respective interiors of image regions should have a more or less simple geometry without gaps. Boundaries of image regions should be smooth enough but also accurate with respect to the chosen image feature;
● The most restrictive obstacle in the construction of such decomposition is the fact that these subdomains should not overlap the borders between fields or contain any fragments of such borders, meaning that they cannot take in even small parts of different fields with arguably different crops.
All of these make the abovementioned segmentation problem rather challenging. It is enough to observe that a precise consideration of this problem demonstrates that the quantitative interpretation of remote sensing information from vegetation is a complex task. Many studies have limited this interpretation by assuming that the extracting vegetation information is uniformly and smoothly distributed within the particular crop fields. However, this assumption is broken when trying to apply these types of vegetation indices on heterogeneous canopies such as plantations with a mixed combination of soil, weeds, and other crops, or plantation where the vegetation of interest has different IPVI-characteristic due to spatial variability. The main idea, we realize in the new setting of the variational problem, can be briefly described as follows. We propose to make use of the so-called f-decomposition instead of the standard Chan-Vese "active contours without edges" model [10]. The role of the function f:Ω→R in such decomposition of Ω has to guarantee that the new objects {Ωj}Kj=1 after the f-decomposition will have homogeneous values of the target function f within each separate field (a similar point of view can be found in [4,11]). In particular, in the case of the agricultural applications, where Ω stands for a zone of interest, the IPVI-characteristic can be considered as the main feature of this area, i.e., in this case f(x)=IPVI(x) for all x∈Ω. Thus, the main idea that we push forward is to formulate the segmentation problem as a constrained minimization problem in a special anisotropic functional space, with the "effect of anisotropy" we associate with the structure topology of IPVI-distribution. As a result, the main benefit of such an approach can be briefly described as follows:
(i) It prevents the appearance of subdomains containing zones of discontinuity of f or places where this function tends to change rapidly by utilizing the main characteristic of the given function f — the unit normal vector field θ:Ω→R2 to the level sets of f. This characteristic has been used to construct the so-called anisotropic diffusion tensor Mf, which can be defined as a square parametrized matrix function Mf(x)=[I−η2θ(x)⊗θ(x)]. This matrix plays a central role in the process of f-decomposition of domain Ω, and we associate with it special anisotropic perimeters of the obtained subdomains (segments).
(ii) The second characteristic feature of our approach is the fact that we apply the Jeffreys divergence to replace the standard Euclidean distance in the fidelity term of the objective functional. It is well-known that compared with Euclidean distance, Jeffreys divergence leads to more accurate results in information measurement (for the details of this metric and its advantages, we refer to [12,13,14]).
The paper is organized as follows. In Section 2, we give some preliminaries related to the space of functions of bounded variation and other notions. Section 3 is devoted to the description of some specification of the standard BV(Ω) space. In particular, we introduce the so-called anisotropic version for the total variation of L1(Ω)-functions. At the end of this section, we show that some of the results of Samson et al. [15] can be extended to the case of subsets with a finite anisotropic perimeter.
The precise setting of the main constrained minimization problem and its previous analysis are given in Section 4. We show that the proposed minimization problem can be interpreted as a special case of the piecewise-constant Mumford-Shah segmentation problem and the Chan-Vese active contour model without edges. We study this problem in the space of L1(Ω)-functions with bounded anisotropic total variation, where the type of anisotropy is closely related to the structure of the image f which is involved in the segmentation procedure. It is worth emphasizing that the anisotropic perimeter of the segments with uniform distribution of IPVI-characteristic can drastically differ from the standard one because the natural edges of the original image f can affect it significantly. Despite the "natural" setting of the proposed segmentation problem, the existence of its minimizers seems to be an open issue nowadays. The main reason is that the objective functional is neither coercive nor lower semicontinuous with respect to the weak-∗ topology of BV(Ω) space. This circumstance stimulated us to introduce a special family of unconstrained two-parametric problems to approximate the original one. We show that each of those approximated problems is well-posed and has a nonempty set of minimizers.
Section 5 aims to derive optimality conditions for approximated problems and provide their formal substantiation. In Section 6, we study the asymptotic behavior of the approximated problems and their solutions. The main question is to find out whether the convergence of minima of approximated problems is to minima of the original segmentation problem as small parameters tend to zero. Our main result of this section asserts that: If the original problem has a nonempty set of minimizers, then some of them can be successfully attained by the solution of approximated problems. Otherwise, we can come to a solution of the relaxed version of the original segmentation problem. In Section 7, the implementation of the proposed optimization problem is illustrated, providing numerical experiences with satellite images.
A detailed description of the algorithm (including the method of marching squares for the generation of closed contours in the two-dimensional case) and finite-difference scheme for the proposed approach with the results of numerical simulation using the real-life satellite images will be considered in the forthcoming paper.
We denote by L2 the Lebesgue 2-dimensional measure in R2 and by H1 the 1-dimensional Hausdorff measure. Let Ω be a bounded open subset of R2 with a Lipschitz boundary. For any subset E⊂Ω, we denote by |E| its 2-dimensional Lebesgue measure L2(E). For a subset E⊆Ω, let ¯E denote its closure and ∂E its boundary. We define the characteristic function χE of E by
χE(x):={1, for x∈E,0, otherwise. |
For a function u, we denote by u|E its restriction to the set E⊆Ω, and by u∂E its trace on ∂E. Let C∞0(Ω) be the infinitely differentiable functions with compact support in Ω. The k-dimensional Hausdorff measure is denoted by Hk, and is the restriction of the measure μ to the set E. For a Banach space X, its dual is X∗ and ⟨⋅,⋅⟩X∗,X is the duality form on X∗×X. By ⇀ and ∗⇀, we denote the weak and weak∗ convergence in normed spaces.
We remind here of the most common definitions of some functional spaces that we will use later on.
Throughout the paper, we will often use the concept of weak and strong convergence in L1(Ω). Let {fn}n∈N be a bounded sequence of functions in L1(Ω). We recall that {fn}n∈N is called equi-integrable on Ω if for any δ>0 there is a τ=τ(δ), such that ∫S|fn|dx<δ for every measurable subset S⊂Ω of Lebesgue measure |S|<τ. Then, the following assertions are equivalent for L1(Ω)-bounded sequences (see, for instance, [16,17]):
(i) a sequence {fk}k∈N is weakly convergent in L1(Ω);
(ii) the sequence {fk}k∈N is equi-integrable.
The following theorem holds.
Theorem 1. [16] If a bounded sequence {fk}k∈N⊂L1(Ω) is equi-integrable and fk→f almost everywhere in Ω, then fk→f strongly in L1(Ω).
We set |E|=L2(E), the Lebesgue measure of a measurable set E⊂R2. Let M(Ω;R2) be the space of all R2-valued Borel measures which is, according to the Riesz theory, the dual of the space C0(Ω;R2) of all continuous vector-valued functions φ(⋅) with compact support in Ω and equipped with the uniform norm.
‖φ‖∞=(2∑i=1supx∈Ω|φi(x)|2)1/2. |
Note that M(Ω;R2) is isomorphic to the product space
M2(Ω):=2∏i=1M(Ω) |
and that μ=(μ1,μ2)∈M(Ω;R2) ⇔ μi∈[C0(Ω)]∗, i=1,2.
Given a vector-valued measure μ:B(Ω)→R2, we use the notation |μ| for its total variation. We recall that
|μ|(E)=sup{2∑i=1∫Ωφidμi : φ=[φ1φ2]∈C0(E;R2), ‖φ‖∞≤1}, | (2.1) |
for all measurable E⊆Ω.
The usual weak-∗ topology on M(Ω;R2) is defined as the weakest topology on M(Ω;R2), for which the maps μ↦∑2i=1∫Ωφidμi are continuous for every φ∈C0(Ω;R2).
By BV(Ω), we denote the space of all functions u∈L1(Ω), for which their distributional derivatives are representable by finite Borel measures in Ω, i.e.,
∫Ωu∂ϕ∂xidx=−∫ΩϕDiu,∀ϕ∈C∞0(Ω), i=1,2 |
for some R2-valued measure Du=(D1u,D2u)∈M2(Ω). It can be shown that BV(Ω), endowed with the norm ‖u‖BV(Ω)=‖u‖L1(Ω)+|Du|(Ω), is a Banach space, where in view of Eq (2.1), the total variation of Du in Ω can be defined as
|Du|(Ω):=∫Ω|Du|=sup{∫Ωudivφdx : φ∈C10(Ω;R2), |φ(x)|≤1 for x∈Ω}. | (2.2) |
We recall that the product topology of the strong topology of L1(Ω) for u and of the weak-∗ topology of measures for Du is called the weak-∗ topology of BV(Ω), and it is denoted BV-∗. As a result, a sequence {fk}∞k=1 ∗-converges to f in BV(Ω) if, and only if, the two following conditions hold (see [18, p.124]): fk→f strongly in L1(Ω) and Dfk∗⇀Df weakly-∗ in M(Ω;R2), i.e.,
limk→∞∫Ω(ϕ,Dfk)=∫Ω(ϕ,Df),∀ϕ∈C0(Ω;R2), |
where, in fact, Dfk=(Dx1fk,Dx2fk)∈M(Ω;R2) and, therefore, the notation ∫ΩϕDfk should be interpreted as follows:
∫Ω(ϕ,Dfk):=∫Ωϕ1Dx1fk+∫Ωϕ2Dx2fk. |
Moreover, if {fk}∞k=1⊂BV(Ω) converges strongly to some f in L1(Ω) and supk∈N∫Ω|Dfk|<+∞, then (see, for instance, [16] and [18])
(i) f∈BV(Ω) and ∫Ω|Df|≤lim infk→∞∫Ω|Dfk|;(ii) fk∗⇀f in BV(Ω). | (2.3) |
A simple criterion for the BV-∗ convergence can be stated as follows (see [18, p.125], [19, Theorem 1.19]):
Proposition 2. A sequence {uk}k∈N⊂BV(Ω) BV-∗-converges to u if, and only if, {uk}k∈N is bounded in BV(Ω) and {uk}k∈N converges to u strongly in L1(Ω).
The following embedding result for the BV-function is very useful with respect to the variational problem that we study in this paper.
Proposition 3. [16, p.378] Let Ω be an open bounded Lipschitz subset of R2. Then, the embedding BV(Ω)↪L2(Ω) is continuous and the embeddings BV(Ω)↪Lp(Ω) are compact for all p such that 1≤p<2. Moreover, there exists a constant Cem>0, which depends only on Ω and p such that for all u in BV(Ω),
(∫Ω|u|pdx)1/p≤Cem‖u‖BV(Ω),∀p∈[1,2]. |
We also make use of the following property concerning to approximation of BV-functions by smooth ones.
Theorem 4. [20] Assume f∈BV(Ω). Then, there exist a sequence {fk}∞k=1⊂BV(Ω)∩C∞(Ω) such that
fk→f in L1(Ω),|Dfk|(Ω)→|Du|(Ω) as k→∞. |
Let E be an L2-measurable subset of R2 with finite Lebesgue measure. Let χE be its characteristic function. Following R. Caccioppoli [21], we say that E is a set with a finite perimeter in Ω if χE∈BV(Ω). This means that the distributional gradient DχE is a vector-valued measure with finite total variation. The total variation |DχE|(Ω) is called the perimeter of E in Ω, i.e., P(E,Ω)=|DχE|(Ω) and, therefore,
P(E,Ω)=sup{∫ΩχEdivφdx : φ∈C10(Ω;R2), ‖φ‖L∞(Ω;R2)≤1}. | (2.4) |
We also notice that if Et:={x∈Ω : f(x)>t} stands for the level set for given f∈BV(Ω) and t∈R, then (see [20, Theorem 5.5.1]) Et has a finite perimeter for a.e. t∈R.
The main goal of this section is to introduce some specification to the standard space of functions with bounded variation BV(Ω). This option is mainly motivated by the natural application in image segmentation problems. In view of this, we introduce the so-called anisotropic version for the total variation of the BV-functions. In principle, the notion of anisotropic total variation is not new in the literature (we refer to [22,23] for more details), and our representation for anisotropic total variation can be viewed as some specification of the rule in [22]. The main interest is in the application of this concept to the generalization of the well-known results of Samson et al. [15]. Namely, we focus on the proof of the following relation:
limε→0∫Ω|MD[χE]ε|=∫Ω|MDχE|, |
where [χE]ε stands for a smooth approximation of the characteristic function of a given set E⊂Ω. The main results of this section are presented in the form of Lemma 5 and its corollary.
Let Ω be an open bounded and connected subset of R2 with a Lipschitz boundary ∂Ω. Let M:Ω→R2×2 be a given matrix function such that
M(x)=Mt(x),β−1|ξ|2≤(ξ,M(x)ξ)≤β|ξ|2∀ξ∈R2,M(⋅)∈C∞(Ω;R2×2), | (3.1) |
for some constant β>1, i.e., M(x) is a positive-definite symmetric matrix for each x∈Ω.
We say that u∈L1(Ω) is a function with bounded anisotropic variation if
sup{∫Ωudiv(Mφ)dx : φ∈C10(Ω;R2), |φ(x)|≤1 ∀x∈Ω)}<+∞. |
It means that there exists a Radon measure Du such that
∫Ωudiv(Mφ)dx=−∫Ω(φ,MDu)∀φ∈C10(Ω;R2). |
Moreover, for the total variation of the measure MDu, we have the following representation:
|MDu|(Ω):=∫Ω|MDu|=sup{∫Ωudiv(Mφ)dx : φ∈C10(Ω;R2), |φ(x)|≤1 ∀x∈Ω)}. | (3.2) |
Then, property (3.1) implies that
β−1(‖u‖L1(Ω)+|MDu|(Ω))≤‖u‖L1(Ω)+|Du|(Ω)⏟‖u‖BVM(Ω)≤β−1(‖u‖L1(Ω)+|MDu|(Ω)), ∀u∈BV(Ω). | (3.3) |
Hence, the expression can be viewed as an equivalent norm to standard one ‖⋅‖BVM(Ω) on the space BV(Ω). As a result, the main properties of BV-functions (see, for instance, [18,19,20]) can be reformulated with respect to the new norm. In particular, let M:Ω→R2×2 be a given matrix function with property (3.1). Then:
(j) If {uk}k∈N⊂BV(Ω) is a bounded sequence, then there exist a subsequence {uki}i∈N and a function u∈BV(Ω) such that
uki→ustrongly in L1(Ω),MDuki∗⇀MDu weakly-∗in M(Ω;R2); |
(jj) If {uk}∞k=1⊂BV(Ω) converges strongly to some u in L1(Ω) and satisfies supk∈N∫Ω|MDuk|<+∞, then
uk∗⇀u in BV(Ω), u∈BV(Ω), and ∫Ω|MDu|≤lim infk→∞∫Ω|MDuk|; | (3.4) |
(jjj) Let u∈BV(Ω) be an arbitrary function. Then, there exists a sequence {uk}k∈N⊂C∞(Ω)∩BV(Ω) such that ‖uk−u‖L1(Ω)→0 and ∫Ω|MDuk|→∫Ω|MDu| as k→∞.
By analogy with the standard notion, we can also define an anisotropic version of the perimeter, namely, we say that an L2-measurable subset U⊂Ω has a finite M-perimeter if |MDχU|(Ω)<+∞, where χU(⋅) stands for the characteristic function of the set U. In this case, we write down
Per(U;M;Ω):=∫Ω|MDχU|=sup{∫Udiv(Mφ)dx:φ∈C10(Ω;R2), |φ(x)|≤1 ∀x∈Ω}. | (3.5) |
Moreover, for any u∈BV(Ω) and M(⋅)∈C∞(Ω;R2×2) with property (3.1), the following anisotropic Coarea formula
∫Ω|MDu|=∫+∞−∞Per({u>t};M;Ω)dt | (3.6) |
holds true (see [22]).
It is clear that, for a given level parameter l∈R, the area of the region {x∈Ω : φ(x)>l} can be defined as
A{x∈Ω : φ(x)≥l}=∫Ωχ{φ(x)≥l}dx. |
Here, χ{φ(x)≥l}(x) stands for the characteristic function of the set {x∈Ω:φ(x)≥l}. To obtain some approximation of this area, we can substitute χE by its smooth approximation. With that in mind, for a given small positive parameter ε, we fix a positive symmetric mollifier η∈C∞c(R2), i.e., η(x) is zero outside a compact set B1={x∈R2:|x|≤1},
∫B1η(x)dx=1,η(x)≥0, and ν(x)=μ(|x|) for some function μ:R+→R, |
and set
[χE]ε=ηε∗χEwithηε(x)=ε−2η(xε), | (3.7) |
that is,
[χE]ε=ε−2∫R2η(x−zε)χE(z)dz=∫R2η(w)χE(x+εw)dw. |
Then, using the standard properties of mollifiers, it can be shown that
(i) [χE]ε→χE in L1(Ω) for any measurable subset E of R2 as ∅→0;
(ii) 0≤[χE]ε(x)≤1 for all x∈R2;
(iii) If E⊂R2 is bounded and g∈L1(R2), then ∫R2[χE]εgdx=∫R2χE[g]εdx;
(iv) If ε⊆Ω, then supp[χE]ε⊆Ωε={x∈R2:dist(x,Ω)≤ε}.
The following property will be utilized in our further analysis (see Section 6) and it can be considered as a natural generalization of the results of Samson et al. [15] (see also for comparison [19, Proposition 1.15]).
Lemma 5. Let E be an open set such that ¯E⊂Ω and E has a finite M-perimeter Per(E;M;Ω), where M:Ω→R2×2 is a given matrix function with property (3.1). Let [χE]ε be the mollified characteristic function described above. Then,
limε→0∫Ω|MD[χE]ε|=∫Ω|MDχE|. | (3.8) |
Proof. Taking into account the standard properties of mollifiers, we have {[χE]ε}ε>0⊂BV(Ω) and [χE]ε→χE in L1(Ω) as ε→0. Then, inequality (3.4) implies that
∫Ω|MDχE|≤lim infε→0∫Ω|MD[χE]ε|. | (3.9) |
To establish a reverse inequality, we fix an arbitrary function φ∈C10(Ω;R2) with |φ(x)|≤1. Then, there exists a vector-valued function ζ∈C10(Ω;R2) such that ζ=Mφ. Therefore, by (iii)-property of mollifiers, we have
∫Ω[χE]εdiv(Mφ)dx=∫ΩχE[div(Mφ)]εdx=∫ΩχEdiv[Mφ]εdx=∫ΩχEdiv[ζ]εdx≤sup{∫ΩεχEdiv[ζ]εdx:ζ∈C10(Ω;R2), ζ=Mφ, |M−1[ζ]ε(x)|≤1 ∀x∈Ωε}≤sup{∫ΩεχEdiv(Mφ)dx:φ∈C10(Ωε;R2), |φ(x)|≤1 ∀x∈Ωε}=∫Ωε|MDχE|. | (3.10) |
Taking then the supremum over all such φ, we arrive at the relation
∫Ω|MD[χE]ε|≤∫Ωε|MεDχE|. |
Hence,
lim supε→0∫Ω|MD[χE]ε|≤limε→0∫Ωε|MDχE|. |
Since E and Ω are open sets and ¯E⊂Ω, it follows that
∫∂Ω|DχE|=0and∫∂Ω|MDχE|=0. |
Therefore,
limε→0∫Ωε|MDχE|=∫¯Ω|MDχE|=∫Ω|MDχE|+∫∂Ω|MDχE|=∫Ω|MDχE|,limε→0∫Ωε|DχE|=∫¯Ω|DχE|=∫Ω|DχE|+∫∂Ω|DχE|=∫Ω|DχE|<+∞. |
As a result, we obtain
lim supε→0∫Ω|MD[χE]ε|≤∫Ω|MDχE|. |
It remains to combine this inequality with Eq (3.9).
Arguing similarly, we can generalize the Eq (3.8) as follows:
Corollary 6. Let E⊂Ω and the matrix M:Ω→R2×2 be the same as in Lemma 5. Then,
limε→0∫Ω|MεD[χE]ε|=∫Ω|MDχE|, | (3.11) |
where {Mε}ε>0⊂C∞(Ω;R2×2) stands for any smooth approximation of the matrix M such that
limε→0‖Mε−M‖C(Ωε;R2×2)=0,Mε(x)=Mtε(x),β−1|ξ|2≤(ξ,Mε(x)ξ)≤β|ξ|2∀ξ∈R2, ∀ε>0. |
Let f:Ω→R be a given function. Hereinafter, we associate the function f with a given gray scale image. We define a smoothed version of the original image using the convolution of f with a Gaussian kernel
Gσ(x)=1(√2πσ)2exp(−|x|22σ2),σ>0, | (4.1) |
i.e., fσ=(Gσ∗f(⋅))(x):=∫ΩGσ(x−y)f(y)dy. Here, σ>0 is a given small positive value.
Since fσ∈C∞(¯Ω), it follows that the boundaries of level sets {x∈Ω:fσ(x)≥λ}, for all feasible λ∈[0,Cf], can be described by smooth curves with finite length. So, at all points x∈Ω of each level sets of fσ, we can define a unit normal vector field θ(x) following the rule
θ(x)={∇fσ(x)|∇fσ(x)|−1,if |∇fσ(x)|≠0,0,otherwise. | (4.2) |
Then, we associate with the vector field θ:Ω→R2 the following linear operator R:R2→R2:
Rξ:=ξ−η2(θ,ξ)θ=[I−η2θ⊗θ]ξ,∀ξ∈R2, | (4.3) |
where η∈(0,1) is a given threshold which should be sufficiently close to 1. Setting
Mf(x)=[I−η2θ(x)⊗θ(x)], | (4.4) |
we see that
Mf(x)=[Mf(x)]t,(1−η2)|ξ|2≤(ξ,Mf(x)ξ)≤|ξ|2,Mf(⋅)∈C∞(Ω;R2×2), | (4.5) |
i.e., Mf is a symmetric and positive-definite matrix on Ω and it satisfies property (3.1) with β=(1−η2)−1.
Remark 7. Let's assume for a moment that ξ=∇v(x), where v∈W1,1(Ω) is a given function and x∈Ω is a Lebesgue point of f in which the original image f is not expected to change drastically in any direction, i.e., x is not close to a discontinuity of f or a zone where f tends to change rapidly. Then, Eq (4.4) implies that Mf can be represented at this point as a unit matrix. So, at this point, we have Mf∇v≈∇v.
On the other hand, if we consider a point x∈Ω that is close to a discontinuity of f, then Mf∇v reduces to (1−η2)∇v if the gradient ∇v(x) at this point is colinear to θ(x), and to ∇v(x) provided ∇v(x) is orthogonal to θ(x). In view of this, the expression Mf∇v can be interpreted as the directional total variation of v along the vector field θ (see [24] for the details).
Definition 8. We say that a gray scale image f:Ω→R is feasible for the segmentation procedure using level sets if there exists a value γ>0 such that
f∈L∞(Ω), f(x)≥γ>0 a.e.in Ω. |
We denote the set of all feasible images by Fγ.
We are now in a position to state the main object of our interest in this paper. Let f∈Fγ be a given image, and let φ:Ω→R be a level set function such that φ∈BV(Ω). We associate with this function a collection of m+2 distinct level values l0<l1<⋯<lm<lm+1 such that l0≤φ(x)≤lm+1 almost everywhere in Ω.
Then, the constrained optimization problem we are going to consider can be stated as follows:
J(c,φ)=∫Ω(f−c0)log(fc0)χ{φ(x)<l1}dx+m−1∑j=1∫Ω(f−cj)log(fcj)[χ{φ(x)>lj}−χ{φ(x)>lj+1}]dx+∫Ω(f−cm)log(fcm)χ{φ(x)>lm}dx+αm∑j=1∫Ω|MfDχ{φ(x)>lj}|→infφ∈Ξ, | (4.6) |
where α>0 is a weight coefficient and the set of feasible solutions is defined as follows:
Ξ={(c,φ)∈Rm+1×BV(Ω)|l0≤φ(x)≤lm+1 a.e. in Ω,c=(c0,c1,…,cm), cj≥0, j=0,…,m}. | (4.7) |
It is worth noticing that the objective functional J is well-defined on the set Ξ. Indeed, in this case the assumption φ∈BV(Ω) implies that the level sets Et={x∈Ω:φ(x)>t} have finite anisotropic perimeter Per({u>t};Mf;Ω) for L1 a.a. t∈R. Since
Per({φ>lj};Mf;Ω)=∫Ω|MfDχ{φ(x)>lj}|<∞ |
for each j=1,…,m, it follows that J(c,φ)<∞ for each (c,φ)∈Ξ.
Minimization problems (4.6) and (4.7) can be interpreted as a special case of the piecewise-constant Mumford-Shah segmentation problem and the active contour model (see, for instance, [8,10,25,26]). We can indicate the following principle features of this statement:
● The problem is investigated in the space of L1(Ω)-functions with bounded anisotropic total variation and with additional pointwise constraints, where the matrix of anisotropy is closely related to the structure of the image f, which is involved in the segmentation procedure.
As a result, the anisotropic perimeter of the region {x∈Ω:lj<φ(x)}, which is given by the term ∫Ω|MfDχ{φ(x)>lj}|, can drastically differ from the standard one because the natural edges of the original image f can affect it significantly;
● To find a piecewise-constant approximation of the given image f∈Fγ in the form
u(x)=c0χ{φ(x)<l1}(x)+m−1∑j=1cj[χ{φ(x)>lj}(x)−χ{φ(x)>lj+1}(x)]+cmχ{φ(x)>lm}(x), | (4.8) |
we utilize the Jeffreys divergence between two elements f,g∈L2(Ω) instead of the standard L2-norm of their difference ‖f−g‖L2(Ω). In spite of the fact that the trick of replacing the squared Euclidean norm with the Jeffreys distance does not alleviate the original problem from the point of view of its solvability and mathematical analysis, it makes the segmentation results more stable to the Poisson noise contaminated images (see [12,13,14] for the details);
● We consider the segmentation problems (4.6) and (4.7) as a constrained minimization problem in BV(Ω) space with the pointwise constraints l0≤φ(x)≤lm+1 on the set of feasible functions φ:Ω→R.
● In the proposed statement of the segmentation problems (4.6) and (4.7), it is admitted that the set
K=Ω∖[∪mj=0{x∈Ω:lj<φ(x)<lj+1}] |
may have a nonzero L2-measure.
However, the existence of minimizers to the problems (4.6) and (4.7) seems to be an open issue nowadays because the standard application of the direct method of calculus of variation to this problem faces some unsolved challenges. To apply the direct method for proving the existence of minimizers, it is necessary to find a topology for which the functional (4.6) is lower semicontinuous while ensuring compactness of minimizing sequences. In view of the structure of the set of admissible solutions Ξ⊂Rm+1×L1(Ω) (see Eq (4.7)), the natural topology, in this case, is the product of the norm topology in Rm+1 and the weak-∗ topology in BV(Ω). However, the objective functional J:Ξ→R is not coercive and lower semicontinuous on Rm+1×L1(Ω) with respect to the above mentioned topology. Moreover, even if φk→φ strongly in L1(Ω) as k→∞, it does not imply the strong convergence in L1(Ω) of χ{φk(x)>lj} to χ{φ(x)>lj}. In particular, it is clear that the implication
[limk→∞‖φk−φ‖L1(Ω)=0]⟹[limk→∞‖χ{φk(x)>lj}−χ{φ(x)>lj}‖L1(Ω)=0] |
may hold true if only L2{x∈Ω:φ(x)=lj}=0.
To overcome this difficulty, we make use of the following family of two-parametric approximated problems:
Jε,τ(c,φ)=∫Ω(f−c0)log(fc0)[χAτ0]εdx+m−1∑j=1∫Ω(f−cj)log(fcj)([χAτj]ε−[χAτj+1]ε)dx+∫Ω(f−cm)log(fcm)[χAτm]εdx+1ε[‖Ψ(l0−φ)‖L1(Ω)+‖Ψ(φ−lm+1)‖L1(Ω)]+ε|MfDφ|(Ω)+αm∑j=1∫Ω2ε|MfD[χEτj]ε|→infφ∈Ξε, | (4.9) |
where τ and ε are small parameters, which vary within strictly decreasing sequences of positive numbers converging to 0. The functions [χEτj]ε(⋅)∈C∞(R), j=1,…,m, are defined in Eq (3.7),
Aτ0={x∈Ω:φ(x)≤l1−τ},Aτj={x∈Ω:φ(x)≥lj+τ}, j=1,…,m,Eτj={x∈Ω:φ(x)≥lj−τ}, j=1,…,m,} | (4.10) |
Ω2ε={x∈R2:dist(x,Ω)≤2ε}, | (4.11) |
Ψ(z)={zδ,if z≥0,0,if z<0,}with a given exponent δ∈(1,2), | (4.12) |
and
Ξε={(c,φ)∈Rm+1×BV(Ω)|c=(c0,c1,…,cm), cj≥0, j=0,…,m}. | (4.13) |
Thus, a pair (c,φ) sounds as feasible to the problems (4.6) and (4.7) if (c,φ)∈Ξε, i.e.,
c∈Cad:={c=(c0,c1,…,cm), cj≥0, j=0,…,m},φ∈Gad:=BV(Ω). |
Before proceeding further, we make use of the following property.
Lemma 9. Let f∈Fγ be a given image, let c=(c0,c1,…,cm) with cj>0, let {φk}∞k=1⊂L1(Ω) be a strongly convergent sequence, and let φ∈L1(Ω) be its limit. Then, for each j=1,…,m−1,
limk→∞∫Ω(f−cj)log(fcj)([χ{φk(x)≥lj+τ}]ε−[χ{φk(x)≥lj+1+τ}]ε)dx=∫Ω(f−cj)log(fcj)([χ{φ(x)≥lj+τ}]ε−[χ{φ(x)≥lj+1+τ}]ε)dx. | (4.14) |
Proof. Since L1(Ω)∋φk→φ as k→∞, we may suppose that, up to a subsequence, φk(x)→φ(x) almost everywhere in Ω. Then, taking into account the continuity of the function [χE]ε(⋅) and the fact that the passage in the inequality φk(x)≥lj+τ leads to φ(x)≥lj+τ for a.e x∈Ω), we see that
[χ{φk(x)≥lj+τ}]ε→[χ{φ(x)≥lj+τ}]ε a.e. in Ω. |
Moreover, since |[χ{φk(x)≥lj+τ}]ε(x)|≤1 in Ω, it follows from the Lebesgue dominated theorem that
[χ{φk(x)≥lj+τ}]ε(⋅)→[χ{φ(x)≥lj+τ}]ε(⋅)strongly in L1(Ω). |
Since f∈Fγ and c=(c0,c1,…,cm) with cj>0, it follows that the integrant (f−cj)log(fcj) is dominated by some integrable function g in the sense that
|(f(x)−cj)log(f(x)cj)|≤g(x) a.e. in Ω. |
In particular,
0≤(f(x)−cj)log(f(x)cj)([χ{φk(x)≥lj+τ}]ε−[χ{φk(x)≥lj+1+τ}]ε)≤(f(x)−cj)log(f(x)cj)≤{|f(x)2−c2j|cj,a.e. in Ω∩{f(x)>cj},|logγcj||f(x)−cj|,a.e. in Ω∩{f(x)≤cj},}≤{1cj‖f‖2L∞(Ω)+cj,a.e. in Ω∩{f(x)>cj},|logγcj|(‖f‖L∞(Ω)+cj),a.e. in Ω∩{f(x)≤cj}.} |
As a result, Eq (4.14) is a direct consequence of the Lebesgue dominated theorem. Arguing similarly, we can establish the same assertion for the first and the third terms in Eq (4.9).
To conclude this section, we give an existence result for the parametrized optimization problems (4.9)–(4.13).
Theorem 10. Let f∈F(γ) be a given gray scale image, and let
Mf=[I−η2θ(x)⊗θ(x)], |
where the vector field θ∈C∞(Ω;R2) is defined by the rule (4.2). Then, for each ε∈(0,1) and τ>0 small enough, the constrained minimization problems (4.9)–(4.13) admit at least one solution.
Proof. Since the objective functional is bounded from below on Ξε⊂Rm+1×BV(Ω), it follows that there exists a minimizing sequence to problems (4.9)–(4.13), i.e.,
inf(c,φ)∈ΞεJε,τ(c,φ)=limk→∞Jε,τ(ck,φk)≤C<+∞, | (4.15) |
where C stands for a strictly positive constant that can be different from line to line. Without loss of generality, we can suppose that C=ζ+1.
Taking into account the fact that
‖φk‖Lδ(Ω)=(∫{φk<l0}|φk|δdx+∫{l0≤φk<lm+1}|φk|δdx+∫{φk>lm+1}|φk|δdx)1δ≤(∫{φk<l0}|φk|δdx)1δ+(∫{φk>lm+1}|φk|δdx)1δ+max{|l0|,|lm+1|}|Ω|1δ |
and
∫{φk<l0}|φk|δdx≤2δ−1‖Ψ(l0−φk)‖L1(Ω)+2δ−1|l0|δ|Ω|,∫{φk>lm+1}|φk|δdx≤2δ−1‖Ψ(φk−lm+1)‖L1(Ω)+2δ−1|lm+1|δ|Ω|, |
we see that
‖φk‖δLδ(Ω)≤22δ−2‖Ψ(l0−φk)‖L1(Ω)+22δ−2‖Ψ(φk−lm+1)‖L1(Ω)+22δ−23(|l0|+|lm+1|)δ|Ω|≤ε22δ−2Jε,τ(ck,φk)+22δ−23(|l0|+|lm+1|)δ|Ω|. | (4.16) |
Since
‖φk‖δL1(Ω)≤‖φk‖δLδ(Ω)|Ω|δ−1, |
and the function K:R≥→R≥, given by K(z)=(f−z)log(fz), is locally continuous and coercive, i.e.,
limz→+∞K(z)z=+∞,limz→+0K(z)z=+∞, | (4.17) |
it follows from Eqs (4.16) and (4.17) that there exists a constant C∗(ζ,K,m,|Ω|,li,δ)>0 such that
m∑j=0c2j,k+‖φk‖δL1(Ω)+|Dφk|(Ω)≤C∗+ε22δ−2Jε,τ(ck,φk)|Ω|δ−1+1εJε,τ(ck,φk)≤C∗+ε22δ−2(ζ+1)|Ω|δ−1+1ε(ζ+1),∀k∈N. |
Hence, the sequence {(ck,φk)}k∈N is bounded in Rm+1×BV(Ω). Then, from the compactness property in BV-space and the fact that BV(Ω) is compactly embedded in Lδ(Ω), we can deduce the existence of a subsequence of {(ck,φk)}k∈N, that we denote in the same way, and a pair (c0,φ0)∈Rm+1×BV(Ω) such that
ck→c0 in Rm+1,φk→φ0 strongly in Lδ(Ω), | (4.18) |
φk(x)→φ0(x)almost everywhere in Ω, | (4.19) |
Dφk∗⇀Dφ0 weakly−∗in M(Ω;R2). | (4.20) |
Without loss of generality, we can suppose that each of the functions {φk}k∈N and φ0 is extended by zero outside of Ω, and φk(x)→φ0(x) for a.e. x∈Ω2ε. Then, in view of the standard properties of mollifiers, we have
{[χ{φk(x)≥l}]ε}k∈N⊂BV(Ω2ε) |
and
[χ{φk(x)≥l}]ε→χ{φ0(x)≥l} in L1(Ω2ε)ask→∞. |
Then, property (3.4) implies that
∫Ω2ε|MfDχ{φ0(x)≥l}|≤lim infk→∞∫Ω2ε|MfD[χ{φk(x)≥l}]ε|, | (4.21) |
limk→∞|MfDφk|(Ω)by (4.18), (4.20)≤|MfDφ0|(Ω). | (4.22) |
Besides, in view of the properties (4.18)–(4.20) and the fact that Ψ∈C1loc(R), we have the pointwise convergence
Ψ(l0−φk)(x)→Ψ(l0−φ0)(x)a.e. in Ω,Ψ(φk−lm+1)(x)→Ψ(φ0−lm+1)(x)a.e. in Ω. |
Since
Ψ(l0−φk)≤|l0−φk|δandΨ(φk−lm+1)≤|φk−lm+1|δa.e. in Ω, |
and the sequences {|l0−φk|δ}k∈N and {|φk−lm+1|δ}k∈N are bounded in Lp(Ω) with p=2/δ>1 (by the continuous embedding BV(Ω)↪L2(Ω)), it follows from Vitali's lemma that
Ψ(l0−φk)→Ψ(l0−φ0) and Ψ(φk−lm+1)→Ψ(φ0−lm+1) in Lr(Ω) ∀1≤r<p. |
Hence,
limk→∞[‖Ψ(l0−φk)‖L1(Ω)+‖Ψ(φk−lm+1)‖L1(Ω)]=‖Ψ(l0−φ0)‖L1(Ω)+‖Ψ(φ0−lm+1)‖L1(Ω). | (4.23) |
As a result, the lower semicontinuity property of the minimizing sequence
inf(c,φ)∈ΞεJε,τ(c,φ)=limk→∞Jε,τ(ck,φk)≥lim infk→∞Jε,τ(ck,φk)≥Jε,τ(c0,φ0). | (4.24) |
is a direct consequence of relations (4.21)–(4.23) and Lemma 9.
It remains to notice that due to the pointwise convergence (4.18), we have
c0=(c00,c01,…,c0m) with c0j≥0 for all j=0,…,m. |
Hence, the limit pair (c0,φ0) is a feasible solution, i.e., (c0,φ0)∈Ξε, and, therefore,
Jε(c0,φ0)=inf(c,φ)∈ΞεJε(c,φ)≤C<+∞. |
Thus, (c0,φ0) is a minimizer to the problems (4.9)–(4.13).
This section aims to derive some optimality conditions for the minimization problems (4.9)–(4.13). Let ε and τ be given small positive values. With that in mind, we study the differentiability properties of the objective functional Jε,τ(c,φ) in order to specify its local behavior in the immediate vicinity of its minimum point. The corresponding Euler-Lagrange system is presented in Theorem 11.
Let (c0ε,τ,φ0ε,τ)∈Ξε be a local minimizer to problems (4.9)–(4.13). Then,
c0ε,τ=(c0ε,τ,0,c0ε,τ,1,…,c0ε,τ,m) |
with c0ε,τ,j≥0 for each j∈{0,…,m} and φ0ε,τ∈Gad. In the objective functional Jε,τ, we distinguish three terms
Jε,τ(c,φ)=Fε,τ(c0,…,cm,φ)+Φε(φ)+jε,τ(φ) |
with
Fε,τ(c0,…,cm,φ)=∫Ω(f−c0)log(fc0)[χAτ0]εdx+m−1∑j=1∫Ω(f−cj)log(fcj)([χAτj]ε−[χAτj+1]ε)dx+∫Ω(f−cm)log(fcm)[χAτm]εdx,Φε(φ)=1ε[‖Ψ(l0−φ)‖L1(Ω)+‖Ψ(φ−lm+1)‖L1(Ω)],jε,τ(φ)=ε|MfDφ|(Ω)+αm∑j=1∫Ω2ε|MfD[χEτj]ε|. |
From the differentiability of (f−ci)log(fci) and [χAτj]ε, it is immediate that the functional Fε,τ is of the class C1. Hence, there exist linear continuous functionals
DφFε,τ(c0ε,τ,φ0ε,τ):Rm+1×BV(Ω)→RandDcjFε,τ(c0ε,τ,φ0ε,τ):Rm+1×BV(Ω)→R,j=0,…,m |
such that
Fε,τ(c0ε,φ0ε,τ+λh)=Fε,τ(c0ε,τ,φ0ε,τ)+λDφFε,τ(c0ε,τ,φ0ε,τ)[h]+r(h,λ),Fε,τ(c0ε,τ+λμej,φ0ε,τ)=Fε(c0ε,τ,φ0ε,τ)+λDcjFε,τ(c0ε,τ,φ0ε,τ)[μej]+rj(μ,λ),j=0,…,m, |
for any h∈BV(Ω) and μ∈R, where |r(h,λ)|=o(|λ|) and |rj(μ,λ)|=o(|λ|) as λ→0, and
ej=(0,…,1⏟j-th slot,…,0)t∈Rm+1. |
Moreover, making use of the following representations
χAτ0=H(l1−τ−φ)andχAτj=H(φ−lj−τ), j=1,….m |
with H(z)={1, z≥00, z<0}, we have
[χAτ0]ε=Hε(l1−τ−φ)and[χAτj]ε=Hε(φ−lj−τ), j=1,….m, |
where Hε(z)=[ηε∗χE](z) stands for the smooth approximation of H(z) through the mollification.
Then, direct calculations show that
DφFε,τ(c,φ)[h]=−∫Ω(f−c0)log(fc0)H′ε(l1−τ−φ)hdx,+m−1∑j=1∫Ω(f−cj)log(fcj)[H′ε(φ−lj−τ)−H′ε(φ−lj+1−τ)]hdx,+∫Ω(f−cm)log(fcm)H′ε(φ−lm−τ)hdx, | (5.1) |
DcjFε,τ(c,φ)[μej]=−μcj∫ΩfΛj(φ)dx−μ∫Ωlog(f)Λj(φ)dx+μcj∫ΩΛj(φ)dx+μ∫ΩΛj(φ)dx,j=0,1,…,m | (5.2) |
with
Λ0(φ)=Hε(l1−φ−τ),Λm(φ)=Hε(φ−lm−τ),Λj(φ)=Hε(φ−lj−τ)−Hε(φ−lj+1−τ),j=1,…,m−1. |
Since f∈Fγ, it follows from Eq (5.2) that the unique solution of the system
DcjFε,τ(c0ε,τ,φ0ε,τ)[μej]=0,j=0,…,m | (5.3) |
can be expressed as
{c0ε,τ,0=c0(φ0ε,τ)=∫ΩfHε(l1−φ0ε,τ−τ)dx∫ΩHε(l1−φ0ε,τ−τ)dx,c0ε,τ,j=cj(φ0ε,τ)=∫Ωf[Hε(φ0ε,τ−lj−τ)−Hε(φ0ε,τ−lj+1−τ)]dx∫Ω[Hε(φ0ε,τ−lj−τ)−Hε(φ0ε,τ−lj+1−τ)]dx,c0ε,τ,m=cm(φ0ε,τ)=∫ΩfHε(φ0ε,τ−lm−τ)dx∫ΩHε(φ0ε,τ−lm−τ)dx | (5.4) |
with c0ε,τ,j≥0 for all j=0,…,m, i.e., c0ε,τ∈Cad.
Arguing in a similar manner and taking into account that Ψ∈C1loc(R), it can be shown that
Φε(φ0ε,τ+λh)=Φε(φ0ε,τ)+λDφΦε(φ0ε,τ)[h]+r(h,λ), |
for any h∈BV(Ω), where |r(h,λ)|=o(|λ|) as λ→0, and DφΦε(φ0ε,τ):BV(Ω)→R is a linear continuous functional with the following representation:
DφΦε(φ0ε,τ)[h]=1ε[−∫ΩΨ′(l0−φ0ε,τ)hdx+∫ΩΨ′(φ0ε,τ−lm+1)hdx]. | (5.5) |
Here,
Ψ′(z)={δzδ−1,if z≥0,0,if z<0.} |
We are now in a position to establish the main result of this section.
Theorem 11. Given ε>0 and τ>0 small enough, f∈Fγ, α>0, and a collection of m+2 distinct level values l0<l1<⋯<lm<lm+1, let (c0ε,τ,φ0ε,τ)∈Ξε be a local minimizer to problems (4.9)–(4.13). Then, the pair (c0ε,τ,φ0ε,τ) satisfies the following Euler-Lagrange system:
−∫Ω(f−c0ε,τ,0)log(fc0ε,τ,0)H′ε(l1−φ0ε,τ−τ)[φ−φ0ε,τ]dx+m−1∑j=1∫Ω(f−c0ε,τ,j)log(fc0ε,τ,j)[H′ε(φ0ε,τ−lj−τ)−H′ε(φ0ε,τ−lj+1−τ)][φ−φ0ε,τ]dx+∫Ω(f−c0ε,τ,m)log(fc0ε,τ,m)H′ε(φ0ε,τ−lm−τ)[φ−φ0ε,τ]dx+1ε∫Ω[Ψ′(φ0ε,τ−lm+1)−Ψ′(l0−φ0ε,τ)][φ−φ0ε,τ]dx+jε,τ(φ)−jε,τ(φ0ε,τ)≥0,∀φ∈Gad, | (5.6) |
where the constants c0ε,τ,0,c0ε,τ,1,…,c0ε,τ,m are defined by the rule (5.4).
Proof. Since (c0ε,τ,φ0ε,τ)∈Ξε is a local minimum point of Eqs (4.9)–(4.13), we have that
Jε,τ(c0ε,τ+ρ(μ−(cj)0ε,τ)ej,φ0ε,τ)≥Jε,τ(c0ε,τ,φ0ε,τ), | (5.7) |
Jε,τ(c0ε,τ,φ0ε,τ+ρ(φ−φ0ε,τ))≥Jε,τ(c0ε,τ,φ0ε,τ) | (5.8) |
for all ρ>0 small enough and any given μ≥0 and φ∈Gad.
As a result, inequality (5.7) leads to the Eq (5.3), and, hence, to the representation (5.4), whereas Eq (5.8) together with the convexity of jε implies
0≤Jε,τ(c0ε,τ,φ0ε,τ+ρ(φ−φ0ε,τ))−Jε,τ(c0ε,τ,φ0ε,τ)ρ=Fε,τ(c0ε,τ,φ0ε,τ+ρ(φ−φ0ε,τ))−Fε,τ(c0ε,τ,φ0ε,τ)ρ+jε,τ(φ0ε,τ+ρ(φ−φ0ε,τ))−jε,τ(φ0ε,τ)ρ+Φε(φ0ε,τ+ρ(φ−φ0ε,τ))−Φε(φ0ε,τ)ρ≤Fε,τ(c0ε,τ,φ0ε,τ+ρ(φ−φ0ε,τ))−Fε,τ(c0ε,τ,φ0ε,τ)ρ+Φε(φ0ε,τ+ρ(φ−φ0ε,τ))−Φε(φ0ε,τ)ρ+jε,τ(φ)−jε,τ(φ0ε,τ). |
Now, passing to the limit as ρ→0, we get
0≤DφFε,τ(c0ε,τ,φ0ε,τ)[φ−φ0ε,τ]+DφΦε(φ0ε,τ)[φ−φ0ε,τ]+jε,τ(φ)−jε,τ(φ0ε,τ). |
Finally, using the expression of the Gateaux derivatives DφFε,τ(c0ε,τ,φ0ε,τ) and DφΦε(φ0ε,τ) given by Eqs (5.1) and (5.5), respectively, we immediately arrive at the optimality system (5.6).
The main question we are going to discuss in this section is to find out whether the convergence of minima of Eq (4.9) is to minima of Eq (4.6) as ε and τ tend to zero. To this end, we make use of the basic results of the variational convergence of minimization problems and Γ-convergence theory (see, for instance, [27,28,29]). In particular, in Lemmas 12 and 13, we show that the standard properties of Γ-limits hold true for the objective functional Jε,τ with respect to the weak-∗ topology of BV(Ω) space and the pointwise convergence in Rm+1. Utilizing these characteristic features, we establish the main variational property of the proposed approximation procedure (see Theorem 14). Namely, we prove that any sequence of optimal pairs to the approximated problems (4.9)–(4.13) is compact in the weak-∗-topology of Rm+1×BV(Ω) and each cluster point is a solution of the problem
Jτ(c,φ)→inf(c,φ)∈Ξφ∈BV(Ω), |
where the cost functional is defined in Eq (6.6).
We begin with the following noteworthy result.
Lemma 12. Let τ>0 be a given value such that τ≪1. Let {(cε,φε)∈Ξε}ε→0 be a sequence of feasible pairs to the approximated problems (4.9)–(4.13), satisfying the conditions
supε>0Jε,τ(cε,φε)<+∞andsupε>0‖φε‖BV(Ω)<+∞. | (6.1) |
Then, there exist a subsequence {(cεj,φεj)}∞j=1 with εj→0 as j→∞, and a pair (c,φ)∈Rm+1×BV(Ω) such that
cεj→c in Rm+1 asj→∞, | (6.2) |
φεj→φ strongly in L1(Ω) as j→∞, | (6.3) |
MfDφεj∗⇀MfDφ weakly−∗in M(Ω;R2) as j→∞, | (6.4) |
(c,φ)∈ΞandJτ(c,φ)≤lim infj→∞Jεj,τ(cεj,φεj), | (6.5) |
where
Jτ(c,φ)=∫Ω(f−c0)log(fc0)χAτ0dx+m−1∑j=1∫Ω(f−cj)log(fcj)[χAτj−χAτj+1]dx+∫Ω(f−cm)log(fcm)χAτmdx+αm∑j=1∫Ω|MfDχEτj|. | (6.6) |
Proof. In view of the initial assumptions (see Eq (6.1)2), the sequence {(cε,φε)}ε→0 is compact with respect to the product of norm topology of Rm+1 and the weak-∗ convergence in BV(Ω). So, there exists a subsequence {(cεj,φεj)}∞j=1 with εj→0 as j→∞ and a pair (c,φ)∈Rm+1×BV(Ω) such that, in addition to Eqs (6.2) and (6.3), we have
φεj(x)→φ(x) a.e. in Ω,Dφεj∗⇀Dφ weakly−∗in M(Ω;R2) as j→∞. | (6.7) |
Since the matrix Mf is positive-definite on Ω, property (6.7) implies the weak-∗ convergence (6.4). Moreover, from Eqs (6.1) and (6.7), we deduce the existence of a constant C>0 independent of ε such that
supj∈N|MfDφεj|(Ω)≤supj∈N|Dφεj|(Ω)≤C,‖Ψ(l0−φεj)‖L1(Ω)+‖Ψ(φεj−lm+1)‖L1(Ω)≤εjC,∀j∈N. |
Hence,
limj→∞[εj|MfDφεj|(Ω)]=0, | (6.8) |
limj→∞‖Ψ(l0−φεj)‖L1(Ω)=0,limj→∞‖Ψ(φεj−lm+1)‖L1(Ω)=0. | (6.9) |
It means that the limit function φ satisfies the pointwise constraints l0≤φ(x)≤lm+1 a.e. in Ω. Thus, we see that (c,φ)∈Ξ.
It remains to establish the inequality (6.5)2. With that in mind, we make use of the pointwise convergence Eqs (6.2), (6.7), and properties (ⅰ) and (ⅱ) of the smoothed characteristic functions [χE]ε. Then, arguing as in the proof of Lemma 9, we deduce that
[χ{φεj(x)≥lk+τ}]εj→χ{φ(x)≥lk+τ} a.e. in Ω,∀k=1,…,m(f(x)−cεj,k)log(f(x)cεj.k)→(f(x)−ck)log(f(x)ck) a.e. in Ω,∀k=0,…,m|(f(x)−cεj,k)log(f(x)cεj,k)|≤g(x) a.e. in Ω, |
with some integrable function g. Hence, by the Lebesgue dominated theorem, we have:
∫Ω(f−cεj,0)log(fcεj,0)[χ{φεj(x)≤l1−τ}]εdx+m−1∑k=1∫Ω(f−cεj,k)log(fcεj,k)([χ{φεj(x)≥lk+τ}]ε−[χ{φεj(x)≥lk+1+τ}]ε)dx+∫Ω(f−cεj,m)log(fcεj,m)[χ{φεj(x)≥lm+τ}]εdxj→∞⟶∫Ω(f−c0)log(fc0)χ{φ(x)≤l1−τ}dx+m−1∑j=1∫Ω(f−cj)log(fcj)(χ{φ(x)≥lk+τ}−χ{φ(x)≥lk+1+τ})dx+∫Ω(f−cm)log(fcm)χ{φ(x)≥lm+τ}dx. | (6.10) |
To end the proof, we have to show that
lim infj→∞m∑k=1∫Ω2ε|MfD[χ{φεj(x)≥lk−τ}]εj|≥m∑k=1∫Ω|MfDχ{φ(x)≥lk−τ}| | (6.11) |
With that in mind, we notice that
+∞by (6.1)>lim infj→∞m∑k=1∫Ω2ε|MfD[χ{φεj(x)≥lk−τ}]εj|≥lim infj→∞m∑k=1∫Ω|MfD[χ{φεj(x)≥lk−τ}]εj|. | (6.12) |
Taking into account that (see Eq (6.1)2), all level sets of the functions {φεj}j∈N have a finite perimeters, and we see that χ{φεj(x)≥lk−τ}∈BV(Ω) for each k=1,…,m. Moreover, in view of Eq (6.7), we have
χ{φεj(x)≥lk−τ}j→∞⟶χ{φ(x)≥lk−τ} a.e. in Ω and strongly in L1(Ω), | (6.13) |
for each k∈{1,…,m}.
Hence,
[χ{φεj(x)≥lk−τ}]εjj→∞⟶χ{φ(x)≥lk−τ} a.e. in Ω and strongly in L1(Ω),lim infj→∞m∑k=1∫Ω|MfD[χ{φεj(x)≥lk−τ}]εj|≥m∑k=1∫Ω|MfDχ{φ(x)≥lk−τ}|. | (6.14) |
Together with Eq (6.12), we arrive at the announced inequality (6.11). Thus, the desired property (6.5) is a direct consequence of of relations (6.8)–(6.11).
Lemma 13. For every feasible pair (c,φ)∈Ξ, there can be found a sequence {(ˆcε,ˆφε)}ε>0 satisfying the properties
(ˆcε,ˆφε)∈Ξεfor ε>0smallenough, | (6.15) |
(ˆcε→c in Rm+1,ˆφε∗⇀φ in BV(Ω) asε→0, | (6.16) |
Jτ(c,φ)=limε→0Jε,τ(ˆcε,ˆφε). | (6.17) |
Proof. Let (c,φ)∈Ξ be a given pair. In view of Theorem 4, we can suppose that φ∈C∞(Ω).
Let {cε}ε>0 be an arbitrary sequence in Rm+1 such that
cε∈Cad∀ε>0andcε→c as ε→0. | (6.18) |
Then, we define the sequence {(ˆcε,ˆφε)}ε>0 as follows:
ˆcε=cεandˆφε=φ,∀ε>0. |
Since φ∈C∞(Ω), it follows that ˆφε has a bouded anisotropic total variation and, therefore, {(ˆcε,ˆφε)∈Ξε)}ε>0 are the collection of feasible solutions for the corresponding two-parametric approximated problems (4.9). Then, due to the fact that l0≤φ(x)≤lm+1 in Ω, we have:
‖Ψ(l0−ˆφε)‖L1(Ω)+‖Ψ(ˆφε−lm+1)‖L1(Ω)=0,∀ε>0, | (6.19) |
limε→0|MfDˆφε|(Ω)≤limε→0|Dˆφε|(Ω)=|Dφ|(Ω)<∞. | (6.20) |
Furthermore, arguing as in the proof of Lemma 6 and taking into account the property (ⅰ) of mollifiers, we see that
∫Ω(f−ˆcε,0)log(fˆcε,0)[χ{φ(x)≤l1−τ}]εdx+m−1∑k=1∫Ω(f−ˆcε,k)log(fˆcε,k)([χ{φ(x)≥lk+τ}]ε−[χ{φ(x)≥lk+1+τ}]ε)dx+∫Ω(f−ˆcε,m)log(fˆcε,m)[χ{φ(x)≥lm+τ}]εdxj→∞⟶∫Ω(f−c0)log(fc0)χ{φ(x)≤l1−τ}dx+m−1∑j=1∫Ω(f−cj)log(fcj)(χ{φ(x)≥lk+τ}−χ{φ(x)≥lk+1+τ})dx+∫Ω(f−cm)log(fcm)χ{φ(x)≥lm+τ}dx. | (6.21) |
Thus, in view of Eqs (6.19)–(6.21), in order to deduce the Eq (6.17), it remains to show that
limε→0m∑j=1∫Ω2ε|MfD[χ{φ(x)≥lj−τ}]ε|=m∑j=1∫Ω|MfDχ{φ(x)≥lj−τ}|. | (6.22) |
Observing that (see Lemma 5)
limε→0∫Ω2ε|MfD[χ{φ(x)≥lj−τ}]ε|=∫¯Ω|MfDχ{φ(x)≥lj−τ}|=∫Ω|MfDχ{φ(x)≥lj−τ}|+∫∂Ω|MfDχ{φ(x)≥lj−τ}|, | (6.23) |
where the last term in Eq (6.23) is equal to zero because {x∈Ω:φ(x)≥lj−τ} is a closed subset of Ω.
As a result, we obtain
limε→0∫Ω2ε|MfD[χ{φ(x)≥lj−τ}]ε|=∫Ω|MfDχ{φ(x)≥lj−τ}|,∀j=1,…,m. |
This concludes the proof.
We are now in a position to state the main result of this section.
Theorem 14. Let τ≪1 be a given positive value. Let {(c0ε,τ,φ0ε,τ)∈Ξε}ε→0 be a sequence of optimal pairs to the approximated minimization problems (4.9)–(4.13). Assume that the sequence {φ0ε,τ}ε>0 is bounded in BV(Ω), and the relaxed problem
Jτ(c,φ)→inf(c,φ)∈Ξφ∈BV(Ω) | (6.24) |
has a nonempty set of minimizers for the given value τ>0. Then, there exists a pair (c∗τ,φ∗τ)∈Ξ such that, up to a subsequence,
c0ε,τ→c∗τ in Rm+1 asε→0, | (6.25) |
φ0ε,τ→φ∗τ strongly in L1(Ω), | (6.26) |
MfDφ0ε,τ∗⇀MfDφ∗τ weakly−∗in M(Ω;R2), | (6.27) |
inf(c,φ)∈ΞJτ(c,φ)=Jτ(c∗τ,φ∗τ)=limε→0Jε,τ(c0ε,τ,φ0ε,τ)=limε→0inf(c,φ)∈ΞεJε,τ(c,φ), | (6.28) |
where the objective functional Jτ:Ξ→R is defined in Eq (6.6).
Proof. First, we observe that a given sequence of minimizers for approximating problems (4.9)–(4.13) is compact with respect to the convergences (6.25)–(6.27). Indeed, for an arbitrary test function ˆφ∈C∞c(R2) and arbitrary vector ˆc∈Rm+1 with positive components, we have:
ˆc∈Cadandˆφ∈BV(Ω),∀ε>0. |
Let's assume that, in addition, the function ˆφ satisfies the pointwise constraints l0≤ˆφ(x)≤lm+1 in Ω. Then, (ˆc,ˆφ)∈Ξε for each ε>0, and, therefore,
Jε,τ(c0ε,τ,φ0ε,τ)=inf(c,φ)∈ΞεJε,τ(c,φ)≤Jε,τ(ˆc,ˆφ)≤supε>0Jε,τ(ˆc,ˆφ)≤C<+∞∀ε>0. |
Hence,
supε>0Jε,τ(c0ε,τ,φ0ε,τ)<+∞andsupε>0‖φ0ε,τ‖BV(Ω)<+∞. | (6.29) |
Thus, for the sequence of minimizers {(c0ε,τ,φ0ε,τ)∈Ξε}ε>0, all preconditions of Lemma 12 are fulfilled. Therefore, there exist a subsequence {(c0εk,τ,φ0εk,τ)∈Ξεk}k∈N of the sequence {(c0ε,τ,φ0ε,τ)∈Ξε}ε→0 and a pair (c∗τ,φ∗τ)∈Ξ, such that (c0εk,τ,φ0εk,τ)→(c∗τ,φ∗τ) is the sense of convergences (6.25)–(6.27) and
Jτ(c∗τ,φ∗τ))≤lim infk→∞Jεk,τ(c0εk,τ,φ0εk,τ). |
From this, we deduce that
lim infk→∞inf(c,φ)∈ΞekJεk,τ(c,φ)=lim infk→∞Jεk,τ(c0εk,τ,φ0εk,τ)≥Jτ(c∗τ,φ∗τ)≥inf(c,φ)∈Ξφ∈BV(Ω)Jτ(c,φ)=Jτ(c0τ,φ0τ), | (6.30) |
where (c0τ,φ0τ) is a minimizer for the relaxed problem (6.24).
On the other hand, Lemma 13 implies the existence of a realizing sequence {(ˆcε,ˆφε)}ε>0 such that (ˆcε,ˆφε)→(c0τ,φ0τ) as ε→0 in the sense of relations (6.16), and
Jτ(c0τ,φ0τ)=limε→0Jε,τ(ˆcε,ˆφε). |
Utilizing this fact, we get
inf(c,φ)∈Ξφ∈BV(Ω)Jτ(c,φ)=Jτ(c0τ,φ0τ)=lim supε→0Jε,τ(ˆcε,ˆφε)≥lim supε→0inf(c,φ)∈ΞεJε,τ(c,φ)≥lim supk→∞inf(c,φ)∈ΞεkJεk,τ(c,φ)=lim supk→∞Jεk,τ(c0εk,τ,φ0εk,τ). | (6.31) |
From this and Eq (6.30), we deduce that
lim infk→∞Jεk(c0εk,τ,φ0εk,τ)≥lim supk→∞Jεk,τ(c0εk,τ,φ0εk,τ). |
As a result, we have
Jτ(c0τ,φ0τ)=Jτ(c∗τ,φ∗τ)=inf(c,φ)∈Ξφ∈BV(Ω)Jτ((c,φ))=limk→∞inf(c,φ)∈ΞεkJεk,τ(c,φ). | (6.32) |
Using these relations and the fact that the problem (6.24) is solvable, we may suppose that
(c∗τ,φ∗τ)=(c0τ,φ0τ). |
Since Eq (6.32) holds for all subsequences of {(c0ε,τ,φ0ε,τ)∈Ξε}ε→0, which are convergent in the sense of relations (6.25)–(6.27), it follows that these limits coincide and, therefore, (c0τ,φ0τ) is the limit of the whole sequence {(c0ε,τ,φ0ε,τ)}ε>0. Then, using the same argument for the entire sequence of minimizers, we finally obtain
lim infε→0inf(c,φ)∈ΞεJε,τ(c,φ)=lim infε→0Jε,τ(c0ε,τ,φ0ε,τ)≥Jτ(c0τ,φ0τ)≥inf(c,φ)∈Ξφ∈BV(Ω)Jτ(c,φ)=limε→0Jε,τ(c0ε,τ,φ0ε,τ)≥lim supε→0inf(c,φ)∈ΞεJε,τ(c,φ)=lim supε→0Jε,τ(c0ε,τ,φ0ε,τ), |
and this concludes the proof.
To illustrate the implementation of the proposed optimization problem (4.6) to the domain decomposition that corresponds to the homogeneity zones of a given function f:Ω→R, we provided numerical experiences with images that have been delivered by satellite Sentinel-2. As input data, we have used an image over the Dnipro area, Ukraine, with a resolution of 10m/pixel (see the left panel in Figure 1). This region represents a typical agricultural area with medium-sized fields of various shapes. As follows from the picture given in Figure 1 (see also the corresponding histogram in Figure 2), the observed data suffer from noise and blurs. So, at the first step, we have realized the denoising and debluring procedure (see the right panel in Figure 1) following the variational approach that has been recently proposed in [30]. As Figure 2 indicates, the histogram of the smoothed image has a strongly marked compactly localized spectrum that can be considered as a "good option" for its piecewise constant approximation. To conduct the numerical simulations of the segmentation procedure for the given area, we have set f(x)=u2(x) in Ω, where u2 stands for the intensity of the de-blurred image (see Figure 1) in the green spectral channel, and
m=4, l0=−5000, l1=0, l2=1000, l3=2000, l4=300, lm=5000. |
In accordance with the results of Section 5, we have to solve the system (5.6) and find its solution φ0e for the corresponding function f. Since, in practical implementations, it is reasonable to define the solution of the problem (5.6) using a "gradient descent" strategy, we started with some initial level-set function φ0∈C(Ω) and passed to the corresponding initial-boundary value problem for quasi-linear parabolic equations with Neumann boundary conditions. For numerical simulations, we set ε=0.01, τ=10, α=1, σ=3, η=0.95, and the initial level set function φ0∈C(Ω) was defined as follows:
φ0(x)={+d(x,S),x∈insideS,0,x∈S,−d(x,S),x∈outsideS, |
where S is a circle of radius 20 with a center at a central point of Ω, and d(x,S) denotes the Euclidean distance from the point x∈Ω to the circle S. We report the level sets in Figures 3 and 4.
All the authors conceived the idea, designed the methodology and the main proofs. All the authors contributed equally in the writing of the article.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Peter Kogut thanks the support of University of Salerno.
The authors declare there is no conflict of interest.
[1] | R. Boesch, Z. Wang, Segmentation optimization for aerial images with spacial constraints, in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (2008), 285–289. |
[2] |
Y. Chen, Q. Chen, C. Jing, Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on meanNSQI and discrepancy measure, J. Spat. Sci., 66 (2019), 253–278. https://doi.org/10.1080/14498596.2019.1615011 doi: 10.1080/14498596.2019.1615011
![]() |
[3] |
P. Xiao, X. Zhang, H. Zhang, R. Hu, X. Feng, Multiscale optimized segmentation of urban green cover in high resolution remote sensing image, Remote Sens., 10 (2018), 1813. https://doi.org/10.3390/rs10111813 doi: 10.3390/rs10111813
![]() |
[4] |
J. Xue, B. Su, Significant remote sensing Vegetation Indices: A review of developments and applications, J. Sensors, 2017 (2017), 1353691. https://doi.org/10.1155/2017/1353691 doi: 10.1155/2017/1353691
![]() |
[5] |
D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Commun. Pure. Appl. Math., 42 (1989), 577–685. https://doi.org/10.1002/cpa.3160420503 doi: 10.1002/cpa.3160420503
![]() |
[6] |
L. Alvarez, P. L. Lions, J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. Ⅱ, SIAM J. Numer. Anal., 29 (1992), 845–866. https://doi.org/10.1137/0729052 doi: 10.1137/0729052
![]() |
[7] |
L. Alvarez, F. Guichard, P. L. Lions, J. M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal., 123 (1993), 199–257. https://doi.org/10.1007/BF00375127 doi: 10.1007/BF00375127
![]() |
[8] |
F. Catté, T. Coll, P. L. Lions, J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. Ⅰ, SIAM J. Numer. Anal., 29 (1992), 182–193. https://doi.org/10.1137/0729012 doi: 10.1137/0729012
![]() |
[9] |
V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Int. J. Comput. Vision, 22 (1997), 61–79. https://doi.org/10.1023/A:1007979827043 doi: 10.1023/A:1007979827043
![]() |
[10] |
T. Chan, L. Vese, Active contours without edges, IEEE Trans. Image Process., 10 (2001), 266–277. https://doi.org/10.1109/83.902291 doi: 10.1109/83.902291
![]() |
[11] |
D. J. Mulla, Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosyst. Eng., 114 (2013), 358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009 doi: 10.1016/j.biosystemseng.2012.08.009
![]() |
[12] |
B. Han, Y. Wu, Active contour model for inhomogeneous image segmentation based on Jeffreys divergence, Pattern Recognit., 107 (2020), 107520. http://dx.doi.org/10.1016/j.patcog.2020.107520 doi: 10.1016/j.patcog.2020.107520
![]() |
[13] |
H. Jeffreys, An invariant form for the prior probability in estimation problems, Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 186 (1946), 453–461. https://doi.org/10.1098/rspa.1946.0056 doi: 10.1098/rspa.1946.0056
![]() |
[14] |
C. Yang, G. Weng, Y. Chen, Active contour model based on local Kullback–Leibler divergence for fast image segmentation, Eng. Appl. Artif. Intell., 123 (2023), 106472. https://doi.org/10.1016/j.engappai.2023.106472 doi: 10.1016/j.engappai.2023.106472
![]() |
[15] | C. Samson, L. Blanc-Féraud, G. Aubert, J. Zerubia, Multiphase Evolution and Variational Image Classification, INRIA Sophia Antipolis, 1999. |
[16] | H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, Philadelphia: SIAM, 2006. |
[17] | L. C. Evans, Weak convergence methods for nonlinear partial differential equations, Washington, DC: American Mathematical Society, 1990. |
[18] | L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, New York: Oxford University Press, 2000. |
[19] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Boston: Birkhäuser, 1984. https://doi.org/10.1007/978-1-4684-9486-0 |
[20] | L. C. Evans, R. E. Gariepy, Measure Theory and Fine Properties of Functions, New York: Routledge, 1992. https://doi.org/10.1201/9780203747940 |
[21] | R. Caccioppoli, Misura e integrazione sugli insiemi dimensionalmente orientali Ⅰ.Ⅱ, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., 12 (1952), 3–11. |
[22] | M. Grasmair, A Coarea Formula for Anisotropic Total Variation Regularisation, Universität Wien, 2010. |
[23] | L. Rotem, The anisotropic total variation and surface area measures, In: Geometric Aspects of Functional Analysis, Cham: Springer, 2327 (2023), 297–312. https://doi.org/10.1007/978-3-031-26300-2_11 |
[24] |
L. Bungert, D. A. Coomes, M. J. Ehrhardt, J. Rasch, R. Reisenhofer, R. C. B. Schönlieb, Blind image fusion for hyperspectral imaging with the directional total variation, Inverse Probl., 34 (2018), 044003. https://doi.org/10.1088/1361-6420/aaaf63 doi: 10.1088/1361-6420/aaaf63
![]() |
[25] | L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati, R. Mohieddine, N. Socheen, L. A. Vese, Mumford and Shah model and its applications to image segmentation and image restoration, In: Handbook of Mathematical Methods in Imaging, New York: Springer, 2011, 1097–1157. https://doi.org/10.1007/978-0-387-92920-0_25 |
[26] | T. Chan, L. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, in Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, 2001,161–168. https://doi.org/10.1109/VLSM.2001.938895 |
[27] | G. Dal Maso, An Introduction to Γ-Convergence, Boston: Birkhäuser Verlag, 1993. https://doi.org/10.1007/978-1-4612-0327-8 |
[28] | P. I. Kogut, O. P. Kupenko, Approximation Methods in Optimization of Nonlinear Systems, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110668520 |
[29] | P. I. Kogut, G. Leugering, Optimal control problems for partial differential equations on reticulated domains. Approximation and Asymptotic Analysis, Boston: Birkhäuser Verlag, 2011. https://doi.org/10.1007/978-0-8176-8149-4 |
[30] |
C. D'Apice, P. I. Kogut, O. Kupenko, R. Manzo, On a variational problem with a nonstandard growth functional and its applications to image processing, J. Math. Imaging Vision, 65 (2023), 472–491. https://doi.org/10.1007/s10851-022-01131-w doi: 10.1007/s10851-022-01131-w
![]() |