Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Numerical analysis of stretching/shrinking fully wet trapezoidal fin

  • Received: 25 November 2023 Revised: 17 April 2024 Accepted: 18 April 2024 Published: 08 July 2024
  • The purpose of fins or extended surfaces is to increase the dissipation of heat from hot sources into their surroundings. Fins like annular fins, longitudinal fins, porous fins, and radial fins are used on the surface of equipments to enhance the rate of heat transfer. There are many applications of fins, including superheaters, refrigeration, automobile parts, combustion engines, electrical equipment, solar panels, and computer CPUs. Based on a wide range of applications, the effects of stretching/shrinking on a fully wet trapezoidal fin with internal heat generation is investigated. The shooting approach is used to calculate the trapezoidal fin's thermal profile, tip temperature, and efficiency. It is observed that with an increase in the shrinking and wet parameter, the temperature distribution decreases and efficiency increases. On the other hand, when stretching increases, the temperature distribution increases and efficiency diminishes. Using the computed results, it is concluded that shrinking trapezoidal fins improves the effectiveness and performance of the system.

    Citation: Sharif Ullah, Obaid J. Algahtani, Zia Ud Din, Amir Ali. Numerical analysis of stretching/shrinking fully wet trapezoidal fin[J]. Networks and Heterogeneous Media, 2024, 19(2): 682-699. doi: 10.3934/nhm.2024030

    Related Papers:

    [1] Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008
    [2] Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria . Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $. Electronic Research Archive, 2022, 30(9): 3435-3451. doi: 10.3934/era.2022175
    [3] Youming Chen, Weiguo Lyu, Song Yang . A note on the differential calculus of Hochschild theory for $ A_{\infty} $-algebras. Electronic Research Archive, 2022, 30(9): 3211-3237. doi: 10.3934/era.2022163
    [4] Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113
    [5] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [6] Ming Ding, Zhiqi Chen, Jifu Li . The properties on F-manifold color algebras and pre-F-manifold color algebras. Electronic Research Archive, 2025, 33(1): 87-101. doi: 10.3934/era.2025005
    [7] Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu . A generalized quantum cluster algebra of Kronecker type. Electronic Research Archive, 2024, 32(1): 670-685. doi: 10.3934/era.2024032
    [8] Xiuhai Fei, Haifang Zhang . Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras. Electronic Research Archive, 2023, 31(11): 6898-6912. doi: 10.3934/era.2023349
    [9] Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev . The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068
    [10] Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154
  • The purpose of fins or extended surfaces is to increase the dissipation of heat from hot sources into their surroundings. Fins like annular fins, longitudinal fins, porous fins, and radial fins are used on the surface of equipments to enhance the rate of heat transfer. There are many applications of fins, including superheaters, refrigeration, automobile parts, combustion engines, electrical equipment, solar panels, and computer CPUs. Based on a wide range of applications, the effects of stretching/shrinking on a fully wet trapezoidal fin with internal heat generation is investigated. The shooting approach is used to calculate the trapezoidal fin's thermal profile, tip temperature, and efficiency. It is observed that with an increase in the shrinking and wet parameter, the temperature distribution decreases and efficiency increases. On the other hand, when stretching increases, the temperature distribution increases and efficiency diminishes. Using the computed results, it is concluded that shrinking trapezoidal fins improves the effectiveness and performance of the system.



    Existing methods and algorithms appeared in some literatures assume that variables are independent, but it is not plausible. In many stochastic models and statistical applications, those variables involved are dependent. Hence, it is important and meaningful to extend the results of independent variables to dependent cases. One of these dependence structures is weakly dependent (i.e., ρ-mixing or ˜ρ-mixing), which has attracted the concern by many researchers.

    Definition 1.1. Let {Xn;n1} be a sequence of random variables defined on a probability space (Ω,F,P). For any SN = {1,2,}, define FS=σ(Xi,iS). The set L2(FS) is the class of all F-measureable random variables with the finite second moment. For some integer s1, denote the mixing coefficient by

    ρ(s)=sup{ρ(FS,FT):S,TN,dist(S,T)s}, (1.1)

    where

    ρ(FS,FT)=sup{|EXYEXEY|VarXVarY:XL2(FS),YL2(FT)}. (1.2)

    Noting that the above fact dist(S,T)s denotes dist(S,T)=inf{|ij|:iS,jT}s. Obviously, 0ρ(s+1)ρ(s)1 and ρ(0)=1. The sequence {Xn;n1} is called ρ-mixing if there exists sN such that ρ(s)<1. Clearly, if {Xn;n1} is a sequence of independent random variables, then ρ(s)=0 for all s1.

    ρ-mixing seems similarly to another dependent structure: ρ-mixing, but they are quite different from each other. ρ-mixing is also a wide range class of dependent structures, which was firstly introduced to the limit theorems by Bradley [4]. From then on, many scholars investigated the limit theory for ρ-mixing random variables, and a number of important applications for ρ-mixing have been established. For more details, we refer to [12,16,18,19,21,23,24] among others.

    The concept of complete convergence was firstly given by Hsu and Robbins[9] as follows: A sequence of random variables {Xn;n1} converges completely to a constant λ if n=1P(|Xnλ|>ε)< for all ε>0. By the Borel-Cantelli lemma, the above result implies that Xnλ almost surely (a.s.). Thus, the complete convergence plays a crucial role in investigating the limit theory for summation of random variables as well as weighted sums.

    Chow [8] introduced the following notion of complete moment convergence: Let {Zn;n1} be a sequence of random variables, and an>0, bn>0, q>0. If n=1anE(b1n|Zn|ε)q+< for all ε0, then the sequence {Zn;n1} is called to be the complete q-th moment convergence. It will be shown that the complete moment convergence is the more general version of the complete convergence, and is also much stronger than the latter (see Remark 2.1).

    According to the related statements of Rosalsky and Thành[14] as well as that of Thành[17], we recall the definition of stochastic domination as follows.

    Definition 1.2. A sequence of random variables {Xn;n1} is said to be stochastically dominated by a random variable X if for all x0 and n1,

    supn1P(|Xn|x)P(|X|x).

    The concept of stochastic domination is a slight generalization of identical distribution. It is clearly seen that stochastic dominance of {Xn;n1} by the random variable X implies E|Xn|pE|X|p if the p-th moment of |X| exists, i.e. E|X|p<.

    As is known to us all, the weighted sums of random variables are used widely in some important linear statistics (such as least squares estimators, nonparametric regression function estimators and jackknife estimates). Based on this respect, many probability statisticians devote to investigate the probability limiting behaviors for weighted sums of random variables. For example, Bai and Cheng[3], Cai[5], Chen and Sung[6], Cheng et al.[7], Lang et al.[11], Peng et al.[13], Sung[15,16] and Wu[20] among others.

    Recently, Li et al.[12] extended the corresponding result of Chen and Sung[6] from negatively associated random variables to ρ-mixing cases by a total different method, and obtained the following theorem.

    Theorem A. Let {X,Xn;n1} be a sequence of identically distributed ρ-mixing random variables with EXn=0, and let {ani;1in,n1} be an array of real constants such that ni=1|ani|α=O(n) for some 1<α2. Set bn=n1/α(logn)1/γ for 0<γ<α. If E|X|α/(log(1+|X|))α/γ1<, then

    n=11nP(max1jn|ji=1aniXi|>εbn)<forε>0. (1.3)

    In addition, Huang et al.[10] proved the following complete α-th moment convergence theorem for weighted sums of ρ-mixing random variables under some moment conditions.

    Theorem B. Let {Xn;n1} be a sequence of ρ-mixing random variables, which is stochastically dominated by a random variable X, let {ani;1in,n1} be an array of real constants such that ni=1|ani|α=O(n) for some 0<α2. Set bn=n1/α(logn)1/γ for some γ>0. Assume further that EXn=0 when 1<α2. If

    E|X|α<,forα>γ,E|X|αlog(1+|X|)<,forα=γ,E|X|γ<,forα<γ, (1.4)

    then

    n=11nE(1bnmax1jn|ji=1aniXi|ε)α+< for ε>0. (1.5)

    It is interesting to find the optimal moment conditions for (1.5). Huang et al.[10] also posed a worth pondering problem whether the result (1.5) holds for the case α>γ under the almost optimal moment condition E|X|α/(log(1+|X|))α/γ1<?

    Mainly inspired by the related results of Li et al.[12], Chen and Sung[6] and Huang et al.[10], the authors will further study the convergence rate for weighted sums of ρ-mixing random variables without assumptions of identical distribution. Under the almost optimal moment condition E|X|α/(log(1+|X|))α/γ1< for 0<γ<α with 1<α2, a version of the complete α-th moment convergence theorem for weighted sums of ρ-mixing random variables is established. The main result not only improves the corresponding ones of Li et al.[12], Chen and Sung[6], but also partially settles the open problem posed by Huang et al.[10].

    Now, we state the main result as follows. Some important auxiliary lemmas and the proof of the theorem will be detailed in the next section.

    Theorem 1.1. Let {Xn;n1} be a sequence of ρ-mixing random variables with EXn=0, which is stochastically dominated by a random variable X, let {ani;1in,n1} be an array of real constants such that ni=1|ani|α=O(n) for some 0<α2. Set bn=n1/α(logn)1/γ for γ>0. If E|X|α/(log(1+|X|))α/γ1< for α>γ with 1<α2, then (1.5) holds.

    Throughout this paper, let I(A) be the indicator function of the event A and I(A,B)=I(AB). The symbol C always presents a positive constant, which may be different in various places, and an=O(bn) stands for anCbn.

    To prove our main result of this paper, we need the following important lemmas.

    Lemma 2.1. (Utev and Peligrad[18]) Let p2, {Xn;n1} be a sequence of ρ-mixing random variables with EXn=0 and E|Xn|p< for all n1. Then there exists a positive constant C depending only on p, s and ρ(s) such that

    E(max1jn|ji=1Xi|p)C(ni=1E|Xi|p+(ni=1EX2i)p/2). (2.1)

    In particular, if p=2,

    E(max1jn|ji=1Xi|2)Cni=1EX2i. (2.2)

    The following one is a basic property for stochastic domination. For the details, one refers to Adler and Rosalsky[1] and Adler et al.[2], or Wu[22]. In fact, we can remove the constant C in those of Adler and Rosalsky[1] and Adler et al.[2], or Wu[22], since it was proved in Reference [[14], Theorem 2.4] (or [[17], Corollary 2.3]) that this is indeed equivalent to C=1.

    Lemma 2.2. Let {Xn,n1} be a sequence of random variables which is stochastically dominated by a random variable X. For all β>0 and b>0, the following statements hold:

    E|Xn|βI(|Xn|b)(E|X|βI(|X|b)+bβP(|X|>b)), (2.3)
    E|Xn|βI(|Xn|>b)E|X|βI(|X|>b). (2.4)

    Consequently, E|Xn|βE|X|β.

    Lemma 2.3. Under the conditions of Theorem 1.1, if E|X|α/(log(1+|X|))α/γ1< for 0<γ<α with 0<α2, then

    n=11n1ni=1P(|aniXi|>bnt1/α)dt<. (2.5)

    Proof. By Definition 1.2, noting that

    n=11n1ni=1P(|aniXi|>bnt1/α)dtn=11n1ni=1P(|aniX|>bnt1/α)dtn=11n0ni=1P(|aniX|αbαn>t)dtn=1n1bαnni=1E|aniX|α. (2.6)

    It is easy to show that

    n=1n1bαnni=1|ani|αE|X|αI(|X|bn)Cn=1bαnE|X|αI(|X|bn)Cn=1bαnnk=1E|X|αI(bk<|X|bk+1)Ck=1E|X|αI(bk<|X|bk+1)(logk)1(α/γ)CE|X|α/(log(1+|X|))(α/γ)1<, (2.7)

    and

    n=1n1bαnni=1|ani|αE|X|αI(|X|>bn)Cn=1bαnE|X|αI(|X|>bn)=Cn=1bαnj=nE|X|αI(bj<|X|bj+1)=Cj=1E|X|αI(bj<|X|bj+1)jn=1n1(logn)α/γCj=1(logj)1(α/γ)E|X|αI(bj<|X|bj+1)CE|X|α/(log(1+|X|))(α/γ)1<. (2.8)

    Hence, (2.5) holds by (2.6)–(2.8).

    Proof of Theorem 1.1. For any given ε>0, observing that

    n=11nE(1bnmax1jn|ji=1aniXi|ε)α+=n=11n0P(1bnmax1jn|ji=1aniXi|ε>t1/α)dt=n=11n10P(1bnmax1jn|ji=1aniXi|>ε+t1/α)dt+n=11n1P(1bnmax1jn|ji=1aniXi|>ε+t1/α)dtn=11nP(max1jn|ji=1aniXi|>εbn)+n=11n1P(max1jn|ji=1aniXi|>bnt1/α)dtI+J. (2.9)

    By Theorem A of Li et al.[12] declared in the first section, we get directly I<. In order to prove (1.5), it suffices to show that J<.

    Without loss of generality, assume that ani0. For all t1 and 1in, nN, define

    Yi=aniXiI(|aniXi|bnt1/α).

    It is easy to check that

    (max1jn|ji=1aniXi|>bnt1/α)(max1jn|ji=1Yi|>bnt1/α)(ni=1(|aniXi|>bnt1/α)),

    which implies

    P(max1jn|ji=1aniXi|>bnt1/α)P(max1jn|ji=1Yi|>bnt1/α)+P(ni=1(|aniXi|>bnt1/α)). (2.10)

    To prove J<, we need only to show that

    J1=n=11n1P(max1jn|ji=1Yi|>bnt1/α)dt<,
    J2=n=11n1P(ni=1(|aniXi|>bnt1/α))dt<.

    Since

    P(ni=1(|aniXi|>bnt1/α))ni=1P(|aniXi|>bnt1/α),

    it follows from Lemma 2.3 that

    J2n=11n1ni=1P(|aniXi|>bnt1/α)dt<.

    Next, we prove that

    supt11bnt1/αmax1jn|ji=1EYi|0. (2.11)

    By EXn=0 and (2.4) of Lemma 2.2, it follows that

    supt11bnt1/αmax1jn|ji=1EYi|=supt11bnt1/αmax1jn|ji=1EaniXiI(|aniXi|bnt1/α)|=supt11bnt1/αmax1jn|ji=1EaniXiI(|aniXi|>bnt1/α)|Csupt11bnt1/αni=1E|aniX|I(|aniX|>bnt1/α).

    Observe that,

    E|aniX|I(|aniX|>bnt1/α)=E|aniX|I(|aniX|>bnt1/α,|X|bn)+E|aniX|I(|aniX|>bnt1/α,|X|>bn). (2.12)

    For 0<γ<α and 1<α2, it is clearly shown that

    E|aniX|I(|aniX|>bnt1/α,|X|bn)Cb1αnt(1/α)1|ani|αE|X|αI(|X|bn)Cb1αnt(1/α)1|ani|αE(|X|α(log(1+|X|))α/γ1(log(1+|X|))α/γ1)I(|X|bn)Ct(1/α)1n1+(1/α)|ani|α(logn)(1/γ)1, (2.13)

    and

    E|aniX|I(|aniX|>bnt1/α,|X|>bn)C|ani|E|X|I(|X|>bn)Cb1αn(log(1+bn))(α/γ)1|ani|Cn1+(1/α)(logn)1+(1/γ)|ani|. (2.14)

    Thus,

    supt11bnt1/αni=1E|aniX|I(|aniX|>bnt1/α,|X|bn)Cb1nn1+(1/α)(logn)(1/γ)1ni=1|ani|αC(logn)10, (2.15)

    and

    supt11bnt1/αni=1E|aniX|I(|aniX|>bnt1/α,|X|>bn)Cb1nn1+(1/α)(logn)1+(1/γ)ni=1|ani|C(logn)10. (2.16)

    Then, (2.11) holds by the argumentation of (2.12)–(2.16).

    Hence, for n sufficiently large, we have that max1jn|ji=1EYi|bnt1/α2 holds uniformly for all t1. Therefore,

    J1=n=11n1P(max1jn|ji=1(YiEYi)|>bnt1/α2)dt. (2.17)

    By the Markov's inequality, (2.2) of Lemma 2.1 and (2.3) of Lemma 2.2, we get that

    J1Cn=11n11b2nt2/αE(max1jn|ji=1(YiEYi)|2)dtCn=11n11b2nt2/α(ni=1E|YiEYi|2)dtCn=11n11b2nt2/α(ni=1E|aniXi|2I(|aniXi|bnt1/α))dtCn=11n11b2nt2/α(ni=1E|aniX|2I(|aniX|bnt1/α))dt+Cn=11n1ni=1P(|aniX|>bnt1/α)dtCn=11n11b2nt2/α(ni=1E|aniX|2I(|aniX|bn))dt+Cn=11n11b2nt2/α(ni=1E|aniX|2I(bn<|aniX|bnt1/α))dt+Cn=11n1ni=1P(|aniX|>bnt1/α)dt=J11+J12+J13. (2.18)

    Based on the formula (2.2) of Lemma 2.2 in Li et al.[10], we get that

    J11=n=11n11b2nt2/α(ni=1E|aniX|2I(|aniX|bn))dtn=11n1bαn(ni=1E|aniX|αI(|aniX|bn))<. (2.19)

    Denoting t=xα, by (2.3) of Lemma 2.2, the Markov's inequality and Lemma 2.3, we also get that

    J12=n=11n11b2nt2/α(ni=1E|aniX|2I(bn<|aniX|bnt1/α))dtCn=11nb2n1xα3ni=1E|aniX|2I(bn<|aniX|bnx)dxCn=11nb2nm=1m+1mxα3ni=1E|aniX|2I(bn<|aniX|bnx)dxCn=11nb2nm=1mα3ni=1E|aniX|2I(bn<|aniX|bn(m+1))=Cn=11nb2nni=1m=1ms=1mα3E|aniX|2I(bns<|aniX|bn(s+1))=Cn=11nb2nni=1s=1E|aniX|2I(bns<|aniX|bn(s+1))m=smα3Cn=11nb2nni=1s=1E|aniX|2I(bns<|aniX|bn(s+1))sα2Cn=11nbαnni=1E|aniX|αI(|aniX|>bn)CE|X|α/(log(1+|X|))α/γ1<. (2.20)

    Analogous to the argumentation of Lemma 2.3, it is easy to show that

    J13=n=11n1ni=1P(|aniX|>bnt1/α)dtCE|X|α/(log(1+|X|))α/γ1<. (2.21)

    Hence, the desired result J1< holds by the above statements. The proof of Theorem 1.1 is completed.

    Remark 2.1. Under the conditions of Theorem 1.1, noting that

    >n=11nE(1bnmax1jn|ji=1aniXi|ε)α+=n=11n0P(1bnmax1jn|ji=1aniXi|ε>t1/α)dtCn=11nεα0P(1bnmax1jn|ji=1aniXi|>ε+t1/α)dtCn=11nP(max1jn|ji=1aniXi|>2εbn)forε>0. (2.22)

    Since ε>0 is arbitrary, it follows from (2.22) that the complete moment convergence is much stronger than the complete convergence. Compared with the corresponding results of Li et al.[12], Chen and Sung[6], it is worth pointing out that Theorem 1.1 of this paper is an extension and improvement of those of Li et al.[12], Chen and Sung[6] under the same moment condition. In addition, the main result partially settles the open problem posed by Huang et al.[10] for the case 0<γ<α with 1<α2.

    In this work, we consider the problem of complete moment convergence for weighted sums of weakly dependent (or ρ-mixing) random variables. The main results of this paper are presented in the form of the main theorem and a remark as well as Lemma 2.3, which plays a vital role to prove the main theorem. The presented main theorem improves and generalizes the corresponding complete convergence results of Li et al.[12] and Chen and Sung[6].

    The authors are most grateful to the Editor as well as the anonymous referees for carefully reading the manuscript and for offering some valuable suggestions and comments, which greatly enabled them to improve this paper. This paper is supported by the Doctor and Professor Natural Science Foundation of Guilin University of Aerospace Technology.

    All authors declare no conflicts of interest in this paper.



    [1] A. D. Kraus, A. Aziz, J. Welty, D. P. Sekulic, Extended surface heat transfer, Appl. Mech. Rev., 54 (2001), B92. https://doi.org/10.1115/1.1399680 doi: 10.1115/1.1399680
    [2] S. Kalpakjian, Manufacturing Engineering and Technology, Chennai: Pearson Education (India), 2001.
    [3] Y. Shi, Q. Lan, X. Lan, J. Wu, T. Yang, B. Wang, Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach, Struct Multidisc Optim, 66 (2023), 110. https://doi.org/10.1007/s00158-023-03559-z doi: 10.1007/s00158-023-03559-z
    [4] Y. Shi, C. Song, Y. Chen, H. Rao, T. Yang, Complex standard eigenvalue problem derivative computation for laminar-turbulent transition prediction, AIAA J., 61 (2023), 3404–3418. https://doi.org/10.2514/1.J062212 doi: 10.2514/1.J062212
    [5] T. S. Mogaji, F. D. Owoseni, Numerical analysis of radiation effect on heat flow through fin of rectangular profile, Am. J. Eng. Res., 6 (2017), 36–46.
    [6] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Tran., 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [7] Z. U. Din, A. Ali, Z. A. Khan, G. Zaman, Investigation of moving trapezoidal and exponential fins with multiple nonlinearities, Ain Shams Eng. J., 14 (2023), 101959. https://doi.org/10.1016/j.asej.2022.101959 doi: 10.1016/j.asej.2022.101959
    [8] M. Torabi, H. Yaghoobi, A. Aziz, Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity, Int. J. Thermophys., 33 (2012), 924–941. https://doi.org/10.1007/s10765-012-1179-z doi: 10.1007/s10765-012-1179-z
    [9] S. Mosayebidorcheh, T. Mosayebidorcheh, Series solution of convective radiative conduction equation of the nonlinearfin with temperature dependent thermal conductivity, Int. J. Heat Mass Tran., 55 (2012), 6589–6594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.066 doi: 10.1016/j.ijheatmasstransfer.2012.06.066
    [10] M. Miansari, D. D. Ganji, M. Miansari, Application of He's variational iteration method to nonlinear heat transfer equations, Phys. Lett. A, 372 (2008), 779–785. https://doi.org/10.1016/j.physleta.2007.08.065 doi: 10.1016/j.physleta.2007.08.065
    [11] A. R. Shateri, B. Salahshour, Comprehensive thermal performance of convection radiation longitudinal porousfins with various profiles and multiple nonlinearities, Int. J. Mech. Sci., 136 (2018), 252–263. https://doi.org/10.1016/j.ijmecsci.2017.12.030 doi: 10.1016/j.ijmecsci.2017.12.030
    [12] R. S. V. Kumar, R. N. Kumar, G. Sowmya, B. C. Prasannakumara, I. E. Sarris, Exploration of temperature distribution through a longitudinal rectangular fin with linear and exponential temperature-dependent thermal conductivity using DTM-Pade approximant, Symmetry, 14 (2022), 690. https://doi.org/10.3390/sym14040690 doi: 10.3390/sym14040690
    [13] G. Sowmya, R. S. V. Kumar, Y. Banu, Thermal performance of a longitudinal fin under the influence of magnetic field using Sumudu transform method with pade approximant (STM‐PA), Z. Angew. Math. Mech., 103 (2023), e202100526. https://doi.org/10.1002/zamm.202100526 doi: 10.1002/zamm.202100526
    [14] D. W. Mueller Jr, H. I. Abu-Mulaweh, Prediction of the temperature in a fin cooled by natural convection and radiation, Appl. Therm. Eng., 26 (2006), 1662–1668. https://doi.org/10.1016/j.applthermaleng.2005.11.014 doi: 10.1016/j.applthermaleng.2005.11.014
    [15] Z.Wang, S. Wang, X. Wang, X. Luo, Underwater moving object detection using superficial electromagnetic flow velometer array based artificial lateral line system, IEEE Sens. J., 24 (2024), 12104–12121. https://doi.org/10.1109/JSEN.2024.3370259 doi: 10.1109/JSEN.2024.3370259
    [16] Z. Wang, S. Wang, X. Wang, X. Luo, Permanent magnet-based superficial flow velometer with ultralow output drift, IEEE Trans. Instrum. Meas., 72 (2023). https://doi.org/10.1109/TIM.2023.3304692 doi: 10.1109/TIM.2023.3304692
    [17] J. A. Edwards, J. B. Chaddock, An experimental investigation of the radiation and free convection heat transfer from a cylindrical disk extended surface, Trans. Am. Soc. Heat, Refrigerating, Air-Conditioning Eng., 69 (1963), 313–322.
    [18] C. Arslanturk, Optimum design of space radiators with temperature-dependent thermal conductivity, Appl. Therm. Eng., 26 (2006), 1149–1157. https://doi.org/10.1016/j.applthermaleng.2005.10.038 doi: 10.1016/j.applthermaleng.2005.10.038
    [19] M. Torabi, Q. Zhang, Analytical solution for evaluating the thermal performance and efficiency of convective–radiative straight fins with various profiles and considering all non-linearities, Energy Convers. Manage., 66 (2013), 199–210. https://doi.org/10.1016/j.enconman.2012.10.015 doi: 10.1016/j.enconman.2012.10.015
    [20] D. Bhanja, B. Kundu, Radiation effect on optimum design analysis of a constructal T-shaped fin with variable thermal conductivity, Heat Mass Transfer, 48 (2012), 109-122. https://doi.org/10.1007/s00231-011-0845-1 doi: 10.1007/s00231-011-0845-1
    [21] B. V. Karlekar, B. T. Chao, Mass minimization of radiating trapezoidal fins with negligible base cylinder interaction, Int. J. Heat Mass Tran., 6 (1963), 33–48. https://doi.org/10.1016/0017-9310(63)90027-9 doi: 10.1016/0017-9310(63)90027-9
    [22] H. Azarkish, S. M. H. Sarvari, A. Behzadmehr, Optimum geometry design of a longitudinal fin with volumetric heat generation under the influences of natural convection and radiation, Energy Convers. Manage., 51 (2010), 1938–1946. https://doi.org/10.1016/j.enconman.2010.02.026 doi: 10.1016/j.enconman.2010.02.026
    [23] M. Turkyilmazoglu, Thermal performance of optimum exponential fin profiles subjected to a temperature jump, Int. J. Numer. Method. H., 32 (2022), 1002–1011. https://doi.org/10.1108/HFF-02-2021-0132 doi: 10.1108/HFF-02-2021-0132
    [24] S. B. Prakash, K. Chandan, K. Karthik, S. Devanathan, R. S. V. Kumar, K. V. Nagaraja, et al., Investigation of the thermal analysis of a wavy fin with radiation impact: an application of extreme learning machine, Phys. Scr., 99 (2023), 015225. https://doi.org/10.1088/1402-4896/ad131f doi: 10.1088/1402-4896/ad131f
    [25] M. H. Sharqawy, S. M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer–-An analytical solution, Appl. Therm. Eng., 28 (2008), 2279–2288. https://doi.org/10.1016/j.applthermaleng.2008.01.003 doi: 10.1016/j.applthermaleng.2008.01.003
    [26] M. Hatami, G. R. M. Ahangar, D. D. Ganji, K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energy Convers. Manage., 84 (2014), 533–540. https://doi.org/10.1016/j.enconman.2014.05.007 doi: 10.1016/j.enconman.2014.05.007
    [27] F. khani, M. T. Darvishi, R. S. R. Gorla, B. J. Gireesha, Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method, Int. J. Appl. Mech. Eng., 21 (2016), 377–392. https://doi.org/10.1515/ijame-2016-0023 doi: 10.1515/ijame-2016-0023
    [28] B. S. Poornima, I. E. Sarris, K. Chandan, K. V. Nagaraja, R. V. Kumar, S. B. Ahmed, Evolutionary computing for the radiative–-convective heat transfer of a wetted wavy fin using a genetic algorithm-based neural network, Biomimetics, 8 (2023), 574. https://doi.org/10.3390/biomimetics8080574 doi: 10.3390/biomimetics8080574
    [29] R. S. V. Kumar, I. E. Sarris, G. Sowmya, A. Abdulrahman, Iterative solutions for the nonlinear heat transfer equation of a convective-radiative annular fin with power law temperature-dependent thermal properties, Symmetry, 15 (2023), 1204. https://doi.org/10.3390/sym15061204 doi: 10.3390/sym15061204
    [30] M. Turkyilmazoglu, Stretching/shrinking longitudinal fins of rectangular profile and heat transfer, Energy Convers. Manage., 91 (2015), 199–203. https://doi.org/10.1016/j.enconman.2014.12.007 doi: 10.1016/j.enconman.2014.12.007
    [31] B. J. Gireesha, M. L. Keerthi, G. Sowmya, Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile, Appl. Math. Mech.-Engl. Ed., 43 (2022), 389–402. https://doi.org/10.1007/s10483-022-2836-6 doi: 10.1007/s10483-022-2836-6
    [32] M. Mosavat, R. Moradi, M. R. Takami, M. B. Gerdroodbary, D. D. Ganji, Heat transfer study of mechanical face seal and fin by analytical method, Eng. Sci. Technol. Int. J., 21 (2018), 380–388. https://doi.org/10.1016/j.jestch.2018.05.001 doi: 10.1016/j.jestch.2018.05.001
    [33] Z. U. Din, A. Ali, S. Ullah, G. Zaman, K. Shah, N. Mlaiki, Investigation of heat transfer from convective and radiative stretching/shrinking rectangular fins, Math. Probl. Eng. 2022 (2022), 1026698. https://doi.org/10.1155/2022/1026698 doi: 10.1155/2022/1026698
    [34] F. Khani, A. Aziz, Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient, Commun. Nonlinear Sci., 15 (2010), 590–601. https://doi.org/10.1016/j.cnsns.2009.04.028 doi: 10.1016/j.cnsns.2009.04.028
    [35] H. S. Kang, Analysis of reversed trapezoidal fins using a 2-D analytical method, Univ. J. Mech. Eng., 3 (2015), 202–207. https://doi.org/10.13189/ujme.2015.030505 doi: 10.13189/ujme.2015.030505
    [36] R. Das, Estimation of feasible materials and thermal conditions in a trapezoidal fin using genetic algorithm, Proc Inst Mech Eng G J Aerosp Eng, 230 (2016), 2356–2368. https://doi.org/10.1177/0954410015623975 doi: 10.1177/0954410015623975
    [37] M. Turkyilmazoglu, Efficiency of the longitudinal fins of trapezoidal profile in motion, J. Heat Transfer, 139 (2017), 094501. https://doi.org/10.1115/1.4036328 doi: 10.1115/1.4036328
    [38] T. O. Onah, A. M. Nwankwo, F. L. Tor, Design and development of a trapezoidal plate fin heat exchanger for the prediction of heat exchanger effectiveness, Eur J Mech Eng Res, 6 (2019), 21–36.
    [39] B. J. Gireesha, M. L. Keerthi, D. O. Soumya, Study on efficiency of fully wet porous trapezoidal fin structures in the presence of convection and radiation, J Eng Manage, 5 (2021), 66–72.
    [40] B. J. Gireesha, M. L. Keerthi, Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin, Appl. Math. Mech.-Engl. Ed., 44 (2023), 653–668. https://doi.org/10.1007/s10483-023-2974-6 doi: 10.1007/s10483-023-2974-6
    [41] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A study of changes in temperature profile of porous fin model using cuckoo search algorithm, Alex. Eng. J., 59 (2020), 11–24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001
  • This article has been cited by:

    1. Yukun Xiao, Jianzhi Han, Cocommutative connected vertex (operator) bialgebras, 2025, 212, 03930440, 105461, 10.1016/j.geomphys.2025.105461
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1063) PDF downloads(63) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog