In this paper, we proved a new result for the celebrated velocity averaging lemma of the free transport equation with general case
∂tf+a(v)⋅∇xf=0.
After averaging with some weight functions φ(v), we proved that the average quantity ρφ(t,x)=∫R3vf(t,x,v)φ(v)dv is in W1,px, p∈[1,+∞]. This result revealed the regularizing effect for the mean value with respect to the velocity of the solution. Our strategy was taking advantage of a modified vector field method to build up a bridge between the x-derivative and v-derivative. One significant point was that we first observed that the operator t∇x+([∇va(v)]T)−1∇v commuted with ∂t+a(v)⋅∇x.
Citation: Ming-Jiea Lyu, Baoyan Sun. A remark on the velocity averaging lemma of the transport equation with general case[J]. Networks and Heterogeneous Media, 2024, 19(1): 157-168. doi: 10.3934/nhm.2024007
[1] | Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170 |
[2] | Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184 |
[3] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[4] | E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127 |
[5] | Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195 |
[6] | Anh Tuan Nguyen, Chao Yang . On a time-space fractional diffusion equation with a semilinear source of exponential type. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071 |
[7] | Akeel A. AL-saedi, Jalil Rashidinia . Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216 |
[8] | Minzhi Wei . Existence of traveling waves in a delayed convecting shallow water fluid model. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343 |
[9] | Ziqing Yang, Ruiping Niu, Miaomiao Chen, Hongen Jia, Shengli Li . Adaptive fractional physical information neural network based on PQI scheme for solving time-fractional partial differential equations. Electronic Research Archive, 2024, 32(4): 2699-2727. doi: 10.3934/era.2024122 |
[10] | Huifu Xia, Yunfei Peng . Pointwise Jacobson type necessary conditions for optimal control problems governed by impulsive differential systems. Electronic Research Archive, 2024, 32(3): 2075-2098. doi: 10.3934/era.2024094 |
In this paper, we proved a new result for the celebrated velocity averaging lemma of the free transport equation with general case
∂tf+a(v)⋅∇xf=0.
After averaging with some weight functions φ(v), we proved that the average quantity ρφ(t,x)=∫R3vf(t,x,v)φ(v)dv is in W1,px, p∈[1,+∞]. This result revealed the regularizing effect for the mean value with respect to the velocity of the solution. Our strategy was taking advantage of a modified vector field method to build up a bridge between the x-derivative and v-derivative. One significant point was that we first observed that the operator t∇x+([∇va(v)]T)−1∇v commuted with ∂t+a(v)⋅∇x.
Reidemeister torsion is a topological invariant and was introduced by Reidemeister in 1935. Up to PL equivalence, he classified the lens spaces S3/Γ, where Γ is a finite cyclic group of fixed point free orthogonal transformations [20]. In [11], Franz extended the Reidemeister torsion and classified the higher dimensional lens spaces S2n+1/Γ, where Γ is a cyclic group acting freely and isometrically on the sphere S2n+1.
In 1964, the results of Reidemeister and Franz were extended by de Rham to spaces of constant curvature +1 [10]. Kirby and Siebenmann proved the topological invariance of the Reidemeister torsion for manifolds in 1969 [14]. Chapman proved for arbitrary simplicial complexes [7,8]. Hence, the classification of lens spaces of Reidemeister and Franz was actually topological (i.e., up to homeomorphism).
Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. He constructed two homeomorphic but combinatorially distinct finite simplicial complexes. He identified in 1962 the Reidemeister torsion with Alexander polynomial which plays an important role in knot theory and links [16,18].
In [21], Sözen explained the claim mentioned in [27,p. 187] about the relation between a symplectic chain complex with ω−compatible bases and the Reidemeister torsion of it. Moreover, he applied the main theorem to the chain-complex
0→C2(Σg;Adϱ)∂2⊗id→C1(Σg;Adϱ)∂1⊗id→C0(Σg;Adϱ)→0, |
where Σg is a compact Riemann surface of genus g>1, where ∂ is the usual boundary operator, and where ϱ:π1(Σg)→PSL2(R) is a discrete and faithful representation of the fundamental group π1(Σg) of Σg [21]. Now we will give his description of Reidemesister torsion and explain why it is not unique by a result of Milnor in [17].
Let Hp(C∗)=Zp(C∗)/Bp(C∗) denote the homologies of the chain complex (C∗,∂∗)=(Cn∂n→Cn−1→⋯→C1∂1→C0→0) of finite dimensional vector spaces over field C or R, where Bp=Im{∂p+1:Cp+1→Cp}, Zp=ker{∂p:Cp→Cp−1}, respectively.
Consider the short-exact sequences:
0→Zp↪Cp↠Bp−1→0 | (1.1) |
0→Bp↪Zp↠Hp→0, | (1.2) |
where (1.1) is a result of 1st-Isomorphism Theorem and (1.2) follows simply from the definition of Hp. Note that if bp is a basis for Bp, hp is a basis for Hp, and ℓp:Hp→Zp and sp:Bp−1→Cp are sections, then we obtain a basis for Cp. Namely, bp⊕ℓp(hp)⊕sp(bp−1).
If, for p=0,⋯,n, cp, bp, and hp are bases for Cp, Bp and Hp, respectively, then the alternating product
Tor(C∗,{cp}np=0,{hp}np=0)=n∏p=0[bp⊕ℓp(hp)⊕sp(bp−1),cp](−1)(p+1) | (1.3) |
is called the Reidemeister torsion of the complex C∗ with respect to bases {cp}np=0, {hp}np=0, where [bp⊕ℓp(hp)⊕sp(bp−1),cp] denotes the determinant of the change-base matrix from cp to bp⊕ℓp(hp)⊕sp(bp−1).
Milnor [17] proved that torsion does not depend on neither the bases bp, nor the sections sp,ℓp. Moreover, if c′p,h′p are other bases respectively for Cp and Hp, then there is the change-base-formula:
Tor(C∗,{c′p}np=0,{h′p}np=0)=n∏p=0([c′p,cp][h′p,hp])(−1)p⋅Tor(C∗,{cp}np=0,{hp}np=0). | (1.4) |
Let M be a smooth n−manifold, K be a cell-decomposition of M with for each p=0,⋯,n, cp={ep1,⋯,epmp}, called the geometric basis for the p−cells Cp(K;Z). Hence, we have the chain-complex associated to M
0→Cn(K)∂n→Cn−1(K)→⋯→C1(K)∂1→C0(K)→0, | (1.5) |
where ∂p denotes the boundary operator. Then Tor(C∗(K),{cp}np=0,{hp}np=0) is called the Reidemeister torsion of M, where hp is a basis for Hp(K).
In [23], oriented closed connected 2m−manifolds (m≥1) are considered and he proved the following formula for computing the Reidemeister torsion of them. Namely,
Theorem 1.1. Let M be an oriented closed connected 2m−manifold (m≥1). For p=0,…,2m, let hp be a basis of Hp(M). Then the Reidemeister torsion of M satisfies the following formula:
|T(M,{hp}2m0)|=m−1∏p=0|detHp,2m−p(M)|(−1)p√|detHm,m(M)|(−1)m, |
where detHp,2m−p(M) is the determinant of the matrix of the intersection pairing (⋅,⋅)p,2m−p:Hp(M)×H2m−p(M) →R in bases hp,h2m−p.
It is well known that Riemann surfaces and Grasmannians have many applications in a wide range of mathematics such as topology, differential geometry, algebraic geometry, symplectic geometry, and theoretical physics (see [2,3,5,6,12,13,22,24,25,26] and the references therein). They also applied Theorem 1.1 to Riemann surfaces and Grasmannians.
In this work we calculate Reidemeister torsion of compact flag manifold K/T for K=SUn+1, where K is a compact simply connected semi-simple Lie group and T is maximal torus [28].
The content of the paper is as follows. In Section 2 we give all details of cup product formula in the cohomology ring of flag manifolds which is called Schubert calculus [15,19]. In the last section we calculate the Reidemesiter torsion of flag manifold SUn+1/T for n≥3.
The results of this paper were obtained during M.Sc studies of Habib Basbaydar at Abant Izzet Baysal University and are also contained in his thesis [1].
Now, we will give the important formula equivalent to the cup product formula in the cohomology of G/B where G is a Kač-Moody group. The fundamental references for this section are [15,19]. To do this we will give a relation between the complex nil Hecke ring and H∗(K/T,C). Also we introduce a multiplication formula and the actions of reflections and Berstein-Gelfand-Gelfand type BGG operators Ai on the basis elements in the nil Hecke ring.
Proposition 2.1.
ξu⋅ξv=∑u,v⩽wpwu,vξw, |
where pwu,v is a homogeneous polynomial of degree ℓ(u)+ℓ(v)−ℓ(w).
Proposition 2.2.
riξw={ξwif riw>w,−(w−1αi)ξriw+ξw−∑riwγ→w′αi(γ∨)ξw′otherwise. |
Theorem 2.3. Let u,v∈W. We write w−1=ri1⋯rin as a reduced expression.
pwu,v=∑j1<⋯<jmrj1⋯rjm=v−1Ai1∘⋯∘ˆAij1∘⋯∘ˆAijm∘⋯∘Ain(ξu)(e) |
where m=ℓ(v) and the notation ˆAi means that the operator Ai is replaced by the Weyl group action ri.
Let C0=S/S+ be the S-module where S+ is the augmentation ideal of S. It is 1-dimensional as C-vector space. Since Λ is a S-module, we can define C0⊗SΛ. It is an algebra and the action of R on Λ gives an action of R on C0⊗SΛ. The elements σw=1⊗ξw∈C0⊗SΛ is a C-basis form of C0⊗SΛ.
Proposition 2.4. C0⊗SΛ is a graded algebra associated with the filtration of length of the element of the Weyl group W.
Proposition 2.5. The complex linear map f:C0⊗SΛ→GrC{W} is a graded algebra homomorphism.
Theorem 2.6. Let K be the standard real form of the group G associated to a symmetrizable Kač-Moody Lie algebra g and let T denote the maximal torus of K. Then the map
θ:H∗(K/T,C)→C0⊗SΛ |
defined by θ(εw)=σw for any w∈W is a graded algebra isomorphism. Moreover, the action of w∈W and Aw on H∗(K/T,C) corresponds respectively to that δw and xw∈R on C0⊗SΛ.
Corollary 2.7. The operators Ai on H∗(K/T,C) generate the nil-Hecke algebra.
Corollary 2.8. We can use Proposition 2.1 and Theorem 2.3 to determine the cup product εuεv in terms of the Schubert basis {εw}w∈W of H∗(K/T,Z).
This section includes our calculations about Reidemeister torsion of flag manifolds using Theorem 1.1 and Proposition 2.1 because χ(SUn+1/T)=|W|=n! is always an even number.
We know that the Weyl group W of K acts on the Lie algebra of the maximal torus T. lt is a finite group of isometries of the Lie algebra t of the maximal torus T. lt preserves the coweight lattice Tv. For each simple root α, the Weyl group W contains an element rα of order two represented by e((π/2)(eα+e−α)) in N(T). Since the roots α can be considered as the linear functionals on the Lie algebra t of the maximal torus T, the action of rα on t is given by
rα(ξ)=ξ−α(ξ)hαforξ∈t, |
where hα is the coroot in t corresponding to simple root α.Also, we can give the action of rα on the roots by
rα(β)=β−α(hβ)αforα,β∈t∗, |
where t∗ is the dual vector space of t. The element rα is the reflection in the hyperplane Hα of t whose equation is α(ξ)=0. These reflections rα generate the Weyl group W.
Set α1,α2,…,αn be roots of Weyl Group of SUn+1. Since the Cartan Matrix of Weyl Group of SUn+1 is
Mij={2i=j−1|i−j|=10otherwise,
rαi(αj)={−αi,i=jαi+αj,|i−j|=1αj,otherwise.
Proposition 3.1. The Weyl group W of SUn+1 is isomorphic to Coxeter Group An given by generators s1,s2,…,sn and relations
(i) s2i=1i=1,2,…,n;
(ii) sisi+1si=si+1sisi+1i=1,2,…,n−1;
(iii) sisj=sjsi1≤i<j−1<n.
Proof. (i)
rαi∘rαi(β)=rαi(β−<αi,β>αi)=β−<αi,β>αi−<β−<αi,β>αi,αi>αi=β−<αi,β>αi−<β,αi>αi+<αi,β><αi,αi>αi=β−<αi,β>αi−<αi,β>αi+2<αi,β>αi=β. |
(ii)
rαi∘rαi+1∘rαi(β)=rαi∘rαi+1(β−<αi,β>αi)=rαi(β−<αi,β>αi−<αi+1,β−<αi,β>αi>αi+1)=rαi(β−<αi,β>αi−<αi+1,β>αi+1+<αi+1,<αi,β>αi>αi+1)=rαi(β−<αi,β>αi−<αi+1,β>αi+1+<αi,β><αi+1,αi>αi+1)=rαi(β−<αi,β>αi−<αi+1,β>αi+1−<αi,β>αi+1)=β−<αi,β>αi−<αi+1,β>αi+1−<αi,β>αi+1−<αi,β−<αi,β>αi−<αi+1,β>αi+1−<αi,β>αi+1>αi=β−<αi,β>αi−<αi+1,β>αi+1−<αi,β>αi+1−<αi,β>αi+<αi,β><αi,αi>αi+<αi+1,β><αi+1,αi>αi+<αi,β><αi+1,αi>αi=β−<αi,β>αi−<αi+1,β>αi+1−<αi,β>αi+1−<αi,β>αi+2<αi,β>αi−<αi+1,β>αi−<αi,β>αi=β−<αi,β>αi−<αi+1,β>αi−<αi+1,β>αi+1−<αi,β>αi+1=β−(<αi,β>+<αi+1,β>)(αi+αi+1). |
rαi+1∘rαi∘rαi+1(β)=rαi+1∘rαi(β−<αi+1,β>αi+1)=rαi+1(β−<αi+1,β>αi+1−<αi,β−<αi+1,β>αi+1>αi)=rαi+1(β−<αi+1,β>αi+1−<αi,β>αi+<αi+1,β><αi,αi+1>αi)=rαi+1(β−<αi+1,β>αi+1−<αi,β>αi−<αi+1,β>αi)=β−<αi+1,β>αi+1−<αi,β>αi−<αi+1,β>αi−<αi+1,β−<αi+1,β>αi+1−<αi,β>αi−<αi+1,β>αi>αi+1=β−<αi+1,β>αi+1−<αi+1,β>αi−<αi,β>αi−<αi+1,β>αi+1+<αi,β><αi+1,αi>αi+1+<αi+1,β><αi+1,αi>αi+1+<αi+1,β><αi+1,αi+1>αi+1=β−<αi+1,β>αi+1−<αi,β>αi−<αi+1,β>αi−<αi+1,β>αi+1+2<αi+1,β>αi+1−<αi,β>αi+1−<αi+1,β>αi+1=β−<αi+1,β>αi+1−<αi,β>αi−<αi+1,β>αi−<αi,β>αi+1=β−(<αi+1,β>+<αi,β>)(αi+1+αi). |
Hence rαi+1∘rαi∘rαi+1(β)=rαi+1∘rαi∘rαi+1(β).
(iii)
rαi∘rαj(β)=rαi∘(β−<αj,β>αj)=β−<αj,β>αj−<αi,β−<αj,β>αj>αi=β−<αj,β>αj−<αi,β>αi+<αj,β><αi,αj>αi=β−<αj,β>αj−<αi,β>αi. |
rαj∘rαi(β)=rαj∘(β−<αi,β>αi)=β−<αi,β>αi−<αj,β−<αi,β>αi>αj=β−<αi,β>αi−<αj,β>αj+<αi,β><αj,αi>αj=β−<αi,β>αi−<αj,β>αj. |
Hence rαi∘rαj(β)=rαj∘rαi(β).
After this point si will represent rαi.
Let us define the word
si,j={sisi+1⋯sji<jsii=j1i>j.
Theorem 3.2. [4,Theorem 3.1] The reduced Gröbner-Shirshov basis of the coxeter group An consists of relation
si,jsi=si+jsi,j1≤i<j≤n |
together with defining relations of An.
The following lemma is equivalent of [4,Lemma 3.2]. The only difference is the order of generators s1>s2>…sn in our setting.
Lemma 3.3. Using elimination of leading words of relations, the reduced elements of An are in the form
sn+1,jn+1sn,jnsn−1,jn−1⋯si,ji⋯s1,j1 1≤i≤ji+1≤n+1.
Notice that jn+1+1=n+1⟹jn+1=n and sn+1,n=1.
Algorithm 3.1. (Finding Inverse) Let w=sn,jnsn−1,jn−1⋯s1,j1. The inverse of w can be found using following algorithm.
Invw={};
Conw=Reverse(w);
For k=1 to k=n
Find maximum sequence in Conw;
list={sk,sk+1,sk+2,…,sk+j};
Invw=list∪Invw;
End For.
Example 3.4. Let s4,6s3,5s2,5s1,3. The inverse of its is S3s2s1s5s4s3s2s5s4s3s6s5s4.
Invw=s1,4
S3s2s5s4s3s5s4s6s5
Invw=s2,5s1,4
S3s5s4s5s6
Invw=s3,5s2,5s1,4
s5s6
Invw=s5,6s3,5s2,5s1,4.
Lemma 3.5. Let w=(sn,jn)(sn−1,jn−1)⋯(si+1,ji+1)(si,ji)⋯(s1,j1) and
siw = (sn,¯jn)(sn−1,¯jn−1)⋯(si+1,¯ji+1)(si,¯ji)⋯(s1,¯j1), where
siw={¯ji+1=ji+1,¯ji=ji+1ifji<ji+1¯ji+1=ji,¯ji=ji+1−1ifji≥ji+1¯jk=jkifk≠i,i+1
Here if i=n, then we assume jn+1=n.
Corollary 3.6. Let w=(sn,jn)(sn−1,jn−1)⋯(si+1,ji+1)(si,ji)⋯(s1,j1) and
si−1(siw) = (sn,^jn)(sn−1,^jn−1)⋯(si+1,^ji+1)(si,^ji)⋯(s1,^j1), where
si−1(siw)={^ji+1=ji+1,^ji=ji−1+1,^ji−1=ji+1ifji<ji+1,ji−1<ji+1^ji+1=ji+1,^ji=ji−1,^ji−1=ji+1−1ifji<ji+1,ji−1≥ji+1^ji+1=ji,^ji=ji−1+1,^ji−1=ji+1−1ifji≥ji+1,ji−1<ji+1−1^ji+1=ji,^ji=ji−1,^ji−1=ji+1−2ifji≥ji+1,ji−1≥ji+1−1^jk=jkifk≠i−1,i,i+1.
Proof. Let ¯w=siw=(sn,¯jn)(sn−1,¯jn−1)⋯(si+1,¯ji+1)(si,¯ji)⋯(s1,¯j1). Then
si−1(¯w)={^ji=¯ji−1+1,^ji−1=¯jiif¯ji−1<¯ji^ji=¯ji−1,^ji−1=¯ji−1if¯ji−1≥¯ji^jk=¯jkifk≠i−1,i.
(i) ji<ji+1 ⇒ ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji−1<¯ji ⇒ ji−1<ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji−1+1=ji−1+1, ^ji−1=¯ji=ji+1.
(ii) ji<ji+1 ⇒ ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji−1≥¯ji ⇒ ji−1≥ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji−1=ji−1, ^ji−1=¯ji−1=ji+1−1.
(iii) ji≥ji+1 ⇒ ¯ji+1=ji, ¯ji=ji+1−1 So ¯ji−1<¯ji ⇒ ji−1<ji+1, ^ji+1=¯ji+1=ji+1, ^ji=¯ji−1=ji−1, ^ji−1=¯ji−1=ji+1−1.
(iv) ji≥ji+1 ⇒ ¯ji+1=ji, ¯ji=ji+1−1 So ¯ji−1≥¯ji ⇒ ji−1≥ji+1−1, ^ji+1=¯ji+1=ji, ^ji=¯ji−1=ji−1, ^ji−1=¯ji−1=ji+1−2.
Corollary 3.7. Let w=(sn,jn)(sn−1,jn−1)⋯(si+1,ji+1)(si,ji)⋯(s1,j1) and
si+1(siw) = (sn,^jn)(sn−1,^jn−1)⋯(si+1,^ji+1)(si,^ji)⋯(s1,^j1). Then
si+1(siw)={^ji+2=ji+2,^ji+1=ji+2,^ji=ji+1ifji<ji+1,ji+1<ji+2^ji+2=ji+1,^ji+1=ji+2−1,^ji=ji+1ifji<ji+1,ji+1≥ji+2^ji+2=ji+1,^ji+1=ji+2,^ji=ji+1−1ifji≥ji+1,ji<ji+2^ji+2=ji,^ji+1=ji+2−1,^ji=ji+1−1ifji≥ji+1,ji≥ji+2^jk=jkifk≠i,i+1,i+2.
Proof. Let ¯w=siw=(sn,¯jn)(sn−1,¯jn−1)⋯(si+1,¯ji+1)(si,¯ji)⋯(s1,¯j1). Then
si+1(¯w)={^ji+2=¯ji+1+1,^ji+1=¯ji+2if¯ji+1<¯ji+2^ji+2=¯ji+1,^ji+1=¯ji+2−1if¯ji+1≥¯ji+2^jk=¯jkifk≠i+1,i+2.
(i) ji<ji+1 ⇒ ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji+1<¯ji+2 ⇒ ji+1<ji+2, ^ji+2=¯ji+1+1=ji+2, ^ji+1=¯ji+2=ji+2, ^ji=¯ji=ji+1.
(ii) ji<ji+1 ⇒ ¯ji+1=ji+1, ¯ji=ji+1 So ¯ji+1≥¯ji+2 ⇒ ji+1≥ji+2, ^ji+2=¯ji+1=ji+1, ^ji+1=¯ji+2−1=ji+2−1, ^ji=¯ji=ji+1.
(iii) ji≥ji+1 ⇒ ¯ji+1=ji, ¯ji=ji+1−1 So ¯ji+1<¯ji+2 ⇒ ji<ji+2, ^ji+2=¯ji+1+1=ji+1, ^ji+1=¯ji+2=ji+2, ^ji=¯ji−1=ji+1−1.
(iv) ji≥ji+1 ⇒ ¯ji+1=ji, ¯ji=ji+1−1 So ¯ji+1≥¯ji+2 ⇒ ji≥ji+2, ^ji+2=¯ji+1=ji, ^ji+1=¯ji+2−1=ji+2−1, ^ji=¯ji=ji+1−1.
Using Lemma 3.3 and definitions of Ai and ri operators, we can obtain the followings.
Lemma 3.8. Let w=(sn,jn)(sn−1,jn−1)⋯(si+1,ji+1)(si,ji)⋯(s1,j1). Then
Ai(εw)={εw1ifji≥ji+10ifji<ji+1,
where w1=(sn,¯jn)(sn−1,¯jn−1)⋯(si+1,¯ji+1)(si,¯ji)⋯(s1,¯j1) with ¯ji+1=ji, \quad ¯ji=ji+1−1 and ¯jk=jk if k≠i,i+1.
Lemma 3.9. ri(εsj)={εsi−1−εsi−εsi+1ifi=jεsjifi≠j.
The integral cohomology of SUn+1/T is generated by Schubert classes indexed
W={snjnsn−1,jn−1…s1j1:ji=0ori≤ji≤n}. |
Let xi=εri∈H2(SUn+1/T,Z). We define an order between generators of the integral cohomology of SUn+1/T. Since each element εsnjnsn−1,jn−1…siji…s1j1 can be represented by an n-tuple (jn−n+1,jn−1−(n−1)+1,…,ji−i+1,…,j1−1+1), we can define an order between n-tuples.
Definition 3.10. (Graded Inverse Lexicographic Order) Let α=(α1,α2,…,αn) and β=(β1,β2,…,βn)∈Zn≥0. We say α>β if |α|=α1+α2+…αn>|β|=β1+β2+…βn or |α|=|β| and in the vector difference α−β∈Zn, the right-most nonzero entry is positive. We will write εsnjnsn−1,jn−1…siji…s1j1>εsnknsn−1,jk−1…siki…s1j1 if (jn−n+1,jn−1−(n−1)+1,…,ji−i−1,…,j1−1+1)>(kn−n+1,kn−1−(n−1)+1,…,ki−i−1,…,k1−1+1).
Example 3.11. εs35s23s14>εs35s24s13 since (3,2,4)>(3,3,3) in graded inverse lexicographic order.
We will try to find a quotient ring Z[x1,x2,…,xn]/I which is isomorphic to H∗(SUn+1/T,Z). We also define an order between monomials as follows.
Definition 3.12. We say xα11xα22⋯xαnn>xβ11xβ22⋯xβnn if |α|=α1+α2+⋯+αn>|β|=β1+β2+⋯+βn or |α|=|β| and in the vector difference α−β∈Zn the left-most non-zero entry is negative.
Example 3.13. x41x22x33<x31x32x33, since (4,2,3)−(3,3,3)=(1,−1,0).
Lemma 3.14. xα11xα22…xαnn=εsnαnsn−1,αn−1…siαi…s1α1+lowerterms.
Proof. To prove this, we use induction on degree of the monomials. By definition xi=εsi. Let us compute xixj=εsiεsj. Here we may assume that i≤j. If j−i>1, the inverse of sisj is sisj. Hence
Psjsisisj=rjAi(εsi)=rj(1)=1 |
in the cup product. If j=i+1, the inverse of si+1si is sisi+1. In this case
Psi,si+1=Airi+1(εsi)=Ai(εsi)=ε{}=1. |
If i=j, then we have to consider the word si,i+1. Its inverse si+1si and
Psi,i+1sisi=ri+1Ai(εsi)=ri+1(1)=1. |
Now we have to show that Pskslsisj=0 if εsksl>εsjsi. By definition of cup product the coefficient of εsksl is not zero only if si→sksl and sj→sksl. However, this is possible only if sksl=sjsi or sksl=si,i+1 when j=i+1. Clearly εsisi+1<εsi+1si. Hence εsiεsi+1=εsi+1si+lowerterms and εsiεsj=εsjεsi if j−i>1. In the case i=j, we have to look elements sisk and sksi. The inverse of sksi is equal to sksi itself if k−i>1, hence
Psksisisj=Akri(εsi)=Ak(εsi−1−εsi+εsi+1)=0 |
since k−i>1. Clearly εsisk<εsisi+1 if k<i. Hence εsiεsi=εsisi+1+lowerterms.
Assume that xα11xα22…xαnn=εsnαnsn−1,αn−1…siαi…s1α1+lowerterms.
We have to show xα11xα22…xαi+1i…xαnn=εsnαnsn−1,αn−1…siαi+1…s1α1+lowerterms by Bruhat ordering.
snαnsn−1,αn−1…siαi+1…s1α1→w′ only if w′=sn¯αnsn−1,¯αn−1…si¯αi…s1¯α1 where there exists an index j for which ¯αj=αj+1 and ¯αk=αk if k≠j.
By given ordering
w′=sn¯αnsn−1,¯αn−1…si¯αi…s1¯α1>snαnsn−1,αn−1…siαi+1…s1α1. |
If j>i, then, by Algorithm 1, in w′−1, we will not have a subsequence sj−1,sj−2…si after the elements sj. Hence in the cup product before applying Aj we will not have the term εsj. It means Pw′si,w=0.
If j=i, then, again by Algorithm 1, in w′−1 we will not have a subsequence sj−1,sj−2…si after the elements sj. Hence in the cup product before applying Aj we will not have the term εsj. It means Pw′si,w=1 if and only if j>i.
Example 3.15. Let l=3,
x1x2x3=εs3s2s1+lowerterms.
x21x2x3=εs3s2s12+lowerterms.
Then we have εs3s23s1>εs3s2s12>εs23s12>εs3s13>εs2s13. Since the inverse of s3s23s1 is s3s13 and the inverse of s3s2s1 is s13, A3r1r2r3(εs1)=A3r1(εs1)=A3(−εs1+εs2)=0.
Similarly, since the inverse of s3s2s12 is s2s13, A2r1r2r3(εs1)=A2r1(εs1)=A2(−εs1+εs2)=1.
Before finding the quotient ring Z[x1,…,xn]/I, we give some information about ring k[x1,…,xn]/I where k is a field. Fix a monomial ordering on k[x1,…,xn]. Let f∈k[x1,…,xn]. The leading monomial of f, denoted by LM(f), is the highest degree monomial of f. The coefficient of LM(f) is called leading coefficient of f and denoted by LC(f). The leading term of f, LT(f)=LC(f)LM(f).
Let I⊆k[x1,…,xn] be an ideal. Define LT(I)={LT(f):f∈I}. Let <LT(I)> be an ideal generated by LT(I).
Proposition 3.16. [9,Section 5.3,Propostions 1 and 4]
(i) Every f∈k[x1,…,xn] is congruent modulo I to a unique polynomial r which is a k-linear combination of the monomials in the complement of <LT(I)>.
(ii) The elements of {xα:xα∉<LT(I)>} are linearly independent modulo I.
(iii) k[x1,…,xn]/I is isomorphic as a k−vector space to
S=Span{xα:xα∉<LT(I)>}. |
Theorem 3.17. [9,Section 5.3,Theorem 6] Let I⊆k[x1,…,xn] be an ideal.
(i) The k-vector space k[x1,…,xn]/I is finite dimensional.
(ii) For each i, 1≤i≤n, there is a polynomial fi∈I such that LM(fi)=xmii for some positive integer mi.
Theorem 3.18. H∗(SUn+1/T,Z) isomorphic to Z[x1,x2,…,xn]/<f1,f2,…,fn> where LT(fi)=xn−i+2i with respect to monomial order given by Definition 3.12.
Proof. Let I be the ideal such that H∗(SUn+1/T,R)≅R[α1,α2,…,αn]/I. Since we found one to one correspondence between length l elements of H∗(SUn+1/T,Z) and monomials xα11xα22⋯xαnn, where α1+α2+⋯αn=l and for each i, 1≤i≤n, αi≤n−i+1, there should be a polynomial fi∈I such that LT(fi)=xn−i+2i.
Example 3.19. Let n=3. Then we have
αi≤n−i+1, i=1,2,3;
α1≤3, α2≤2, α3≤1.
For l=1;x1,x2,x3; and
for l=2;x21,x1x2,x1x3,x2x3,x22. So we must have a polynomial f3 with LM(f3)=x23.
For l=3;x31,x21x2,x21x3,x1x2x3,x1x22,x22x3, so
we must have a polynomial f2 with LM(f2)=x32.
For l=4;x31x2,x31x3,x21x2x3,x21x22,x1x22x3, so
we must have a polynomial f1 with LM(f1)=x41.
The complex dimension of SUn+1/T is equal to (n+1)n/2. So the highest element has length of (n+1)n/2.
Since the unique highest element has length of n(n+1)2, we now give the result about the multiplication of elements of length k and of length n(n+1)2−k.
Theorem 3.20. Let A=εsnjnsn−1,jn−1⋯s1j1 be an element of length k and B=εsnpnsn−1,pn−1⋯s1p1 be an element of length n(n+1)2−k. The corresponding polynomials in Z[x1,x2,…,xn]/<f1,f2,…,fn> has leading monomials
xj1−1+11xj2−2+12⋯xji−i+1i⋯xjn−n+11 and xp1−1+11xp1−2+12⋯xpn−n+11, respectively. Then
A⋅B={εsn,nsn−1,n,…,sin,…,s1n,ifji+pi+1=n+i;0,ifji+pi+1≠n+i.
Proof. The unique highest degree monomial in Z[x1,x2,…,xn]/<f1,f2,…,fn> is xn1xn−12⋯xn−i+1i⋯xn. The multiplication of leading monomials of corresponding monomials of A and B produce the monomial
xj1+p11xj2+p2−22⋯xji+pi−2i+2i⋯xjn+pn−2n+2n. |
If ji+pi−2i+2=n−i+1→ji+pi+1=n+i for each i, i≤1≤n, then the multiplication gives the xn1xn−12…xn. Since this monomial correspondence the element εsn,nsn−1,n⋯sin⋯s1n, A⋅B=εsn,nsn−1,n⋯s1n. If ji+pi+1≠n+i, then the leading monomial and the monomials of lower degree must reduce to zero modulo <f1,f2,…,fn> in k[x1,x2,…,xn] when we apply the division algorithm. Hence A⋅B=0.
Now we can give the whole computation of the quotient ring Z[x1,x2,x3]/<f1,f2,f3>.
Example 3.21. Let x1=εs1, x2=εs2, x3=εs3.
For l=2, we have
x2x3=εs3s2+εs2s3x22=εs2s3+εs2s1x1x3=εs3s1x1x2=εs2s1+εs1s2x21=εs1s2, |
and
(x2x3x22x1x3x1x2x21)=M(εs3s2εs2s3εs3s1εs2s1εs1s2) and (εs3s2εs2s3εs3s1εs2s1εs1s2)=M−1(x2x3x22x1x3x1x2x21), where
M=(1100001010001000001100001) M−1=(1−101−1010−11001000001−100001). Then we have
εs3s2=x2x3−x22+x1x2−x21εs2s3=x22−x1x2+x22εs3s1=x1x3εs2s1=x1x2−x21εs1s2=x21. |
Here we must have a relation involving x23 and we have it as
x23=εs3s2=x2x3−x22+x1x2−x21. |
For l=3;
x22x3=εs3s2s3+εs3s2s1+εs2s3s1x1x2x3=εs3s2s1+εs2s3s1+εs3s1s2+εs1s2s3x1x22=εs2s3s1+εs2s1s2+εs1s2s3x21x3=εs3s1s2+εs1s2s3x21x2=εs2s1s2+εs1s2s3x31=εs1s2s3 |
and
(x22x3x1x2x3x1x22x21x3x21x2x31)=M(εs3s2s3εs3s2s1εs2s3s1εs3s1s2εs2s1s2εs1s2s3) and (εs3s2s3εs3s2s1εs2s3s1εs3s1s2εs2s1s2εs1s2s3)=M−1(x22x3x1x2x3x1x22x21x3x21x2x31), where
M=(111000011101001011000101000011000001) M−1=(1−1010001−1−1100010−1000010−100001−1000001).
Then we have
εs3s2s3=x22x3−x1x2x3+x21x3εs3s2s1=x1x2x3−x1x22−x21x3+x21x2εs2s3s1=x1x22−x21x2εs3s1s2=x21x3−x31εs2s1s2=x21x2−x31εs1s2s3=x31. |
Here we must have a relation involving x32 and we now we have it as
x32=2εs2s3s1=2(x1x22−x21x2). |
For l=4; we have
x1x22x3=εs3s2s3s1+εs3s2s1s2+2εs2s3s1s2+2εs3s1s2s3x21x2x3=εs3s2s1s2+εs2s3s1s2+εs3s1s2s3+εs2s1s2s3x21x22=εs2s3s1s2+εs2s1s2s3x31x3=εs3s1s2s3x31x2=εs2s1s2s3 |
and
(x1x22x3x21x2x3x21x22x31x3x31x2)=M(εs3s2s3s1εs3s2s1s2εs2s3s1s2εs3s1s2s3εs2s1s2s3) and (εs3s2s3s1εs3s2s1s2εs2s3s1s2εs3s1s2s3εs2s1s2s3)=M−1(x1x22x3x21x2x3x21x22x31x3x31x2), where
M=(1122001111001010001000001) M−1=(1−1−1−1201−1−100010−10001000001).
Then
εs3s2s3s1=x1x22x3−x21x2x3−x21x22−x31x3+2x31x2εs3s2s1s2=x21x2x3−x21x22−x31x3εs2s3s1s2=x21x22−x31x2εs3s1s2s3=x31x3εs2s1s2s3=x31x2. |
We must have a relation involving x41, which is x1x31=εs1.εs1s2s3=0.
For l=5;
x21x22x3=εs3s2s3s1s2+εs3s2s1s2s3+εs2s3s1s2s3x31x2x3=εs3s2s1s2s3+εs2s3s1s2s3x31x22=εs2s3s1s2s3 |
and
(x21x22x3x31x2x3x31x22)=M(εs3s2s3s1s2εs3s2s1s2s3εs2s3s1s2s3) and (εs3s2s3s1s2εs3s2s1s2s3εs2s3s1s2s3)=M−1(x21x22x3x31x2x3x31x22), where
M=(111011001) M−1=(1−1001−1001). So
εs3s2s3s1s2=x21x22x3−x31x2x3εs3s2s1s2s3=x31x2x3−x31x22εs2s3s1s2s3=x31x22. |
Hence we don't have any relation.
For l=6;
x31x22x3=εs3s2s3s1s2s3 and εs3s2s3s1s2s3=x31x22x3.
Now let us multiple elements with lengths of k and 6−k.
First M0=1 and |det(M0)|=1.
![]() |
Now we will calculate Reidemeister torsion of SU4/T by using above multiplication. From multiplication of the second cohomology, we have M2=(001010100) and |det(M2)|=1.
Degree2∗Degree4_ |
![]() |
To calculate Reidemeister torsion of SU4/T we need multiplication of fourth cohomology bases elements and then we have M4=(0000100010001000100010000) and |det(M4)|=1.
Degree3∗Degree3_ |
![]() |
![]() |
To calculate Reidemeister torsion of SU4/T we need multiplication of sixth cohomology bases elements and then we have M6=(000001000010000100001000010000100000) and |det(M6)|=1.
In general the matrix Mk represents the intersection pairing between the homology classes of degrees k and (n+1)n−k with real coefficient. So in general |det(Mn(n+1)2)|=1. Hence the Reidemeister torsion of SU4/T is 1 by the Reidmeister torsion formula for manifolds.
By Theorems 1.1, 3.18 and 3.20, we obtain the following result.
Theorem 3.22. The Reidemeister torsion of SUn+1/T is always 1 for any positive integer n with n≥3.
Remark 3.23. We should note that we found this result by Schubert calculus. But, we choose any basis to define Reidemeister torsion. There are many bases for the Reidemeister torsion to be 1. Why we focus on this basis to compute the Reidemeister torsion is that we can use Schubert calculus and we have cup product formula in this algebra in terms of Schubert differential forms. Otherwise these computations are not easy. Also by Groebner techniques we can find the normal form of all elenents of Weyl group indexing our basis. So computations in this algebra is avaliable.
Remark 3.24. In our work, we consider flag manifold SUn+1/T for n≥3. Then we consider the Schubert cells {cp} and the corresponding homology basis a {hp} associated to {cp}. We caculated that Tor(C∗(K),{cp}np=0,{hp}np=0)=1.
If we consider the same cell-decomposition but other homology basis {h′p} then by the change-base-formula (1.4), then we have
Tor(C∗,{cp}np=0,{h′p}np=0)=n∏p=0(1[h′p,hp])(−1)p⋅Tor(C∗,{cp}np=0,{hp}np=0). |
Remark 3.25. In the presented paper M=K/T is a flag manifold, where K=SUn+1 and T is the maximal torus of K. Clearly, M is a smooth orientable even dimensional(complex) closed manifold. So there is Poincaré (or Hodge) duality. Therefore, we can apply Theorem 1.1 for M=K/T.
We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.
The authors declare that they have no competing interests.
[1] |
D. Arsénio, N. Lerner, An energy method for averaging lemmas, Pure Appl. Anal., 3 (2021), 319–362. https://doi.org/10.2140/paa.2021.3.319 doi: 10.2140/paa.2021.3.319
![]() |
[2] |
D. Arsénio, N. Masmoudi, A new approach to velocity averaging lemmas in Besov spaces, J. Math. Pures Appl., 101 (2014), 495–551. https://doi.org/10.1016/j.matpur.2013.06.012 doi: 10.1016/j.matpur.2013.06.012
![]() |
[3] |
D. Arsénio, N. Masmoudi, Maximal gain of regularity in velocity averaging lemmas, Anal. PDE, 12 (2019), 333–388. https://doi.org/10.2140/apde.2019.12.333 doi: 10.2140/apde.2019.12.333
![]() |
[4] |
D. Arsénio, L. Saint-Raymond, Compactness in kinetic transport equations and hypoellipticity, J. Funct. Anal., 261 (2011), 3044–3098. https://doi.org/10.1016/j.jfa.2011.07.020 doi: 10.1016/j.jfa.2011.07.020
![]() |
[5] |
N. Ayi, T. Goudon, Regularity of velocity averages for transport equations on random discrete velocity grids, Anal. PDE, 10 (2017), 1201–1225. https://doi.org/10.2140/apde.2017.10.1201 doi: 10.2140/apde.2017.10.1201
![]() |
[6] |
F. Berthelin, S. Junca, Averaging lemmas with a force term in the transport equation, J. Math. Pures Appl., 93 (2010), 113–131. https://doi.org/10.1016/j.matpur.2009.10.009 doi: 10.1016/j.matpur.2009.10.009
![]() |
[7] |
F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl., 81 (2002), 1135–1159. https://doi.org/10.1016/S0021-7824(02)01264-3 doi: 10.1016/S0021-7824(02)01264-3
![]() |
[8] |
F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19–36. https://doi.org/10.1017/S030821050002744X doi: 10.1017/S030821050002744X
![]() |
[9] |
N. Bournaveas, S. Gutiérrez, On the regularity of averages over spheres for kinetic transport equations in hyperbolic Sobolev spaces, Rev. Mat. Iberoam., 23 (2007), 481–512. https://doi.org/10.4171/RMI/503 doi: 10.4171/RMI/503
![]() |
[10] |
N. Bournaveas, B. Perthame, Averages over spheres for kinetic transport equations; hyperbolic Sobolev spaces and Strichartz inequalities, J. Math. Pures Appl., 80 (2001), 517–534. https://doi.org/10.1016/S0021-7824(00)01191-0 doi: 10.1016/S0021-7824(00)01191-0
![]() |
[11] |
Y. Brenier, L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 169–190. https://doi.org/10.1016/S0294-1449(97)89298-0 doi: 10.1016/S0294-1449(97)89298-0
![]() |
[12] |
I. K. Chen, P. H. Chuang, C. H. Hsia, J. K. Su, A revisit of the velocity averaging lemma: on the regularity of stationary Boltzmann equation in a bounded convex domain, J. Stat. Phys., 189 (2022), Article No. 17. https://doi.org/10.1007/s10955-022-02977-5 doi: 10.1007/s10955-022-02977-5
![]() |
[13] |
C. De Lellis, M. Westdickenberg, On the optimality of velocity averaging lemmas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1075–1085. https://doi.org/10.1016/S0294-1449(03)00024-6 doi: 10.1016/S0294-1449(03)00024-6
![]() |
[14] | R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc., 14 (2001), 279–296. https://doi.org/10.1090/S0894-0347-00-00359-3 |
[15] |
R. J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729–757. https://doi.org/10.1002/cpa.3160420603 doi: 10.1002/cpa.3160420603
![]() |
[16] |
R. J. DiPerna, P.-L. Lions, Y. Meyer, Lp regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. https://doi.org/10.1016/S0294-1449(16)30264-5 doi: 10.1016/S0294-1449(16)30264-5
![]() |
[17] |
D. Fajman, J. Joudioux, J. Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE, 10 (2017), 1539–1612. https://doi.org/10.2140/apde.2017.10.1539 doi: 10.2140/apde.2017.10.1539
![]() |
[18] |
F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments for the solution of a transport equation, J. Funct. Anal., 76 (1988), 110–125. https://doi.org/10.1016/0022-1236(88)90051-1 doi: 10.1016/0022-1236(88)90051-1
![]() |
[19] |
F. Golse, B. Perthame, Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., 29 (2013), 1477–1504. https://doi.org/10.4171/RMI/765 doi: 10.4171/RMI/765
![]() |
[20] |
F. Golse, L. Saint-Raymond, Velocity averaging in L1 for the transport equation, C. R. Acad. Sci. Paris, 334 (2002), 557–562. https://doi.org/10.1016/S1631-073X(02)02302-6 doi: 10.1016/S1631-073X(02)02302-6
![]() |
[21] |
M. P. Gualdani, S. Mischler, C. Mouhot, Factorization of non-symmetric operators and exponential H-theorem, Mém. Soc. Math. Fr., 153 (2017), 137. https://doi.org/10.24033/msmf.461 doi: 10.24033/msmf.461
![]() |
[22] |
D. Han-Kwan, L1 averaging lemma for transport equations with Lipschitz force fields, Kinet. Relat. Models, 3 (2010), 669–683. https://doi.org/10.3934/krm.2010.3.669 doi: 10.3934/krm.2010.3.669
![]() |
[23] |
J. Huang, Z. Jiang, Average regularity of the solution to an equation with the relativistic-free transport operator, Acta Math. Sci., 37 (2017), 1281–1294. https://doi.org/10.1016/S0252-9602(17)30073-5 doi: 10.1016/S0252-9602(17)30073-5
![]() |
[24] | P. E. Jabin, Averaging lemmas and dispersion estimates for kinetic equations, Riv. Mat. Univ. Parma, 1 (2009), 71–138. |
[25] |
P. E. Jabin, H. Y. Lin, E. Tadmor, Commutator method for averaging lemmas, Anal. PDE, 15 (2022), 1561–1584. https://doi.org/10.2140/apde.2022.15.1561 doi: 10.2140/apde.2022.15.1561
![]() |
[26] |
P. E. Jabin, B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math., 54 (2001), 1096–1109. https://doi.org/10.1002/cpa.3005 doi: 10.1002/cpa.3005
![]() |
[27] |
P. E. Jabin, L. Vega, Averaging lemmas and the X-ray transform, C. R. Math. Acad. Sci. Paris, 337 (2003), 505–510. https://doi.org/10.1016/j.crma.2003.09.004 doi: 10.1016/j.crma.2003.09.004
![]() |
[28] |
P. E. Jabin, L. Vega, A real space method for averaging lemmas, J. Math. Pures Appl., 83 (2004), 1309–1351. https://doi.org/10.1016/j.matpur.2004.03.004 doi: 10.1016/j.matpur.2004.03.004
![]() |
[29] |
M. Lazar, D. Mitrović, Velocity averaging-a general framework, Dyn. Partial Differ. Equ., 9 (2012), 239–260. https://dx.doi.org/10.4310/DPDE.2012.v9.n3.a3 doi: 10.4310/DPDE.2012.v9.n3.a3
![]() |
[30] |
Y. C. Lin, M. J. Lyu, K. C. Wu, Relativistic Boltzmann equation: large time behavior and finite speed of propagation, SIAM J. Math. Anal., 52 (2020), 5994–6032. https://doi.org/10.1137/20M1332761 doi: 10.1137/20M1332761
![]() |
[31] |
P. L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169–191. https://doi.org/10.1090/S0894-0347-1994-1201239-3 doi: 10.1090/S0894-0347-1994-1201239-3
![]() |
[32] |
P. L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415–431. https://doi.org/10.1007/BF02102014 doi: 10.1007/BF02102014
![]() |
[33] |
B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc., 41 (2004), 205–244. https://doi.org/10.1090/S0273-0979-04-01004-3 doi: 10.1090/S0273-0979-04-01004-3
![]() |
[34] |
G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisited, Comm. Math. Sci., 2 (2004), 145–158. https://dx.doi.org/10.4310/CMS.2004.v2.n2.a1 doi: 10.4310/CMS.2004.v2.n2.a1
![]() |
[35] | B. Sun, M. Wu, A new result for the velocity averaging lemma of the relativistic free transport equation, work in progress. |
[36] |
E. Tadmor, T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math., 60 (2007), 1488–1521. https://doi.org/10.1002/cpa.20180 doi: 10.1002/cpa.20180
![]() |
[37] |
A. Vasseur, Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas, SIAM J. Numer. Anal., 36 (1999), 465–474. https://doi.org/10.1137/S003614299631361 doi: 10.1137/S003614299631361
![]() |
[38] |
M. Westdickenberg, Some new velocity averaging results, SIAM J. Math. Anal., 33 (2002), 1007–1032. https://doi.org/10.1137/S0036141000380760 doi: 10.1137/S0036141000380760
![]() |
[39] |
Y. Zhu, Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with general transport operators and rough coefficients, SIAM J. Math. Anal., 53 (2021), 2746–2775. https://doi.org/10.1137/20M1372147 doi: 10.1137/20M1372147
![]() |
1. | Mustafa Aydin, Nazim I. Mahmudov, ψ$$ \psi $$‐Caputo type time‐delay Langevin equations with two general fractional orders, 2023, 0170-4214, 10.1002/mma.9047 | |
2. | Muath Awadalla, Kinda Abuasbeh, Muthaiah Subramanian, Murugesan Manigandan, On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions, 2022, 10, 2227-7390, 1681, 10.3390/math10101681 | |
3. | Mustafa AYDIN, RELATIVE CONTROLLABILITY OF THE φ-CAPUTO FRACTIONAL DELAYED SYSTEM WITH IMPULSES, 2023, 26, 1309-1751, 1121, 10.17780/ksujes.1339354 | |
4. | Yi Deng, Zhanpeng Yue, Ziyi Wu, Yitong Li, Yifei Wang, TCN-Attention-BIGRU: Building energy modelling based on attention mechanisms and temporal convolutional networks, 2024, 32, 2688-1594, 2160, 10.3934/era.2024098 |