Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads

  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.

    Citation: Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads[J]. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028

    Related Papers:

    [1] Yuhua Zhu . A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027
    [2] Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034
    [3] L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008
    [4] Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233
    [5] Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
    [6] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [7] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [8] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [9] Fei Cao, Nicholas F. Marshall . From the binomial reshuffling model to Poisson distribution of money. Networks and Heterogeneous Media, 2024, 19(1): 24-43. doi: 10.3934/nhm.2024002
    [10] Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001
  • We consider two scalar conservation laws with non-local flux functions, describing traffic flow on roads with rough conditions. In the first model, the velocity of the car depends on an averaged downstream density, while in the second model one considers an averaged downstream velocity. The road condition is piecewise constant with a jump at $ x = 0 $. We study stationary traveling wave profiles cross $ x = 0 $, for all possible cases. We show that, depending on the case, there could exit infinitely many profiles, a unique profile, or no profiles at all. Furthermore, some of the profiles are time asymptotic solutions for the Cauchy problem of the conservation laws under mild assumption on the initial data, while other profiles are unstable.



    In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential equation of the form

    $ {(r(t)Φp1[w(t)])+q(t)Φp2(u(ϑ(t)))=0,r(t)>0, r(t)0, tt0>0,
    $
    (1.1)

    where $ w\left(t\right) : = u\left(t\right) +a\left(t\right) u\left(\tau \left(t\right) \right) $ and the first term means the $ p $-Laplace type operator ($ 1 < p < \infty $). The main results are obtained under the following conditions:

    $ L1: $ $ \Phi _{p_{i}}[s] = |s|^{p_{i}-2}s, \ i = 1, 2, $

    $ L2: $ $ r\in C[t_{0}, \infty) $ and under the condition

    $ t01r1/(p11)(s)ds=.
    $
    (1.2)

    $ L3: $ $ a, q\in C[t_{0}, \infty), $ $ q\left(t\right) > 0, $ $ 0\leq a\left(t\right) < a_{0} < \infty, $ $ \tau, \vartheta \in C[t_{0}, \infty), $ $ \tau \left(t\right) \leq t, $ $ \lim_{t\rightarrow \infty }\tau \left(t\right) = \lim_{t\rightarrow \infty }\vartheta \left(t\right) = \infty $

    By a solution of (1.1) we mean a function $ u $ $ \in C^{3}[t_{u}, \infty), \ t_{u}\geq t_{0}, \ $which has the property $ r\left(t\right) \left(w^{\prime \prime \prime }\left(t\right) \right) ^{p_{1}-1}\in C^{1}[t_{u}, \infty), \ $and satisfies (1.1) on $ [t_{u}, \infty).\ $We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on $ [t_{u}, \infty), $ and otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are oscillatory.

    We point out that delay differential equations have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems, such as electrical power systems, control systems, networks, materials, see [1]. The $ p $-Laplace equations have some significant applications in elasticity theory and continuum mechanics.

    During the past few years, there has been constant interest to study the asymptotic properties for oscillation of differential equations with $ p $-Laplacian like operator in the canonical case and the noncanonical case, see [2,3,4,11] and the numerical solution of the neutral delay differential equations, see [5,6,7]. The oscillatory properties of differential equations are fairly well studied by authors in [16,17,18,19,20,21,22,23,24,25,26,27]. We collect some relevant facts and auxiliary results from the existing literature.

    Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with damping of the form

    $ {(r(t)Φ(y(n1)(t)))+a(t)Φ(y(n1)(t))+q(t)Φ(y(g(t)))=0,Φ=|s|p2s, tt0>0,
    $

    where $ n\ $is even. This time, the authors used comparison method with second order equations.

    The authors in [9,10] have established sufficient conditions for the oscillation of the solutions of

    $ {(r(t)|y(n1)(t)|p2y(n1)(t))+ji=1qi(t)g(y(ϑi(t)))=0,j1, tt0>0,
    $

    where$ \ n\ $is even$ \ $and $ p > 1\ $is a real number$, $ in the case where $ \vartheta _{i}\left(t\right) \geq \upsilon $ (with $ r\in C^{1}\left((0, \infty), \mathbb{R}\right) $, $ q_{i}\in C\left([0, \infty), \mathbb{R} \right), \ i = 1, 2, .., j $).

    We point out that Li et al. [3] using the Riccati transformation together with integral averaging technique, focuses on the oscillation of equation

    $ {(r(t)|w(t)|p2w(t))+ji=1qi(t)|y(δi(t))|p2y(δi(t))=0,1<p<, , tt0>0.
    $

    Park et al. [8] have obtained sufficient conditions for oscillation of solutions of

    $ {(r(t)|y(n1)(t)|p2y(n1)(t))+q(t)g(y(δ(t)))=0,1<p<, , tt0>0.
    $

    As we already mentioned in the Introduction, our aim here is complement results in [8,9,10]. For this purpose we discussed briefly these results.

    In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows. In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give some examples to illustrate the main results.

    For convenience, we denote

    $ A(t)=q(t)(1a0)p21Mp1p2(ϑ(t)), B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t), ϕ1(t)=tA(s)ds,R1(t):=(p11)μt22r1/(p11)(t),ξ(t):=q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21),η(t):=(1a0)p2/p1Mp2/(p12)2t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ,ξ(t)=tξ(s)ds, η(t)=tη(s)ds,
    $

    for some $ \mu \in \left(0, 1\right) $ and every $ M_{1}, M_{2}\ $are positive constants.

    Definition 1. A sequence of functions $ \left\{ \delta _{n}\left(t\right) \right\} _{n = 0}^{\infty } $ and $ \left\{ \sigma _{n}\left(t\right) \right\} _{n = 0}^{\infty }\ $as

    $ δ0(t)=ξ(t), and σ0(t)=η(t),δn(t)=δ0(t)+tR1(t)δp1/(p11)n1(s)ds, n>1σn(t)=σ0(t)+tσp1/(p11)n1(s)ds, n>1.
    $
    (2.1)

    We see by induction that $ \delta _{n}\left(t\right) \leq \delta _{n+1}\left(t\right) $ and $ \sigma _{n}\left(t\right) \leq \sigma _{n+1}\left(t\right) $ for$ \ t\geq t_{0}, \ n > 1. $

    In order to discuss our main results, we need the following lemmas:

    Lemma 2.1. [12] If the function $ w $ satisfies $ w^{(i)}\left(\nu \right) > 0, $ $ i = 0, 1, ..., n, $ and $ w^{\left(n+1\right) }\left(\nu \right) < 0\ $ eventually. Then, for every $ \varepsilon _{1}\in \left(0, 1\right), \ w\left(\nu \right) /w^{\prime }\left(\nu \right) \geq \varepsilon _{1}\nu /n\ $eventually.

    Lemma 2.2. [13] Let $ u\left(t\right) $ be a positive and $ n $-times differentiable function on an interval $ \left[ T, \infty \right) $ with its $ n $th derivative $ u^{\left(n\right) }\left(t\right) \ $non-positive on $ \left[ T, \infty \right) $ and not identically zero on any interval of the form $ \left[ T^{\prime }, \infty \right), \ T^{\prime }\geq T\ $and $ u^{\left(n-1\right) }\left(t\right) u^{\left(n\right) }\left(t\right) \leq 0, \ t\geq t_{u}\ $then there exist constants $ \theta, \ 0 < \theta < 1\ $ and $ \varepsilon > 0\ $such that

    $ u(θt)εtn2u(n1)(t),
    $

    for all sufficient large $ t $.

    Lemma 2.3 [14] Let $ u\in C^{n}\left(\left[ t_{0}, \infty \right), \left(0, \infty \right) \right). $ Assume that $ u^{\left(n\right) }\left(t\right) $ is of fixed sign and not identically zero on $ \left[ t_{0}, \infty \right) $ and that there exists a $ t_{1}\geq t_{0} $ such that $ u^{\left(n-1\right) }\left(t\right) u^{\left(n\right) }\left(t\right) \leq 0 $ for all $ t\geq t_{1} $. If $ \lim_{t\rightarrow \infty }u\left(t\right) \neq 0, $ then for every $ \mu \in \left(0, 1\right) $ there exists $ t_{\mu }\geq t_{1} $ such that

    $ u(t)μ(n1)!tn1|u(n1)(t)| for ttμ.
    $

    Lemma 2.4. [15] Assume that (1.2) holds and $ u\ $is an eventually positive solution of (1.1). Then, $ \left(r\left(t\right) \left(w^{\prime \prime \prime }\left(t\right) \right) ^{p_{1}-1}\right) ^{\prime } < 0 $ and there are the following two possible cases eventually:

    $ (G1) w(k)(t)>0, k=1,2,3,(G2) w(k)(t)>0, k=1,3, and w(t)<0.
    $

    Theorem 2.1. Assume that

    $ liminft1ϕ1(t)tB(s)ϕp1(p11)1(s)ds>p11pp1(p11)1.
    $
    (2.2)

    Then (1.1) is oscillatory.

    proof. Assume that $ u $ be an eventually positive solution of (1.1). Then, there exists a $ t_{1}\geq t_{0} $ such that $ u\left(t\right) > 0, $ $ u\left(\tau \left(t\right) \right) > 0 $ and $ u\left(\vartheta \left(t\right) \right) > 0 $ for $ t\geq t_{1} $. Since $ r^{\prime }\left(t\right) > 0 $, we have

    $ w(t)>0, w(t)>0, w(t)>0, w(4)(t)<0 and (r(t)(w(t))p11)0,
    $
    (2.3)

    for $ t\geq t_{1} $. From definition of $ w $, we get

    $ u(t)w(t)a0u(τ(t))w(t)a0w(τ(t))(1a0)w(t),
    $

    which with (1.1) gives

    $ (r(t)(w(t))p11)q(t)(1a0)p21wp21(ϑ(t)).
    $
    (2.4)

    Define

    $ ϖ(t):=r(t)(w(t))p11wp11(ζϑ(t)).
    $
    (2.5)

    for some a constant $ \zeta \in \left(0, 1\right). $ By differentiating and using (2.4), we obtain

    $ ϖ(t)q(t)(1a0)p21wp21(ϑ(t)).wp11(ζϑ(t))(p11)r(t)(w(t))p11w(ζϑ(t))ζϑ(t)wp1(ζϑ(t)).
    $

    From Lemma 2.2, there exist constant $ \varepsilon > 0 $, we have

    $ ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)r(t)(w(t))p11εϑ2(t)w(ϑ(t))ζϑ(t)wp1(ζϑ(t)).
    $

    Which is

    $ ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εr(t)ϑ2(t)ζϑ(t)(w(t))p1wp1(ζϑ(t)),
    $

    by using (2.5) we have

    $ ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t).
    $
    (2.6)

    Since $ w^{\prime }\left(t\right) > 0 $, there exist a $ t_{2}\geq t_{1} $ and a constant $ M > 0 $ such that

    $ w(t)>M.
    $

    Then, (2.6), turns to

    $ ϖ(t)q(t)(1a0)p21Mp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t),
    $

    that is

    $ ϖ(t)+A(t)+B(t)ϖp1/(p11)(t)0.
    $

    Integrating the above inequality from $ t $ to $ l $, we get

    $ ϖ(l)ϖ(t)+ltA(s)ds+ltB(s)ϖp1/(p11)(s)ds0.
    $

    Letting $ l\rightarrow \infty $ and using $ \varpi > 0 $ and $ \varpi ^{\prime } < 0 $, we have

    $ ϖ(t)ϕ1(t)+tB(s)ϖp1/(p11)(s)ds.
    $

    This implies

    $ ϖ(t)ϕ1(t)1+1ϕ1(t)tB(s)ϕp1/(p11)1(s)(ϖ(s)ϕ1(s))p1/(p11)ds.
    $
    (2.7)

    Let $ \lambda = \inf_{t\geq T}\varpi \left(t\right) /\phi _{1}\left(t\right) $ then obviously $ \lambda \geq 1 $. Thus, from (2.2) and (2.7) we see that

    $ λ1+(p11)(λp1)p1/(p11)
    $

    or

    $ λp11p1+(p11)p1(λp1)p1/(p11),
    $

    which contradicts the admissible value of $ \lambda \geq 1\ $and $ \left(p_{1}-1\right) > 0 $.

    Therefore, the proof is complete.

    Theorem 2.2. Assume that

    $ liminft1ξ(t)tR1(s)ξp1/(p11)(s)ds>(p11)pp1/(p11)1
    $
    (2.8)

    and

    $ liminft1η(t)t0η2(s)ds>14.
    $
    (2.9)

    Then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in $ \left[ t_{0}, \infty \right) $. Without loss of generality, we let $ u $ be an eventually positive solution of (1.1). Then, there exists a $ t_{1}\geq t_{0} $ such that $ u\left(t\right) > 0, $ $ u\left(\tau \left(t\right) \right) > 0 $ and $ u\left(\vartheta \left(t\right) \right) > 0 $ for $ t\geq t_{1} $. From Lemma 2.4 there is two cases $ \left(\bf{G}_{1}\right) \ $and $ \left(\bf{G}_{2}\right) $.

    For case $ \left(\bf{G}_{1}\right) $. Define

    $ ω(t):=r(t)(w(t))p11wp11(t).
    $

    By differentiating $ \omega $ and using (2.4), we obtain

    $ ω(t)q(t)(1a0)p21wp21(ϑ(t))wp11(t)(p11)r(t)(w(t))p11wp1(t)w(t).
    $
    (2.10)

    From Lemma 2.1, we get

    $ w(t)w(t)3ε1t.
    $

    Integrating again from $ t $ to $ \vartheta \left(t\right) $, we find

    $ w(ϑ(t))w(t)ε1ϑ3(t)t3.
    $
    (2.11)

    It follows from Lemma 2.3 that

    $ w(t)μ12t2w(t),
    $
    (2.12)

    for all $ \mu _{1}\in \left(0, 1\right) $ and every sufficiently large $ t $. Since $ w^{\prime }\left(t\right) > 0 $, there exist a $ t_{2}\geq t_{1} $ and a constant $ M > 0 $ such that

    $ w(t)>M,
    $
    (2.13)

    for $ t\geq t_{2} $. Thus, by (2.10), (2.11), (2.12) and (2.13), we get

    $ ω(t)+q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21)+(p11)μt22r1/(p11)(t)ωp1/(p11)(t)0,
    $

    that is

    $ ω(t)+ξ(t)+R1(t)ωp1/(p11)(t)0.
    $
    (2.14)

    Integrating (2.14) from $ t $ to $ l $, we get

    $ ω(l)ω(t)+ltξ(s)ds+ltR1(s)ωp1/(p11)(s)ds0.
    $

    Letting $ l\rightarrow \infty $ and using $ \omega > 0 $ and $ \omega ^{\prime } < 0 $, we have

    $ ω(t)ξ(t)+tR1(s)ωp1/(p11)(s)ds.
    $
    (2.15)

    This implies

    $ ω(t)ξ(t)1+1ξ(t)tR1(s)ξp1/(p11)(s)(ω(s)ξ(s))p1/(p11)ds.
    $
    (2.16)

    Let $ \lambda = \inf_{t\geq T}\omega \left(t\right) /\xi _{\ast }\left(t\right) $ then obviously $ \lambda \geq 1 $. Thus, from (2.8) and (2.16) we see that

    $ λ1+(p11)(λp1)p1/(p11)
    $

    or

    $ λp11p1+(p11)p1(λp1)p1/(p11),
    $

    which contradicts the admissible value of $ \lambda \geq 1\ $and $ \left(p_{1}-1\right) > 0 $.

    For case $ \left(\bf{G}_{2}\right).\ $Integrating (2.4) from $ t $ to $ m $, we obtain

    $ r(m)(w(m))p11r(t)(w(t))p11mtq(s)(1a0)p21wp21(ϑ(s))ds.
    $
    (2.17)

    From Lemma 2.1, we get that

    $ w(t)ε1tw(t) and hence w(ϑ(t))ε1ϑ(t)tw(t).
    $
    (2.18)

    For (2.17), letting $ m\rightarrow \infty \, $and using (2.18), we see that

    $ r(t)(w(t))p11ε1(1a0)p21wp21(t)tq(s)ϑp21(s)sp21ds.
    $

    Integrating this inequality again from $ t $ to $ \infty $, we get

    $ w(t)ε1(1a0)p2/p1wp2/p1(t)t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ,
    $
    (2.19)

    for all $ \varepsilon _{1}\in \left(0, 1\right) $. Define

    $ y(t)=w(t)w(t).
    $

    By differentiating $ y $ and using (2.13) and (2.19), we find

    $ y(t)=w(t)w(t)(w(t)w(t))2y2(t)(1a0)p2/p1M(p2/p1)1t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ,
    $
    (2.20)

    hence

    $ y(t)+η(t)+y2(t)0.
    $
    (2.21)

    The proof of the case where $ \left(\bf{G}_{2}\right) $ holds is the same as that of case $ \left(\bf{G}_{1}\right) $. Therefore, the proof is complete.

    Theorem 2.3. Let $ \delta _{n}\left(t\right) \ $and $ \sigma _{n}\left(t\right) \ $be defined as in (2.1). If

    $ limsupt(μ1t36r1/(p11)(t))p11δn(t)>1
    $
    (2.22)

    and

    $ limsuptλtσn(t)>1,
    $
    (2.23)

    for some $ n $, then (1.1)is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in $ \left[ t_{0}, \infty \right) $. Without loss of generality, we let $ u $ be an eventually positive solution of (1.1). Then, there exists a $ t_{1}\geq t_{0} $ such that $ u\left(t\right) > 0, $ $ u\left(\tau \left(t\right) \right) > 0 $ and $ u\left(\vartheta \left(t\right) \right) > 0 $ for $ t\geq t_{1} $. From Lemma 2.4 there is two cases.

    In the case $ \left(\bf{G}_{1}\right) $, proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows from Lemma 2.3 that

    $ w(t)μ16t3w(t).
    $
    (2.24)

    From definition of $ \omega \left(t\right) $ and (2.24), we have

    $ 1ω(t)=1r(t)(w(t)w(t))p111r(t)(μ16t3)p11.
    $

    Thus,

    $ ω(t)(μ1t36r1/(p11)(t))p111.
    $

    Therefore,

    $ limsuptω(t)(μ1t36r1/(p11)(t))p111,
    $

    which contradicts (2.22).

    The proof of the case where $ \left(\bf{G}_{2}\right) $ holds is the same as that of case $ \left(\bf{G}_{1}\right) $. Therefore, the proof is complete.

    Corollary 2.1. Let $ \delta _{n}\left(t\right) \ $and $ \sigma _{n}\left(t\right) \ $be defined as in (2.1). If

    $ t0ξ(t)exp(tt0R1(s)δ1/(p11)n(s)ds)dt=
    $
    (2.25)

    and

    $ t0η(t)exp(tt0σ1/(p11)n(s)ds)dt=,
    $
    (2.26)

    for some $ n $, then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in $ \left[ t_{0}, \infty \right) $. Without loss of generality, we let $ u $ be an eventually positive solution of (1.1). Then, there exists a $ t_{1}\geq t_{0} $ such that $ u\left(t\right) > 0, $ $ u\left(\tau \left(t\right) \right) > 0 $ and $ u\left(\vartheta \left(t\right) \right) > 0 $ for $ t\geq t_{1} $. From Lemma 2.4 there is two cases $ \left(\bf{G}_{1}\right) \ $and $ \left(\bf{G}_{2}\right) $.

    In the case $ \left(\bf{G}_{1}\right) $, proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from (2.15) that $ \omega \left(t\right) \geq \delta _{0}\left(t\right) $.$ \ $ Moreover, by induction we can also see that $ \omega \left(t\right) \geq \delta _{n}\left(t\right) \ $for $ t\geq t_{0}, \ n > 1 $. Since the sequence $ \left\{ \delta _{n}\left(t\right) \right\} _{n = 0}^{\infty } $ monotone increasing and bounded above, it converges to $ \delta \left(t\right) $. Thus, by using Lebesgue's monotone convergence theorem, we see that

    $ δ(t)=limnδn(t)=tR1(t)δp1/(p11)(s)ds+δ0(t)
    $

    and

    $ δ(t)=R1(t)δp1/(p11)(t)ξ(t).
    $
    (2.27)

    Since $ \delta _{n}\left(t\right) \leq \delta \left(t\right) $, it follows from (2.27) that

    $ δ(t)R1(t)δ1/(p11)n(t)δ(t)ξ(t).
    $

    Hence, we get

    $ δ(t)exp(tTR1(s)δ1/(p11)n(s)ds)(δ(T)tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)ds).
    $

    This implies

    $ tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)dsδ(T)<,
    $

    which contradicts (2.25). The proof of the case where $ \left(\bf{G} _{2}\right) $ holds is the same as that of case $ \left(\bf{G} _{1}\right) $. Therefore, the proof is complete.

    Example 2.1. Consider the differential equation

    $ (u(t)+12u(t2))(4)+q0t4u(t3)=0, 
    $
    (2.28)

    where $ q_{0} > 0 $ is a constant. Let $ p_{1} = p_{2} = 2, $ $ r\left(t\right) = 1, $ $ a\left(t\right) = 1/2, \ \tau \left(t\right) = t/2, $ $ \vartheta \left(t\right) = t/3 $ and $ q\left(t\right) = q_{0}/t^{4} $. Hence, it is easy to see that

    $ A(t)=q(t)(1a0)(p21)Mp2p1(ϑ(t))=q02t4, B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)=εt227
    $

    and

    $ ϕ1(t)=q06t3,
    $

    also, for some $ \varepsilon > 0 $, we find

    $ liminft1ϕ1(t)tB(s)ϕp1/(p11)1(s)ds>(p11)pp1/(p11)1.liminft6εq0t3972tdss4>14q0>121.5ε.
    $

    Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if $ q_{0} > 121.5\varepsilon. $

    Example 2.2. Consider a differential equation

    $ (u(t)+a0u(τ0t))(n)+q0tnu(ϑ0t)=0,
    $
    (2.29)

    where $ q_{0} > 0 $ is a constant. Note that $ p = 2, \ t_{0} = 1, \ r\left(t\right) = 1, \ a\left(t\right) = a_{0}, \ \tau \left(t\right) = \tau _{0}t, \ \vartheta \left(t\right) = \vartheta _{0}t\ $ and $ q\left(t\right) = q_{0}/t^{n}. $

    Easily, we see that condition (2.8) holds and condition (2.9) satisfied$. $

    Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory$. $

    Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

    $ {(r(t)|y(t)|p12y(t))+a(t)f(y(t))+ji=1qi(t)|y(σi(t))|p22y(σi(t))=0,tt0, σi(t)t, j1,, 1<p2p1<.
    $

    The paper is devoted to the study of oscillation of fourth-order differential equations with $ p $-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations, and they essentially improves the related contributions to the subject.

    Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of (1.1) under the condition $ \int_{\upsilon _{0}}^{\infty }\frac{1}{r^{1/\left(p_{1}-1\right) }\left(s\right) }\mathrm{ d}s < \infty. $

    The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.

    The author declares that there is no competing interest.



    [1] Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. (2015) 53: 963-983.
    [2] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation. J. Differential Equations (2017) 262: 978-1022.
    [3] Front tracking approximations for slow erosion. Dicrete Contin. Dyn. Syst. (2012) 32: 1481-1502.
    [4] On the numerical integration of scalar nonlocal conservation laws. ESAIM Math. Model. Numer. Anal. (2015) 49: 19-37.
    [5] On nonlocal conservation laws modelling sedimentation. Nonlinearity (2011) 27: 855-885.
    [6] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. (2016) 132: 217-241.
    [7] Solutions for a nonlocal conservation law with fading memory. Proc. Amer. Math. Soc. (2007) 135: 3905-3915.
    [8]

    J. Chien and W. Shen, Traveling Waves for nonlocal particle models of traffic flow on rough roads, Discrete Contin. Dyn. Syst., 39 (2019), 4001—4040, arXiv: 1902.08537.

    [9]

    M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., 233 (2019), 1131–1167, arXiv: 1710.04547.

    [10]

    M. Colombo, G. Crippa and L. V. Spinolo, Blow-up of the total variation in the local limit of a nonlocal traffic model, Preprint, arXiv: 1808.03529.

    [11] Nonlocal crowd dynamics models for several populations. Acta Math. Sci. (2012) 32: 177-196.
    [12] Existence and stability of solutions of a delay-differential system. Arch. Rational Mech. Anal. (1962) 10: 401-426.
    [13]

    R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977.

    [14] A new approach for a nonlocal, nonlinear conservation law. SIAM J. Appl. Math. (2012) 72: 464-487.
    [15]

    J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media, 13 (2018), 531–547, arXiv: 1802.07484.

    [16] Existence and stability of traveling waves for an integro-differential equation for slow erosion. J. Differential Equations (2014) 256: 253-282.
    [17] On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A (1955) 229: 317-345.
    [18]

    J. Ridder and W. Shen, Traveling waves for nonlocal models of traffic flow, Discrete Contin. Dyn. Syst., 39 (2019), 4001–4040, arXiv: 1808.03734.

    [19] Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition. Netw. Heterog. Media (2018) 13: 449-478.
    [20] Traveling waves for a microscopic model of traffic flow. Discrete Contin. Dyn. Syst. (2018) 38: 2571-2589.
    [21] Erosion profile by a global model for granular flow. Arch. Rational Mech. Anal. (2012) 204: 837-879.
    [22] On a nonlocal dispersive equation modeling particle suspensions. Q. Appl. Math. (1999) 57: 573-600.
  • This article has been cited by:

    1. José M. Mazón, The Cheeger cut and Cheeger problem in metric graphs, 2022, 12, 1664-2368, 10.1007/s13324-022-00729-y
    2. Salvador Moll, Vicent Pallardó-Julià, Marcos Solera, Segmentation in Measure Spaces, 2024, 89, 0095-4616, 10.1007/s00245-024-10134-5
    3. Luís N. Baptista, James B. Kennedy, Delio Mugnolo, Mean Distance on Metric Graphs, 2024, 34, 1050-6926, 10.1007/s12220-024-01574-0
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2554) PDF downloads(265) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog