We study the Vlasov-Poisson-Fokker-Planck (VPFP) system with uncertainty and multiple scales. Here the uncertainty, modeled by multi-dimensional random variables, enters the system through the initial data, while the multiple scales lead the system to its high-field or parabolic regimes. We obtain a sharp decay rate of the solution to the global Maxwellian, which reveals that the VPFP system is decreasingly sensitive to the initial perturbation as the Knudsen number goes to zero. The sharp regularity estimates in terms of the Knudsen number lead to the stability of the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method. Based on the smoothness of the solution in the random space and the stability of the numerical method, we conclude the gPC-SG method has spectral accuracy uniform in the Knudsen number.
Citation: Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method[J]. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027
[1] | Yuhua Zhu . A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027 |
[2] | Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034 |
[3] | L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008 |
[4] | Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233 |
[5] | Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028 |
[6] | Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197 |
[7] | Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699 |
[8] | Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010 |
[9] | Fei Cao, Nicholas F. Marshall . From the binomial reshuffling model to Poisson distribution of money. Networks and Heterogeneous Media, 2024, 19(1): 24-43. doi: 10.3934/nhm.2024002 |
[10] | Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001 |
We study the Vlasov-Poisson-Fokker-Planck (VPFP) system with uncertainty and multiple scales. Here the uncertainty, modeled by multi-dimensional random variables, enters the system through the initial data, while the multiple scales lead the system to its high-field or parabolic regimes. We obtain a sharp decay rate of the solution to the global Maxwellian, which reveals that the VPFP system is decreasingly sensitive to the initial perturbation as the Knudsen number goes to zero. The sharp regularity estimates in terms of the Knudsen number lead to the stability of the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method. Based on the smoothness of the solution in the random space and the stability of the numerical method, we conclude the gPC-SG method has spectral accuracy uniform in the Knudsen number.
In this paper, we are interested in the Vlasov-Poisson-Fokker-Planck (VPFP) system with multi-dimensional random inputs. The VPFP system describes the Brownian motion of a large system of particles in a surrounding bath, with a wide range of applications in plasma physics [4]. The physical system usually contains uncertainty, which can not be precisely described by deterministic partial differential equations. In this paper, we will mainly focus on the system with random initial input due to measurement errors or random impurity of the environment, and study how the randomness will affect the physical system. The uncertainty is modeled by multi-dimensional independent random variables with given probability density functions. We first study how the random initial data propagate in time, as well as the long-time behavior of the solution. We also study the stability and the convergence rate of the numerical method to the VPFP system with uncertainty, specifically, the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method. Both problems need an understanding of the regularity of the solution in the random space.
There are plenty of developments regarding the solution of elliptic or parabolic equations with uncertainty [2,5,6], while the regularity of the solution in the random space to kinetic equations has seldom studied until recently [9,15,13,16,19,17]. Kinetic equations give a uniform description of both mesoscopic and macroscopic physical quantities in terms of the Knudsen number
Depending on different scales, the VPFP system possesses two distinguished asymptotic limits, the high field limit, and the parabolic limit [1]. For the deterministic VPFP system without scaling parameters, [8,18,20] studied the convergence of the weak solution to its asymptotic limits, while [11] gave regularity results for classical solution near the global Maxwellian. For the VPFP system with uncertainty and scaling parameters, [15] get an exponential decay of the perturbative solution independent of the small parameter
This paper studies the same VPFP system as [15], but in more physically interesting setup. Space and velocity variables are in
We treat the high field regime and the parabolic regime in a unified framework in this paper. The regularity of the solution in the random space comes from the study of the sensitivity of the perturbation near the global Maxwellian. With carefully designed energy norms, we combine the microscopic energy estimate and the macroscopic one to get the proper Lyapunov-type inequalities, which allows us to obtain the uniform regularity in the random space in terms of the scaling parameter
This paper is organized as follows. In Sections 2 and 3, we study the analytic solution of the VPFP system. In Sections 2.1 and 2.2, we introduce the VPFP system with uncertainty we are interested in this paper and its perturbative solution around the steady state. The main result Theorem 2.1 on the sensitivity of the VPFP system under random perturbation is stated in Section 2.3. The difficulties and the techniques in the proof of the sensitivity analysis are also included in Section 2.3. In the following Section 3, we give the complete proof of Theorem 2.1. In Sections 4, 5, 6, we study the numerical method we use to approximate the solution in the random space, that is, the gPC-SG method. We study the stability and convergence rate of this method. In Section 4.1, we review the gPC-SG method and apply it to the VPFP system. We give the main results Theorems 4.1 and 4.2 on the numerical method and the key techniques of the proof in Section 4.2. Finally, we give the complete proof of Theorems 4.1 and 4.2 in Sections 5 and 6 respectively.
Consider the Vlasov-Poisson-Fokker-Planck (VPFP) System with initial random perturbation around the global Maxwe- llian. The density distribution function
$ {∂tf+1δv⋅∇xf−1ϵ∇xϕ⋅∇vf=1δϵFf,−Δxϕ=ρ−1,t>0,x∈R3,v∈R3,z∈Iz⊂Rd, $ | (1) |
with initial data
$ f(0,x,v,z)=M+√Mh0(x,v,z). $ |
Here the distribution function
$ ρ(t,x,z)=∫R3f(t,x,v,z)dv. $ |
The collision operator
$ Ff=∇v⋅(M∇v(fM)), $ |
where
$ M(v)=1(2π)32e−|v|22. $ |
In the dimensionless system,
$ δ=ϵa,0≤a≤1. $ |
The random perturbation introduced by the initial data is characterized by a
$ dμ(z)=π(z)dz. $ |
We further define
$ ‖f‖2μ=∫R3×R3×Iz‖f‖22dxdvdμ(z),or,=∫R3×Iz‖f‖22dxdμ(z) $ | (2) |
according to the dependent variables of
It is easy to check that the global Maxwellian is a stationary solution to the VPFP system. We further introduce the perturbative solution
$ h=f−M√M,σ=∫R3h√Mdv,u=∫R3hv√Mdv. $ | (3) |
The perturbative solution
$ \left\{ ∂th+1ϵav⋅∇xh+1ϵv√M∇xϕ−1ϵ1+aLh=1ϵ∇xϕ⋅(∇vh−v2h), (4)Δxϕ=−σ, (5) \right. $ |
where
$ Lh=1√M∇v⋅(M∇v(h√M)). $ | (6) |
It is straightforward to see that multiplying
$ \left\{ ϵa∂tσ+∇x⋅u=0, (7)∂tu+1ϵa∇xσ+1ϵa∇x⋅∫v⊗v√M(1−Π)hdv+1ϵ1+au+1ϵ∇xϕ=−1ϵ∇xϕσ. (8) \right. $ |
We call (4)-(5) the microscopic system, and (7)-(8) the macroscopic system. Moreover we define the projection onto the null space of
$ Πh:=(∫h√Mdv)√M=σ√M, $ |
and one can check that,
$ ‖h‖2L2v=‖σ‖2L2v+‖(1−Π)h‖2L2v. $ |
One important property of the linearized Fokker Planck operator
Proposition 1. Define
$ ‖h‖ν=∫R3×R3‖∇vh‖2+(1+‖v‖2)h2dxdv, $ | (9) |
then the linearized Fokker-Planck operator defined in (6) satisfies
$ −∫hLhdxdv≥λ‖(1−Π)h‖2ν. $ | (10) |
This is first introduced in [7], and [15] expanded it into the random space, and specified that
We are interested in studying how the perturbation
$ ‖h(t)‖2HMz=∑|β|≤M‖∂βzh(t)‖2μ. $ |
Here
There are mainly two reasons why we are interested in this norm. The first is that this norm indicates the sensitivity of the perturbation in the random space, so we can understand how the initial randomness affects the system by studying the evolution of this norm. Second, this norm reveals the regularity of the solution to the VPFP system in the random space, which is important to prove the spectral accuracy of the gPC-SG method introduced in Section 4.
However, how to get a sharp estimate of
We define
$ 12∂t(‖h‖2+1ϵ1−a‖∇xϕ‖2)+λϵ1+a‖(1−Π)h‖2ν≲ $ |
where
$ \begin{equation*} \left\lVert h \right\rVert^2_{H^3_{\mathbf{x}}} = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}| \leq 3} \left\lVert \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} h \right\rVert^2, \end{equation*} $ |
and then we have
$ \begin{equation} \frac{1}{2}\partial_t (\left\lVert h \right\rVert_{H^3_{\mathbf{x}}}^2+\frac{1}{\epsilon^{1-a}}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2 ) + \frac{\lambda}{\epsilon^{1+a}}\left\lVert (1-\Pi) h \right\rVert^2_{H^3_{\mathbf{x}}(L^2_\nu)} \lesssim \frac{1}{\epsilon}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}} \left\lVert h \right\rVert_{H^3_{\mathbf{x}}(L^2_\nu)}^2. \end{equation} $ | (11) |
From the above inequality, we find that the only dissipative term
$ \begin{equation} \mathcal{E}(t, {\mathbf{z}}) = \left\lVert h \right\rVert_{H^3_{\mathbf{x}}}^2 + \frac{1}{\epsilon^{1-a}}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2 + \frac{\lambda}{4\epsilon}(\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}| \leq 3}\left\langle {\mathbf{u}}, \nabla_{\mathbf{x}}\phi \right\rangle + \frac{1}{2\epsilon} \left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2). \end{equation} $ | (12) |
The first two terms of the above functional also appears in (11), so it comes from energy estimation of (4), while the third and fourth terms are obtained by multiplying
$ \begin{equation} \begin{aligned} &\partial_t \mathcal{E} + \frac{1}{\epsilon^{1+a}} \left\lVert h \right\rVert_{H^3_{\mathbf{x}}(L^2_\nu)} + \frac{1}{\epsilon^2}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2_{H^3_{\mathbf{x}}} \\ \lesssim &\sqrt{E}(\frac{1}{\epsilon^{(1+a)/2}} \left\lVert h \right\rVert_{H^3_{\mathbf{x}}(L^2_\nu)} + \frac{1}{\epsilon^{(3-a)/2}}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2_{H^3_{\mathbf{x}}}) \end{aligned} \end{equation} $ | (13) |
where
$ \begin{equation} E(t, {\mathbf{z}}) = \left\lVert h \right\rVert_{H^3_{\mathbf{x}}}^2 + \frac{1}{\epsilon^2}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2. \end{equation} $ | (14) |
Since
$ \begin{equation*} -\epsilon \left\lVert h \right\rVert^2 - \frac{1}{4\epsilon}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2 \leq \left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} {\mathbf{u}}, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\nabla_{\mathbf{x}}\phi \right\rangle \leq \epsilon \left\lVert h \right\rVert^2 + \frac{1}{4\epsilon}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2, \end{equation*} $ |
$ \begin{equation*} E(0, {\mathbf{z}})\leq O(\frac{1}{\epsilon^{1+a}}), \end{equation*} $ |
then the perturbation will exponentially decay in time as follows,
(16) |
Integrating the above two equations over
Second issue is how to get a sharp estimate on
$ \begin{equation*} \begin{aligned} \left\langle \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}}(\nabla_{\mathbf{x}}\phi h), \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}}h \right\rangle = \sum\limits_{{\mathbf{i}} \leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}}\left\langle\partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}} \nabla_{\mathbf{x}}\phi\partial_{\mathbf{z}}^{\mathbf{i}} h , \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}}h\right\rangle \\ \lesssim \binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]} \sum\limits_{{\mathbf{i}} \leq {\mathit{\boldsymbol{\beta}}}} \left\lVert \partial_{\mathbf{z}}^{\mathbf{i}} \nabla_{\mathbf{x}}\phi \right\rVert_{H^2_{\mathbf{x}}} (\left\lVert \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}} h\right\rVert^2 + \left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert^2). \end{aligned} \end{equation*} $ |
Here for
Since we need to do energy estimation on
$ \begin{equation} \begin{aligned} &\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\langle \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}}(\nabla_{\mathbf{x}}\phi h), \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}}h \right\rangle\lesssim \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]} \sum\limits_{{\mathbf{i}} \leq {\mathit{\boldsymbol{\beta}}}} \left\lVert \partial_{\mathbf{z}}^{\mathbf{i}} \nabla_{\mathbf{x}}\phi \right\rVert_{H^2_{\mathbf{x}}} (\left\lVert \partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}} h\right\rVert^2 + \left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert^2)\\ \lesssim&\max\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]}(\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} \nabla_{\mathbf{x}}\phi \right\rVert_{H^2_{\mathbf{x}}})(\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert^2)\\ \lesssim& \max\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]}\sqrt{\#\{|{\mathit{\boldsymbol{\beta}}}|\leq M\}}\sqrt{\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\nabla_{\mathbf{x}}\phi \right\rVert^2_{H^2_x}} (\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert^2). \end{aligned} \end{equation} $ | (15) |
When one does energy estimation to another nonlinear term
$ \begin{equation*} \begin{aligned} \mathcal{E}^{M, 3}(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}| \leq M} \left[\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_{H^3_{\mathbf{x}}}^2 + \frac{1}{\epsilon^{1-a}}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2 \\ + \frac{\lambda}{4\epsilon}(\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}| \leq 3}\left\langle \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} {\mathbf{u}}, \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\nabla_{\mathbf{x}}\phi \right\rangle + \frac{1}{2\epsilon} \left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}^2)\right] \end{aligned} \end{equation*} $ |
becomes
$ \begin{array}{l}\partial_t\mathcal{E}^{M, 3} + \frac{1}{\epsilon^{1+a}}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_{H^3_{\mathbf{x}}(L^2_\nu)} + \frac{1}{\epsilon^2}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\nabla_{\mathbf{x}}\phi \right\rVert^2_{H^3_{\mathbf{x}}} \\ \lesssim \max\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]}\sqrt{\#\{|{\mathit{\boldsymbol{\beta}}}|\leq M\}}\sqrt{E^{M, 3}}(\frac{1}{\epsilon^{(1+a)/2}}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \left\lVert\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_{H^3_{\mathbf{x}}(L^2_\nu)} \\ + \frac{1}{\epsilon^{(3-a)/2}}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} \nabla_{\mathbf{x}}\phi \right\rVert^2_{H^3_{\mathbf{x}}}), \end{array} $ | (16) |
where
$ \begin{equation*} E^{M, 3}(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_{H^3_{\mathbf{x}}} - \frac{1}{\epsilon^2}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\left\lVert \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} \nabla_{\mathbf{x}}\phi \right\rVert_{H^3_{\mathbf{x}}}. \end{equation*} $ |
Applying the continuity argument to (16) implies that only if initially
$ \begin{equation} E^{M, 3}(0) \leq O(\left[\max\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\binom{{\mathit{\boldsymbol{\beta}}}}{[{\mathit{\boldsymbol{\beta}}}/2]}^2\#\{|{\mathit{\boldsymbol{\beta}}}|\leq M\}\right]^{-1}) \leq O(\frac{1}{M(M!)^2}) \end{equation} $ | (17) |
the random perturbation will exponentially decay in time. This assumption is not reasonable because stronger assumption is required on smoother initial random perturbation. Therefore, the estimate on
$ \begin{equation} \left\lVert h\right\rVert^2_{H^{M, N}_q} = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}}!}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} h\right\rVert^2_\mu \end{equation} $ | (18) |
where
$ \begin{equation} q_{\mathit{\boldsymbol{\beta}}} = (|{\mathit{\boldsymbol{\beta}}}| +1)^q, \quad \text{for }q > d+1, \end{equation} $ | (19) |
here
To sum up, we obtain a sharp estimate in both small
$ \begin{equation*} \left\lVert h \right\rVert_{H^{M, N}}^2 = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \left\lVert\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} h \right\rVert^2_\mu \quad \text{for }\forall N\geq 3, M\geq 0 \end{equation*} $ |
by doing energy estimation in
$ \begin{align} {{\mathcal{E}}^{M,N}} = \sum\limits_{|\mathrm{ }\!\!\beta\!\!\text{ }|\le M}{{{(\frac{{{q}_{\mathrm{ }\!\!\beta\!\!\text{ }}}}{\mathrm{ }\!\!\beta\!\!\text{ }!})}^{2}}}\left[ \left\| \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}h \right\|_{H_{\mathbf{x}}^{N}}^{2}+\frac{1}{{{\epsilon }^{1-a}}}\left\| \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}{{\nabla }_{\mathbf{x}}}\phi \right\|_{H_{\mathbf{x}}^{N}}^{2} \\ +\frac{\lambda }{4\epsilon }(\sum\limits_{|\mathrm{ }\!\!\alpha\!\!\text{ }|\le N}{\left\langle \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\mathbf{u},\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}{{\nabla }_{\mathbf{x}}}\phi \right\rangle }+\frac{1}{2\epsilon }\left\| \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}{{\nabla }_{\mathbf{x}}}\phi \right\|_{H_{\mathbf{x}}^{N}}^{2})\left. {} \right]\right., \end{align} $ |
then integrate the final result over
Before we present the main theorem on the sensitivity analysis, we first introduce some constants that will be used frequently later.
Notation.
$ \begin{array}{l} \left\lVert \left\lVert h\right\rVert_{L^2_{\mathbf{v}}} \right\rVert_{L^\infty_{\mathbf{x}}} \leq C_S\left\lVert h \right\rVert_{H^2_{\mathbf{x}}(L^2_{\mathbf{v}})}; \end{array} $ | (20) |
for
$ \begin{array}{l} \left\lVert \left\lVert h\right\rVert_{L^\infty_{\mathbf{x}}} \right\rVert_{L^\infty_{\mathbf{z}}} \leq C_S\left\lVert h \right\rVert_{H^r_{\mathbf{z}}(H^2_{\mathbf{x}})}. \end{array} $ | (21) |
$ \begin{array}{l} \sqrt{\sum\limits_{|{\mathbf{j}}| = 0}^{\infty}\frac{|{\mathbf{i}}|^2}{q_{\mathbf{i}}^2}} \leq \sum\limits_{|{\mathbf{j}}| = 0}^{\infty}\frac{|{\mathbf{i}}|}{q_{\mathbf{i}}} \leq A: = 22d\pi(2q - d - 2) , \end{array} $ | (22) |
where
$ \begin{array}{l} C_N = \#\{{\mathit{\boldsymbol{\alpha}}} = (\alpha_1, \alpha_2, \alpha_3): |{\mathit{\boldsymbol{\alpha}}}|\leq N\}\times\max\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N, {\mathbf{j}}\leq {\mathit{\boldsymbol{\alpha}}}} \binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}. \end{array} $ | (23) |
Theorem 2.1. (Sensitivity under the initial perturbation) For
$ \begin{array}{l} E^{M, N}_q(0) \leq \frac{C_0}{\epsilon^{1+a}}, \end{array} $ | (24) |
then the analytic solution
$ \begin{array}{l} \left\lVert h(t) \right\rVert^2_{H^{M, N}} \leq (M!)^2\xi E^{M, N}_q(0) e^{- \frac{t}{2\epsilon^{1+a}}}, \\ \left\lVert \nabla_{\mathbf{x}}\phi(t) \right\rVert^2_{H^{M, N}}\leq(M!)^2\xi (\epsilon^2E^{M, N}_q(0)) e^{-2t}. \end{array} $ | (25) |
Here all the constants are independent of
Remark 1. This theorem implies two things about the VPFP system with uncertainty.
1. The random perturbation around the steady state will exponentially decay. As
2. The regularity of the solution to the VPFP system in the random space is preserved. Furthermore, the regularity result is uniform in
In this section, we will prove Theorem 2.1. Theorem 2.1 is about the energy in
For fixed
$ \begin{array}{l} E^{M, N}_h(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert^2, \quad \\ E^{M, N}_{\nabla_{\mathbf{x}}\phi}(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}}\nabla_{\mathbf{x}}\phi\right\rVert^2, \end{array} $ |
where
$ \begin{array}{l} D^{M, N}_{h_1}(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} (1-\Pi)\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_\nu^2, \\ D^{M, N}_\sigma(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \nabla_{\mathbf{x}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma \right\rVert^2, \\ D^{M, N}_{\nabla_{\mathbf{x}}\phi}(t, {\mathbf{z}}) = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\lVert \frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !} \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rVert^2. \label{def of dissipation_1} \end{array} $ |
The main strategy is to do energy estimates on the following micro-macro systems. By taking
$ \begin{equation} \begin{cases} &\partial_t\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h +\frac{1}{\epsilon^a} {\mathbf{v}}\cdot\nabla_{\mathbf{x}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h + \frac{1}{\epsilon} {\mathbf{v}} \sqrt{\mathcal{M}} \cdot \partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi - \frac{1}{\epsilon^{1+a}}\mathcal{L}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \\ & = \frac{1}{\epsilon} \sum_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}} \binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \cdot (\nabla_{\mathbf{v}}\partial_{\mathbf{z}}^{\mathbf{i}} h - \frac{{\mathbf{v}}}{2} \partial_{\mathbf{z}}^{\mathbf{i}} h) \\ &\Delta_{\mathbf{x}} \phi_{\mathit{\boldsymbol{\beta}}} = -\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma; \end{cases} \end{equation} $ | (26) |
and,
$ \left\{ \begin{array}{l} {{\epsilon }^{a}}{{\partial }_{t}}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\sigma +{{\nabla }_{\mathbf{x}}}\cdot \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\mathbf{u} = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & \left( 27 \right) \\ {{\partial }_{t}}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\mathbf{u}+\frac{1}{{{\epsilon }^{a}}}{{\nabla }_{\mathbf{x}}}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\sigma +\frac{1}{{{\epsilon }^{a}}}{{\nabla }_{\mathbf{x}}}\cdot \int{\mathbf{v}}\otimes \mathbf{v}\sqrt{\mathcal{M}}(1-\Pi )\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}hd\mathbf{v} \\ +\frac{1}{{{\epsilon }^{1+a}}}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}\mathbf{u}+\frac{1}{\epsilon }\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}{{\nabla }_{\mathbf{x}}}\phi = -\frac{1}{\epsilon }\sum\limits_{\mathbf{i}\le \mathrm{ }\!\!\beta\!\!\text{ }}{\left( \begin{matrix} \mathrm{ }\!\!\beta\!\!\text{ } \\ \mathbf{i} \\ \end{matrix} \right)}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }-\mathbf{i}}{{\nabla }_{\mathbf{x}}}\phi \partial _{\mathbf{z}}^{\mathbf{i}}\sigma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & \left( 28 \right) \\ \end{array} \right. $ |
If one does energy estimates on (26), one obtains estimates on
$ \begin{array}{l} G^{M, N} = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}(\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}{\mathbf{u}}, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle + \frac{1}{2\epsilon}E^{M, N}_{\nabla_{\mathbf{x}}\phi} . \end{array} $ | (29) |
Combine the two energy estimates in Lemma 3.4 and 3.5 in a proper way, one can obtain a Lyapunov-type inequality as in Lemma 3.6 for
$ \begin{array}{l} \mathcal{E}^{M, N} \sim E^{M, N}_h + \frac{1}{\epsilon^2}E^{M, N}_\phi, \end{array} $ |
which is exactly the energy we want to estimate. Finally apply the continuity argument to Lemma 3.6, one can obtain the sensitivity result in Theorem 2.1.
To get the optimal estimates, one needs to carefully deal with the two nonlinear terms in (26) and (27), that is
Lemma 3.1. For
$ \begin{array}{l} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\frac{|{\mathbf{i}}|}{q_{\mathbf{i}}}a_{\mathbf{i}}\leq A\sqrt{\sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}a_{\mathbf{i}}^2}. \end{array} $ |
Proof. See Appendix A.
Lemma 3.2. For
$\begin{array}{l} \sum\limits_{|\mathrm{ }\!\!\beta\!\!\text{ }|\le M}{\sum\limits_{\mathbf{i}\le \mathrm{ }\!\!\beta\!\!\text{ }}{\left( \begin{matrix} \mathrm{ }\!\!\beta\!\!\text{ } \\ \mathbf{i} \\ \end{matrix} \right)}}{{(\frac{{{q}_{\mathrm{ }\!\!\beta\!\!\text{ }}}}{\mathrm{ }\!\!\beta\!\!\text{ }!})}^{2}}\sum\limits_{|\mathbf{ \pmb{\mathsf{ α}} }|\le N}{\left\langle \partial _{\mathbf{x}}^{\mathrm{ }\!\!\alpha\!\!\text{ }}\left[ \partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }-\mathbf{i}}{{\nabla }_{\mathbf{x}}}\phi \cdot ({{\nabla }_{\mathbf{v}}}\partial _{\mathbf{z}}^{\mathbf{i}}h-\frac{\mathbf{v}}{2}\partial _{\mathbf{z}}^{\mathbf{i}}h) \right],\partial _{\mathbf{x}}^{\mathrm{ }\!\!\alpha\!\!\text{ }}\partial _{\mathbf{z}}^{\mathrm{ }\!\!\beta\!\!\text{ }}h \right\rangle } \\ \le \frac{\sqrt{5}}{2}{{2}^{q}}A{{C}_{N}}{{C}_{S}}(\sqrt{E_{{{\nabla }_{\mathbf{x}}}\phi }^{M,N}}(D_{\sigma }^{M,N}+2D_{{{h}_{1}}}^{M,N}) \\ +\sqrt{E_{h}^{M,N}}(\frac{1}{{{\epsilon }^{\frac{1-a}{2}}}}D_{{{\nabla }_{\mathbf{x}}}\phi }^{M,N}+{{\epsilon }^{\frac{1-a}{2}}}D_{{{h}_{1}}}^{M,N})), \\ \end{array}$ |
where
Proof. First note,
$ \begin{array}{l} \left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \cdot (\nabla_{\mathbf{v}}\partial_{\mathbf{z}}^{\mathbf{i}} h - \frac{{\mathbf{v}}}{2} \partial_{\mathbf{z}}^{\mathbf{i}} h) , \partial^{\mathit{\boldsymbol{\alpha}}}_{\mathbf{x}} \partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma\sqrt{\mathcal{M}}\right\rangle \\ = \left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{z}}^{\mathbf{i}} h, -\nabla_{\mathbf{v}}( \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma\sqrt{\mathcal{M}})-\frac{{\mathbf{v}}}{2} \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma\sqrt{\mathcal{M}} \right\rangle \\ = \left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} (\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{z}}^{\mathbf{i}} h), \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma(\frac{{\mathbf{v}}}{2}\sqrt{\mathcal{M}}-\frac{{\mathbf{v}}}{2}\sqrt{\mathcal{M}}) \right\rangle \\ = 0 . \label{213} \end{array} $ | (30) |
So break
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \left[\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \cdot (\nabla_{\mathbf{v}}\partial_{\mathbf{z}}^{\mathbf{i}} h - \frac{{\mathbf{v}}}{2} \partial_{\mathbf{z}}^{\mathbf{i}} h)\right], \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rangle\\ = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \left[\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \cdot (\nabla_{\mathbf{v}}\partial_{\mathbf{z}}^{\mathbf{i}} h - \frac{{\mathbf{v}}}{2} \partial_{\mathbf{z}}^{\mathbf{i}} h)\right], (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rangle\\ = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\sum\limits_{{\mathbf{j}}\leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}} \left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \cdot \partial_{\mathbf{x}}^{\mathbf{j}}(\nabla_{\mathbf{v}}\partial_{\mathbf{z}}^{\mathbf{i}} h - \frac{{\mathbf{v}}}{2} \partial_{\mathbf{z}}^{\mathbf{i}} h), (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rangle\\ = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}(\sum\limits_{|{\mathbf{j}}|\leq \frac{|{\mathit{\boldsymbol{\alpha}}}|}{2}} + \sum\limits_{|{\mathbf{j}}| > \frac{|{\mathit{\boldsymbol{\alpha}}}|}{2}})\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}\\ \qquad \left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial_{\mathbf{z}}^{\mathbf{i}} h, (-\frac{{\mathbf{v}}}{2}-\nabla_{\mathbf{v}}) (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rangle\\ \leq \sqrt{\frac{5}{4}}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\sum\limits_{|{\mathbf{j}}|\leq \frac{|{\mathit{\boldsymbol{\alpha}}}|}{2}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}C_S\left\lVert\partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert\left\lVert \partial_{\mathbf{x}}^{\mathbf{j}}\partial_{\mathbf{z}}^{\mathbf{i}} h\right\rVert_{H^2_{\mathbf{x}}} \left\lVert(1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_\nu\\ +\sqrt{\frac{5}{4}}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\sum\limits_{|{\mathbf{j}}| > \frac{|{\mathit{\boldsymbol{\alpha}}}|}{2}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}C_S\left\lVert\partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert_{H^2_{\mathbf{x}}}\left\lVert \partial_{\mathbf{x}}^{\mathbf{j}}\partial_{\mathbf{z}}^{\mathbf{i}} h\right\rVert \left\lVert(1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_\nu\\ \leq \sqrt{5}C_N C_S \left\lVert \partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert_{H^N_{\mathbf{x}}} \left\lVert \partial_{\mathbf{z}}^{\mathbf{i}} h \right\rVert_{H^N_{\mathbf{x}}} \left\lVert(1-\Pi)\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_{H^N_{\mathbf{x}}(L^2_{{\mathbf{v}}, \nu})}, \end{array} $ | (31) |
where the first inequality comes from the Sobolev embedding (20) and
$ \begin{array}{l} \left\lVert (\frac{{\mathbf{v}}}{2}-\nabla_{\mathbf{v}}) (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert \leq \sqrt{\frac{5}{4}}\left\lVert (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h \right\rVert_\nu. \end{array} $ | (32) |
While the last inequality is true for
$ \begin{array}{l} \left\lvert \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}} (\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2(31)\right\rvert \\ \leq \sqrt{5}C_N C_S \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}} \frac{q_{\mathit{\boldsymbol{\beta}}}}{q_{\mathbf{i}} q_{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}}} \left\lVert \frac{q_{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}}}{({\mathit{\boldsymbol{\beta}}} - {\mathbf{i}})!}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert_{H^N_{\mathbf{x}}}\left\lVert \frac{q_{\mathbf{i}}}{{\mathbf{i}} !}\partial_{\mathbf{z}}^{\mathbf{i}} h \right\rVert_{H^N_{\mathbf{x}}}\\ \left\lVert\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}(1-\Pi)\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_{H^N_{\mathbf{x}}(L^2_{{\mathbf{v}}, \nu})} \end{array} $ |
$ \begin{array}{l} \leq \frac{\sqrt{5}}{2}2^qC_N C_S \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}} \frac{1}{q_{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}}} \left\lVert \frac{q_{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}}}{({\mathit{\boldsymbol{\beta}}} - {\mathbf{i}})!}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert_{H^N_{\mathbf{x}}} (\left\lVert \frac{q_{\mathbf{i}}}{{\mathbf{i}} !} \partial_{\mathbf{z}}^{\mathbf{i}} h \right\rVert_{H^N_{\mathbf{x}}}^2\\ + \left\lVert\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}(1-\Pi)\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_{H^N_{\mathbf{x}}(L^2_{{\mathbf{v}}, \nu})}^2) + \frac{\sqrt{5}}{2}2^qC_N C_S \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}} \frac{1}{q_{\mathbf{i}}} \left\lVert \frac{q_{\mathbf{i}}}{{\mathbf{i}} !} \partial_{\mathbf{z}}^{\mathbf{i}} h \right\rVert_{H^N_{\mathbf{x}}}\\ (\frac{1}{\epsilon^e}\left\lVert \frac{q_{{\mathit{\boldsymbol{\beta}}} - {\mathbf{i}}}}{({\mathit{\boldsymbol{\beta}}} - {\mathbf{i}})!}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert_{H^N_{\mathbf{x}}}^2+ \epsilon^e\left\lVert\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !}(1-\Pi)\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h\right\rVert_{H^N_{\mathbf{x}}(L^2_{{\mathbf{v}}, \nu})}^2), \end{array} $ | (33) |
for
Let
$ \begin{array}{l} (33) \leq \frac{\sqrt{5}}{2}2^qAC_NC_S \sqrt{E^{M, N}_{\nabla_{\mathbf{x}}\phi}}( D^{M, N}_\sigma + 2D^{M, N}_{h_1})\\ + \frac{\sqrt{5}}{2}2^qAC_NC_S \sqrt{E^{M, N}_h}(\frac{1}{\epsilon^e} D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^eD^{M, N}_{h_1}) . \end{array} $ | (34) |
Lemma 3.3. For
$ \begin{array}{l} \left\lvert \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}} (\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}( \partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\, \partial^{\mathbf{i}}_{\mathbf{z}}\sigma), \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle\right\rvert \\ \leq 2^qAC_NC_S \sqrt{E^{M, N}_{\nabla_{\mathbf{x}}\phi}}(\frac{1}{\epsilon^{\frac{1-a}{2}}}D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{\frac{1-a}{2}}D^{M, N}_\sigma), \end{array} $ |
where
Proof. We first sum over
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}(\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\partial^{\mathbf{i}}_{\mathbf{z}}\sigma), \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle \\ = \frac{1}{2}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}(\left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\sigma, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle \\ - \left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\nabla_{\mathbf{x}}\cdot\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle)\\ = \frac{1}{2}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}(\left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\sigma, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle \\ - \left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\sigma \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle - \left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma \right\rangle) . \end{array} $ | (35) |
Noticing by changing
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}(\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\sigma \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle \\ = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}(\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\left\langle \partial_{\mathbf{x}}^{{\mathbf{j}}}\partial^{\mathbf{i}}_{\mathbf{z}}\sigma \, \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}} - {\mathbf{j}}}\partial_{\mathbf{z}}^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rangle . \end{array} $ | (36) |
Therefore, (36) shows that the first term and second term in (35) can be cancelled out when summing over
$ \begin{array}{l} \left\lvert-\frac{1}{2}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}} (\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}\left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma \right\rangle\right\rvert. \end{array} $ | (37) |
We first sum over
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\sum\limits_{{\mathbf{j}} \leq {\mathit{\boldsymbol{\alpha}}}}\binom{{\mathit{\boldsymbol{\alpha}}}}{{\mathbf{j}}}\left\langle \partial_{\mathbf{x}}^{{\mathit{\boldsymbol{\alpha}}}-{\mathbf{j}}}\partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \, \partial_{\mathbf{x}}^{\mathbf{j}}\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma \right\rangle\\ \leq 2C_N C_S \left\lVert \partial^{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rVert_{H^N_{\mathbf{x}}} \left\lVert\partial^{\mathbf{i}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi \right\rVert_{H^N_{\mathbf{x}}} \left\lVert \partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\sigma \right\rVert_{H^N_{\mathbf{x}}}. \end{array} $ | (38) |
Afterwards, for
$ \begin{array}{l} (37) \leq \left\lvert\frac{1}{2}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\binom{{\mathit{\boldsymbol{\beta}}}}{{\mathbf{i}}} (\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2(38)\right\rvert \leq 2^qAC_NC_S \sqrt{E^{M, N}_{\nabla_{\mathbf{x}}\phi}}(\frac{1}{\epsilon^d}D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^dD^{M, N}_\sigma) \end{array} $ |
for
The following is some equalities and inequalities that will be frequently used later.
Proposition 2..
(a)
(b)
(c)
(d)
(e)
Proof.
$ \begin{array}{l} \left\langle {\mathbf{v}}\sqrt{\mathcal{M}} \nabla_{\mathbf{x}}\phi , h \right\rangle = \left\langle \nabla_{\mathbf{x}}\phi , {\mathbf{u}} \right\rangle = -\left\langle \phi , \nabla_{\mathbf{x}}\cdot{\mathbf{u}} \right\rangle = \epsilon^a\left\langle \phi , \partial_t\sigma \right\rangle \\ = -\epsilon^a\left\langle \phi , \partial_t\Delta_{\mathbf{x}}\phi\right\rangle = \frac{\epsilon^a}{2}\partial_t\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2. \end{array} $ |
$ \begin{array}{l} \left\lvert \left\langle {\mathbf{u}}, \partial_t\nabla_{\mathbf{x}}\phi \right\rangle\right\rvert = \left\lvert\left\langle \nabla_{\mathbf{x}}\cdot {\mathbf{u}}, \partial_t\phi \right\rangle\right\rvert = \left\lvert\left\langle \nabla_{\mathbf{x}}\cdot {\mathbf{u}}, \partial_t\Delta_{\mathbf{x}}^{-1}\sigma \right\rangle\right\rvert \\ = \frac{1}{\epsilon^a}\left\lvert\left\langle \nabla_{\mathbf{x}}\cdot {\mathbf{u}}, \Delta_{\mathbf{x}}^{-1}\nabla_{\mathbf{x}}\cdot{\mathbf{u}} \right\rangle\right\rvert \leq \frac{1}{\epsilon^a}\left\lVert {\mathbf{u}} \right\rVert^2. \end{array} $ |
$ \begin{array}{l} \left\langle \nabla_{\mathbf{x}}\sigma, \nabla_{\mathbf{x}}\phi \right\rangle = -\left\langle \sigma, \Delta_{\mathbf{x}}\phi \right\rangle = \left\lVert \sigma\right\rVert^2. \end{array} $ |
$ \begin{array}{l} \left\langle {\mathbf{u}}, \nabla_{\mathbf{x}}\phi \right\rangle = -\left\langle \nabla_{\mathbf{x}}\cdot{\mathbf{u}}, \phi \right\rangle = \epsilon^a\left\langle \partial_t\sigma, \phi\right\rangle = -\epsilon^a\left\langle \partial_t\Delta_{\mathbf{x}}\phi, \phi\right\rangle = \frac{\epsilon^a}{2}\partial_t\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2. \end{array} $ |
$ \begin{array}{l} (e) = \sum\limits_{i, j = 1}^3\left\langle \int v_jv_i\sqrt{\mathcal{M}}\partial_{x_i}(1-\Pi)h d{\mathbf{v}}, \partial_{x_j} \phi\right\rangle \\ \leq \left\lvert \sum\limits_{i, j = 1}^3 \left\langle \left\lVert v_i (1-\Pi)h \right\rVert_{L^2_{\mathbf{v}}} \left\lVert v_j\sqrt{\mathcal{M}} \right\rVert_{L^2_{\mathbf{v}}}, \partial_{x_i}\partial_{x_j} \phi\right\rangle\right\rvert \\ \leq \frac{1}{2}\sum\limits_{i, j = 1}^3( \gamma \left\lVert(1-\Pi)h \right\rVert_\nu^2 + \frac{1}{\gamma} \left\lVert v_j\sqrt{\mathcal{M}} \right\rVert_{L^2_{\mathbf{v}}}^2 \left\lVert \partial_{x_i}\partial_{x_j} \phi\right\rVert^2) \\ \leq \frac{3\gamma}{2} \left\lVert(1-\Pi)h \right\rVert_\nu^2 + \frac{1}{2\gamma}\left\lVert \nabla_{\mathbf{x}}^2 \phi \right\rVert^2 \leq\frac{3\gamma}{2} \left\lVert(1-\Pi)h \right\rVert_\nu^2 + \frac{1}{2\gamma}\left\lVert \sigma \right\rVert^2. \end{array} $ |
Lemma 3.4. The Microscopic energy estimate is
$ \begin{array}{l} \frac{1}{2}\partial_t(E^{M, N}_h + \frac{1}{\epsilon^{1-a}}E^{M, N}_{\nabla_{\mathbf{x}}\phi}) + \frac{\lambda}{\epsilon^{1+a}}D^{M, N}_{h_1} \\ \leq \frac{\sqrt{5}}{2\epsilon}2^qAC_NC_S (\sqrt{E^{M, N}_{\nabla_{\mathbf{x}}\phi}}( D^{M, N}_\sigma + 2D^{M, N}_{h_1}) \\ + \sqrt{E^{M, N}_h}(\frac{1}{\epsilon^{\frac{1-a}{2}}} D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{\frac{1-a}{2}}D^{M, N}_{h_1}) ), \end{array} $ | (39) |
where
Proof. If one takes
Lemma 3.5. The Macroscopic energy estimate is
$ \begin{array}{l} \partial_tG^{M, N} + \frac{1}{4\epsilon^a}D^{M, N}_\sigma + \frac{1}{\epsilon}D^{M, N}_{\nabla_{\mathbf{x}}\phi} \\ \leq \frac{4}{\epsilon^a}D^{M, N}_{h_1} + 2^qAC_NC_S\frac{\sqrt{E^{M, N}_\phi}}{\epsilon}(\frac{1}{\epsilon^{\frac{1-a}{2}}}D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{\frac{1-a}{2}}D^{M, N}_\sigma), \end{array} $ | (40) |
where
Proof. If one takes
$ \begin{array}{l} \partial_t(\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}(\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}{\mathbf{u}}, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle + \frac{1}{2\epsilon}E^{M, N}_{\nabla_{\mathbf{x}}\phi} )+ \frac{1}{\epsilon^a}D^{M, N}_\sigma+\frac{1}{\epsilon}D^{M, N}_{\nabla_{\mathbf{x}}\phi} \\ \leq \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq M}\sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}(\frac{q_{\mathit{\boldsymbol{\beta}}}}{{\mathit{\boldsymbol{\beta}}} !})^2(\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}{\mathbf{u}}, \partial_t\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle\\ - \frac{1}{\epsilon^a}\left\langle \nabla_{\mathbf{x}}\cdot \int {\mathbf{v}}\otimes{\mathbf{v}}\sqrt{\mathcal{M}} (1-\Pi)\partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial_{\mathbf{z}}^{\mathit{\boldsymbol{\beta}}} h d{\mathbf{v}}, \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rangle )\\ + 2^qAC_NC_S\frac{\sqrt{E^{M, N}_\phi}}{\epsilon}(\frac{1}{\epsilon^{\frac{1-a}{2}}}D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{\frac{1-a}{2}}D^{M, N}_\sigma) \end{array} $ | (41) |
Then by Proposition 2 (b), (e), one has,
$ \begin{array}{l} (41) \leq \frac{1}{\epsilon^a}D^{M, N}_{h_1} + \frac{3\gamma}{2}D^{M, N}_{h_1} +\frac{1}{2\gamma} D^{M, N}_\sigma \\ + 2^qAC_NC_S\frac{\sqrt{E^{M, N}_\phi}}{\epsilon}(\frac{1}{\epsilon^{\frac{1-a}{2}}}D^{M, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{\frac{1-a}{2}}D^{M, N}_\sigma). \end{array} $ |
Let
Lemma 3.6. The micro-macro energy estimate is
(42) |
where
$ \begin{array}{l} \frac{\lambda}{16}E^{M, N} &\leq \mathcal{E}^{M, N} \leq (1+\frac{\lambda}{4}) E^{M, N}. \end{array} $ |
Proof. (39)
(43) |
where
$ \begin{array}{l} -\epsilon E^{M, N}_h +\frac{1}{4\epsilon}E^{M, N}_{\nabla_{\mathbf{x}}\phi} \leq G^{M, N} \leq \epsilon E^{M, N}_h + \frac{3}{4\epsilon}E^{M, N}_{\nabla_{\mathbf{x}}\phi}. \end{array} $ |
Thus one can bound
$ \begin{array}{l} (1-\frac{\lambda}{4})E^{M, N}_h + \frac{\lambda}{16\epsilon^2}E^{M, N}_{\nabla_{\mathbf{x}}\phi} &\leq \mathcal{E}^{M, N} \leq (1+ \frac{\lambda}{4})E^{M, N}_h + \frac{1+\frac{3\lambda}{16}}{\epsilon^2}E^{M, N}_{\nabla_{\mathbf{x}}\phi}, \end{array} $ | (44) |
$ \begin{array}{l} \frac{\lambda}{16} E^{M, N} &\leq \mathcal{E}^{M, N} \leq (1+\frac{\lambda}{4}) E^{M, N}. \end{array} $ | (45) |
Therefore, (43) becomes,
(46) |
By Lemma 3.6 and the continuity argument, if initially,
$ \begin{array}{l} \sqrt{\mathcal{E}^{M, N}(0, {\mathbf{z}})} \leq \frac{\lambda}{72AC_NC_S}\frac{1}{\epsilon^{\frac{1+a}{2}}}, \end{array} $ | (47) |
then for
$ \begin{array}{l} \frac{1}{2}\partial_t\mathcal{E}^{M, N} + \frac{\lambda}{4\epsilon^{1+a}}D^{M, N}_{h_1} + \frac{\lambda}{64\epsilon^{1+a}}D^{M, N}_\sigma + \frac{\lambda}{16\epsilon^2}D^{M, N}_{\nabla_{\mathbf{x}}\phi} \leq 0. \end{array} $ |
Because of the fact that
$ \begin{array}{l} \partial_t\mathcal{E}^{M, N} + \frac{\lambda}{32\epsilon^{1+a}}E^{M, N}_h + \frac{\lambda}{8\epsilon^2}E^{M, N}_{\nabla_{\mathbf{x}}\phi} \leq 0. \end{array} $ | (48) |
If one integrates (48) over time, and uses the equivalent relationship between
$ \begin{array}{l} \frac{\lambda}{16}E^{M, N} \leq (1+\frac{\lambda}{4})E^{M, N}(0) - \frac{\lambda}{32\epsilon^{1+a}}\int_0^t E^{M, N}_h(s)ds - \frac{\lambda}{8}\int_0^t \frac{E^{M, N}_{\nabla_{\mathbf{x}}\phi}(s)}{\epsilon^2}ds. \end{array} $ |
So one ends up with two inequalities for
By Grownwall's inequality, one has the decay rates for
$ \begin{array}{l} E^{M, N}_h(t) \leq \frac{16+4\lambda }{\lambda}e^{- \frac{t}{2\epsilon^{1+a}}}E^{M, N}(0), \\ E^{M, N}_{\nabla_{\mathbf{x}}\phi}(t) \leq \frac{(16+4\lambda )}{\lambda}e^{-2t} (\epsilon^2E^{M, N}(0)). \end{array} $ |
However, we want to estimate
(49) |
In addition, since
which completes the proof of Theorem 2.1.
In this section, we will review a numerical method gPC-SG and apply to the VPFP system with uncertainty. We will prove the stability and the spectral accuracy of the method.
For random variable
$ \begin{array}{l} d\mu({\mathbf{z}}) = \pi({\mathbf{z}})d{\mathbf{z}} = (\prod\limits_{i = 1}^d \pi_i(z_i)) d{\mathbf{z}}. \end{array} $ |
Therefore, let
$ \begin{array}{l} \Phi_{\mathbf{i}} = \Phi^1_{i_1} \cdots \Phi^d_{i_d}, \end{array} $ |
where
$\int_{{{I}_{\mathbf{z}}}}{{{\Phi }_{\mathbf{i}}}}{{\Phi }_{\mathbf{j}}}d\mu (\mathbf{z})={{\delta }_{\mathbf{ij}}}=\left\{ \begin{align} & 1,\quad \mathbf{i}=\mathbf{j}, \\ & 0,\quad \mathbf{i}\ne \mathbf{j}. \\ \end{align} \right.$ |
The
As a popular numerical method, the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method is to find the approximate solution in the truncated
$ \begin{array}{l} {\hat{f}^K} = \sum\limits_{|{\mathbf{i}}|\leq K} {\hat{f}}_{\mathbf{i}}(t, {\mathbf{x}}, {\mathbf{v}})\Phi_{\mathbf{i}}({\mathbf{z}}) , \quad {\hat{\phi}^K} = \sum\limits_{|{\mathbf{i}}|\leq K} {\hat{\phi}}_{\mathbf{i}}(t, {\mathbf{x}}, {\mathbf{v}}) \Phi_{\mathbf{i}}({\mathbf{z}}) \end{array} $ |
into (1) and then project it onto the subspace, one has the system for the approximate solution,
$ \begin{array}{l} \begin{cases} \left\langle \partial_t {\hat{f}^K} + \frac{1}{\epsilon^a}{\mathbf{v}}\cdot\nabla_{{\mathbf{x}}}{\hat{f}^K} - \frac{1}{\epsilon} \nabla_{\mathbf{x}}\phi\cdot\nabla_{\mathbf{v}} {\hat{f}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle = \left\langle \frac{1}{\epsilon^{1+a}} \mathcal{F} {\hat{f}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle, \\ -\left\langle \Delta_{\mathbf{x}}{\hat{\phi}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle = \left\langle{\hat{\rho}^K} - 1, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle, \nonumber \end{cases} \end{array} $ |
where
$ \begin{array}{l} {\hat{h}^K} = \frac{{\hat{f}^K} - M}{\sqrt{\mathcal{M}}} = \sum\limits_{|{\mathbf{i}}|\leq K} \hat \partial_{\mathbf{z}}^{\mathbf{i}} h(t, {\mathbf{x}}, {\mathbf{v}}) \Phi_{\mathbf{i}}({\mathbf{z}}) = {\hat{\mathbf{h}}^K} \cdot {\mathit{\boldsymbol{\Phi}}}^K; \end{array} $ |
and correspondingly the approximation for the perturbative density and flux,
$ \begin{array}{l} {\hat{\sigma}^K} = \sum\limits_{|{\mathbf{i}}|\leq K} {\hat{\sigma}}_{\mathbf{i}}(t, {\mathbf{x}}) \Phi_{\mathbf{i}}({\mathbf{z}}) = {\hat{\mathit{\boldsymbol{\sigma}}}^K}\cdot{\mathit{\boldsymbol{\Phi}}}^K, \quad {\hat{u}^K} = \sum\limits_{|{\mathbf{i}}|\leq K} {\hat{u}}_{\mathbf{i}}(t, {\mathbf{x}}) \Phi_{\mathbf{i}}({\mathbf{z}}) = {\hat{\mathbf{u}}^K}\cdot{\mathit{\boldsymbol{\Phi}}}^K, \end{array} $ |
where
$ \begin{array}{l} \begin{cases} \left\langle \partial_t {\hat{h}^K} + \frac{1}{\epsilon^a}{\mathbf{v}}\cdot\nabla_{{\mathbf{x}}}{\hat{h}^K}+ \frac{1}{\epsilon} {\mathbf{v}} \sqrt{\mathcal{M}} \nabla_{\mathbf{x}}{\hat{\phi}^K} - \frac{1}{\epsilon^{1+a}}\mathcal{L} {\hat{h}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle \\ = \frac{1}{\epsilon}\left\langle \nabla_{\mathbf{x}}{\hat{\phi}^K} \cdot (\nabla_{\mathbf{v}} {\hat{h}^K} - \frac{{\mathbf{v}}}{2}{\hat{h}^K}), {\mathit{\boldsymbol{\Phi}}}^K\right\rangle, \\ \left\langle \Delta_{\mathbf{x}} {\hat{\phi}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle = -\left\langle {\hat{\sigma}^K}, {\mathit{\boldsymbol{\Phi}}}^K\right\rangle, \end{cases} \end{array} $ | (50) |
or equivalently, the deterministic coefficients of
$ \begin{array}{l} \begin{cases} \partial_t {\hat{h}}_{\mathit{\boldsymbol{\beta}}} + \frac{1}{\epsilon^a}{\mathbf{v}}\cdot\nabla_{\mathbf{x}}{\hat{h}}_{\mathit{\boldsymbol{\beta}}} + \frac{1}{\epsilon} {\mathbf{v}} \sqrt{\mathcal{M}} \nabla_{\mathbf{x}}{\hat{\phi}}_{\mathit{\boldsymbol{\beta}}} - \frac{1}{\epsilon^{1+a}}\mathcal{L} {\hat{h}}_{\mathit{\boldsymbol{\beta}}} \\ = \frac{1}{\epsilon} \sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|, |\mathit{\boldsymbol{\gamma}}|\leq K} E_{{\mathit{\boldsymbol{\kappa}}}\mathit{\boldsymbol{\gamma}} {\mathit{\boldsymbol{\beta}}}} \nabla_{\mathbf{x}} {\hat{\phi}}_{\mathit{\boldsymbol{\kappa}}} \cdot ( \nabla_{\mathbf{v}} {\hat{h}}_\mathit{\boldsymbol{\gamma}} - \frac{{\mathbf{v}}}{2} {\hat{h}}_\mathit{\boldsymbol{\gamma}} ), \\ \Delta_{\mathbf{x}} {\hat{\phi}}_{\mathit{\boldsymbol{\beta}}} = -{\hat{\sigma}}_{\mathit{\boldsymbol{\beta}}}, \quad \text{for } |{\mathit{\boldsymbol{\beta}}}|\leq K, \end{cases} \end{array} $ | (51) |
where
$ \begin{array}{l} E_{{\mathit{\boldsymbol{\kappa}}}\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\beta}}}} = \int_{I_{\mathbf{z}}} \Phi_{\mathit{\boldsymbol{\kappa}}}\Phi_\mathit{\boldsymbol{\gamma}}\Phi_{\mathit{\boldsymbol{\beta}}} \, d\mu({\mathbf{z}}). \end{array} $ | (52) |
Theorem 4.1 and Theorem 4.2 about the approximate solution by gPC-SG are based on the following condition of the basis functions
Condition 1. The basis functions
$ \begin{array}{l} \left\lVert \Phi_{\mathit{\boldsymbol{\beta}}}({\mathbf{z}}) \right\rVert_{L^\infty} \leq c_{\mathit{\boldsymbol{\beta}}}, \quad\mathit{\text{for all}} ~|{\mathit{\boldsymbol{\beta}}}|\geq 0, \end{array} $ |
where
(a) If
(b)
$ {c_{2\mathit{\boldsymbol{\beta}}}} = {C_2}{c_\mathit{\boldsymbol{\beta}}},\quad for\;\;\forall \mathit{\boldsymbol{\beta}}.{\rm{ }}$ | (53) |
Remark 2. For example, if the basis functions
$ \begin{equation*} \left\lVert \Phi_i(z_i) \right\rVert_{L^\infty} \leq c_i, \quad \text{for all } i \geq 0, \end{equation*} $ |
then the basis functions
$ \begin{equation*} \left\lVert \Phi_{\mathit{\boldsymbol{\beta}}}({\mathbf{z}}) \right\rVert_{L^\infty} \leq \prod\limits_{i = 1}^dc_{\beta_i}, \quad \text{for all } |{\mathit{\boldsymbol{\beta}}}| \geq 0. \end{equation*} $ |
Remark 3. This is a generalization of the condition given in [19]. The i.i.d normalized Legendre polynomials, which corresponds to Uniform distribution in
We want to estimate the error of the approximation
$ \begin{equation*} h - {\hat{h}^K} = \underbrace{h - \bar{h}^K}_{h^K_p} + \underbrace{\bar{h}^K - {\hat{h}^K}}_{h^K_e}, \end{equation*} $ |
where
$ \begin{array}{l} \bar{h}^K : = (\int h{\mathit{\boldsymbol{\Phi}}}^K d\mu({\mathbf{z}}))\cdot {\mathit{\boldsymbol{\Phi}}}^K, \quad\nabla_{\mathbf{x}}\bar{\phi}^K : = (\int \nabla_{\mathbf{x}}\phi{\mathit{\boldsymbol{\Phi}}}^K d \nu({\mathbf{z}}))\cdot {\mathit{\boldsymbol{\Phi}}}^K. \end{array} $ |
The first part of the error
The difficulty in the proof of the stability of the gPC-SG method is to get a sharp estimate on
$ O(K\max\limits_{|{\mathit{\boldsymbol{\kappa}}}|, |\mathit{\boldsymbol{\gamma}}|, |{\mathit{\boldsymbol{\beta}}}|\leq K}E_{{\mathit{\boldsymbol{\kappa}}}\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\beta}}}}), $ |
so only when the initial data is as small as
$ \begin{equation} \left\lVert {\hat{h}^K} \right\rVert^2\leq O(\left[K\max\limits_{|{\mathit{\boldsymbol{\kappa}}}|, |\mathit{\boldsymbol{\gamma}}|, |{\mathit{\boldsymbol{\beta}}}|\leq K}E_{{\mathit{\boldsymbol{\kappa}}}\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\beta}}}} \right]^{-1}), \end{equation} $ | (54) |
the gPC method is stable. Actually, there is a much sharper estimates in terms of large
$ \begin{equation*} \left\lVert {\hat{\mathbf{h}}^K} \right\rVert^2_{\omega} = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\lVert\omega_{\mathit{\boldsymbol{\beta}}}{\hat{h}}_{\mathit{\boldsymbol{\beta}}}\right\rVert^2 \end{equation*} $ |
where
$ \begin{array}{l} \omega_{\mathit{\boldsymbol{\beta}}} = c_{\mathit{\boldsymbol{\beta}}} q_{\mathit{\boldsymbol{\beta}}} . \end{array} $ | (55) |
Here the weight
Before we come to the final results on the stability and accuracy of the gPC-SG method, we will first define some constants that will be frequently used later.
Notation.
$ \begin{array}{l} \hat{A} = 2C_22^q, \end{array} $ | (56) |
with
$ \begin{array}{l} \left\lVert h - \bar{h} \right\rVert^2_\mu \leq \frac{D\left\lVert h \right\rVert^2_{H^{M, 0}}}{(K+1)^{2M}}. \end{array} $ | (57) |
Theorem 4.1. (Stability of the gPC-SG method) Let
$ \begin{equation} \hat{E}^{K, N}_\omega(t) = \left\lVert {\hat{\mathbf{h}}^K}(t) \right\rVert_{H^N_{{\mathbf{x}}, \omega}}^2 + \frac{\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K}(t) \right\rVert^2_{H^N_{{\mathbf{x}}, \omega}}}{\epsilon^2} , \end{equation} $ | (58) |
under Condition 1, for
(59) |
then the approximation solution
$ \begin{array}{l} \left\lVert {\hat{h}^K}(t) \right\rVert_{H^N_{{\mathbf{x}}, \omega}} \leq \xi \hat{E}^{K, N}_\omega(0)e^{- \frac{t}{2\epsilon^{1+a}}} , \quad \left\lVert \nabla_{\mathbf{x}}{\hat{\phi}^K}(t) \right\rVert_{H^N_{{\mathbf{x}}, \omega}}^2 \leq \xi(\epsilon^2\hat{E}^{K, N}_\omega (0) ) e^{-2t} . \end{array} $ |
Here all the constants are independent of
Remark 4. The above theorem tells us that the gPC-SG method is stable under a mild condition on the initial randomness.
Remark 5. Notice there is another sufficient initial condition directly on
Based on the regularity of the solution in the random space as in Theorem 2.1 and the stability of the gPC-SG method as in Theorem 4.1, one has the following Theorem about the spectral convergence of the gPC-SG method.
Theorem 4.2. (Spectral convergence of the gPC-SG method) Under Condition 1, for
$ \begin{array}{l} E^{M+r, 3}_q, \hat{E}^{K, 3}_\omega(0) \leq \frac{D_0C_0}{\epsilon^{1+a}}, \end{array} $ |
then the error decays in time as follows,
$ \begin{array}{l} \left\lVert h - {\hat{h}^K}(t) \right\rVert^2_\mu \leq \frac{ I_0(t)e^{ -\frac{\lambda}{2\epsilon^{1+a}}t}}{(K+1)^{2M}}, \quad \left\lVert \nabla_{\mathbf{x}}{\hat{\phi}^K}(t) - {\nabla _{\mathbf{x}}}\hat \phi \right\rVert_\mu^2 \leq \frac{ \epsilon^2I_0(t)e^{ -\frac{\lambda}{2\epsilon^{1+a}}t}}{(K+1)^{2M}}. \end{array} $ | (60) |
Here
$ \begin{array}{l} C_0 = (\frac{M!}{5AC_3C_S})^2, \quad D_0 = (\frac{\lambda}{ 48Ar!\xi})^2, \\ I_0(t) = DD_ME^{M+r, 3}_q(0) \left[1+ \frac{500}{\lambda^2} (\xi\hat{E}^{K, 3}_\omega(0) +D_rE^{r, 3}_q(0))t\right], \end{array} $ |
and
Remark 6. The above Theorem tells us as long as the initial data
In this section, we will prove Theorem 4.1. We will study the stability of the gPC-SG method in terms of
$ \begin{array}{l} \hat{E}^{K, N}_h = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\omega_{\mathit{\boldsymbol{\beta}}}^2\left\lVert \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}{\hat{h}}_{\mathit{\boldsymbol{\beta}}}\right\rVert^2, \quad \hat{E}^{K, N}_{\nabla_{\mathbf{x}}\phi} = \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\omega_{\mathit{\boldsymbol{\beta}}}^2\left\lVert \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\partial^{\mathit{\boldsymbol{\beta}}}_{\mathbf{z}}\nabla_{\mathbf{x}}\phi\right\rVert^2, \end{array} $ |
where
Before we estimate the nonlinear term, we first define a characterized function
$ \begin{array}{l} \chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}} = \mathbb{1}_{\{ \gamma_i+\kappa_i \geq \beta_i, \quad \kappa_i+\beta_i\geq \gamma_i, \quad \gamma_i+\beta_i\geq \kappa_i, \quad\forall 0\leq i \leq d\}}, \end{array} $ | (61) |
which implies,
$ \begin{array}{l} E_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}} = \int \Phi_\mathit{\boldsymbol{\gamma}}\Phi_{\mathit{\boldsymbol{\kappa}}}\Phi_{\mathit{\boldsymbol{\beta}}} d\mu({\mathbf{z}}) \leq \min\{ \left\lVert \Phi_\mathit{\boldsymbol{\gamma}} \right\rVert_{L^\infty_{\mathbf{z}}}, \left\lVert \Phi_{\mathit{\boldsymbol{\kappa}}} \right\rVert_{L^\infty_{\mathbf{z}}}, \left\lVert \Phi_{\mathit{\boldsymbol{\beta}}} \right\rVert_{L^\infty_{\mathbf{z}}}\}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}\\ \leq c_{\min\{\mathit{\boldsymbol{\gamma}}, {\mathit{\boldsymbol{\kappa}}}, {\mathit{\boldsymbol{\beta}}}\}}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}. \end{array} $ | (62) |
Here the first inequality comes from the orthogonality of the basis. The second one is because of the first property of
Lemma 5.1. For any multi-dimensional vectors
where
Proof. First, notice
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K} \sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|\leq K }\sum\limits_{|\mathit{\boldsymbol{\gamma}}| \leq |{\mathit{\boldsymbol{\kappa}}}| }\frac{\omega_{\mathit{\boldsymbol{\beta}}} c_\mathit{\boldsymbol{\gamma}}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}}{\omega_{\mathit{\boldsymbol{\kappa}}} \omega_\mathit{\boldsymbol{\gamma}}} \left\lVert h_\mathit{\boldsymbol{\gamma}}\right\rVert (c_1\left\lVert g_{\mathit{\boldsymbol{\kappa}}} \right\rVert^2 + c_2\left\lVert f_{\mathit{\boldsymbol{\beta}}} \right\rVert^2) \\ \leq C_2 2^q\sum\limits_{ |\mathit{\boldsymbol{\gamma}}|\leq K }\frac{1}{ q_\mathit{\boldsymbol{\gamma}}} \left\lVert h_\mathit{\boldsymbol{\gamma}} \right\rVert( c_1\sum\limits_{ |{\mathit{\boldsymbol{\kappa}}}|\leq K }\left\lVert g_{\mathit{\boldsymbol{\kappa}}}\right\rVert^2 \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}} + c_2\sum\limits_{ |{\mathit{\boldsymbol{\beta}}}|\leq K }\left\lVert f_{\mathit{\boldsymbol{\beta}}}\right\rVert^2\sum\limits_{ |{\mathit{\boldsymbol{\kappa}}}|\leq K}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}})\\ \leq 2 C_2 2^q\sum\limits_{ |\mathit{\boldsymbol{\gamma}}|\leq K }\frac{|\mathit{\boldsymbol{\gamma}}|}{q_\mathit{\boldsymbol{\gamma}}} \left\lVert h_\mathit{\boldsymbol{\gamma}} \right\rVert (c_1\sum\limits_{ |{\mathit{\boldsymbol{\kappa}}}|\leq K }\left\lVert g_{\mathit{\boldsymbol{\kappa}}}\right\rVert^2 + c_2\sum\limits_{ |{\mathit{\boldsymbol{\beta}}}|\leq K }\left\lVert f_{\mathit{\boldsymbol{\beta}}}\right\rVert^2)\\ \leq \hat{A}\sqrt{\sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|\leq K}\left\lVert h_\mathit{\boldsymbol{\gamma}} \right\rVert^2}(c_1\sum\limits_{ |{\mathit{\boldsymbol{\kappa}}}|\leq K }\left\lVert g_{\mathit{\boldsymbol{\kappa}}}\right\rVert^2 + c_2\sum\limits_{ |{\mathit{\boldsymbol{\beta}}}|\leq K }\left\lVert f_{\mathit{\boldsymbol{\beta}}}\right\rVert^2) . \end{array} $ | (63) |
The second inequality is because that by the definition of
Now based on Lemma 5.1, and the bound for
Lemma 5.2. Under Condition 1, for
$ \begin{array}{l} \left\lvert\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K} \sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K, |{\mathit{\boldsymbol{\kappa}}}|\leq K} \omega_{\mathit{\boldsymbol{\beta}}}^2 E_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}} {\mathit{\boldsymbol{\beta}}}} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \left[\nabla_{\mathbf{x}} {\hat{\phi}}_\mathit{\boldsymbol{\gamma}} \cdot ( \nabla_{\mathbf{v}} {\hat{h}}_{\mathit{\boldsymbol{\kappa}}} - \frac{{\mathbf{v}}}{2} {\hat{h}}_{\mathit{\boldsymbol{\kappa}}} )\right], \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} {\hat{h}}_{\mathit{\boldsymbol{\beta}}}\right\rangle\right\rvert \\ \leq \frac{\sqrt{5}}{2}\hat{A}C_NC_S (\sqrt{\hat{E}^{K, N}_{\nabla_{\mathbf{x}}\phi}}(\hat{D}^{K, N}_\sigma + 2\hat{D}^{K, N}_{h_1})+ \sqrt{\hat{E}^{K, N}_h}(\frac{1}{\epsilon^{ \frac{1-a}{2}}} \hat{D}^{K, N}_\sigma + \epsilon^{ \frac{1-a}{2}}\hat{D}^{K, N}_{h_1}) ), \end{array} $ | (64) |
$ \begin{array}{l} \left\lvert\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K} \sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K, |{\mathit{\boldsymbol{\kappa}}}|\leq K} \omega_{\mathit{\boldsymbol{\beta}}}^2 E_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}} {\mathit{\boldsymbol{\beta}}}} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}( \nabla_{\mathbf{x}}{\hat{\phi}}_{{\mathit{\boldsymbol{\beta}}}-{\mathbf{i}}}\, {\hat{\sigma}}_{\mathbf{i}}), \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}}\nabla_{\mathbf{x}}{\hat{\phi}}_{\mathit{\boldsymbol{\beta}}}\right\rangle\right\rvert \\ \leq \hat{A}C_NC_S \sqrt{\hat{E}^{K, N}_{\nabla_{\mathbf{x}}\phi}}(\frac{1}{\epsilon^{ \frac{1-a}{2}}}\hat{D}^{K, N}_{\nabla_{\mathbf{x}}\phi} + \epsilon^{ \frac{1-a}{2}}\hat{D}^{K, N}_\sigma), \end{array} $ | (65) |
where
Proof. Similar to (30) - (33), one has,
$ \begin{array}{l} \sum\limits_{|{\mathit{\boldsymbol{\alpha}}}|\leq N}\left\langle \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} \left[\nabla_{\mathbf{x}} {\hat{\phi}}_\mathit{\boldsymbol{\gamma}} \cdot ( \nabla_{\mathbf{v}} {\hat{h}}_{\mathit{\boldsymbol{\kappa}}} - \frac{{\mathbf{v}}}{2} {\hat{h}}_{\mathit{\boldsymbol{\kappa}}} )\right], \partial_{\mathbf{x}}^{\mathit{\boldsymbol{\alpha}}} {\hat{h}}_{\mathit{\boldsymbol{\beta}}}\right\rangle \\ \leq \sqrt{5}C_N C_S \left\lVert \nabla_{\mathbf{x}}{\hat{\phi}}_\mathit{\boldsymbol{\gamma}}\right\rVert_{H^N_{\mathbf{x}}} \left\lVert {\hat{h}}_{\mathit{\boldsymbol{\kappa}}} \right\rVert_{H^N_{\mathbf{x}}} \left\lVert(1-\Pi) {\hat{h}}_{\mathit{\boldsymbol{\beta}}}\right\rVert_{H^N_{\mathbf{x}}(L^2_{{\mathbf{v}}, \nu})} . \end{array} $ |
Then summing over
where the first inequality comes from (62), while the second inequality comes from Young's inequality. Then by Lemma 5.1, one completes the proof of (64). The proof for (65) is similar to it, so we omit it here.
Compare Lemma 5.2 with Lemma 3.2 and 3.3, one notes that the estimates for the two nonlinear terms are similar, so one ends up with the similar energy estimates for
Remark 7. Here we derive a sufficient condition on the initial data
$ \begin{array}{l} \hat{E}^{K, N}_\omega(0)\leq C_0, \end{array} $ | (66) |
in Theorem 4.1, where
$ \begin{array}{l} \left\lVert h(0) - {\hat{h}^K}(0) \right\rVert^2_{H^{0, N}} = \sum\limits_{|{\mathit{\boldsymbol{\beta}}}| > K} \left\lVert {\hat{h}}_{\mathit{\boldsymbol{\beta}}}(0)\right\rVert^2_{H^N_{\mathbf{x}}}, \end{array} $ | (67) |
where
$ \begin{array}{l} \left\lVert h(0) - {\hat{h}^K}(0) \right\rVert^2_{H^{0, N}} \leq \frac{D\left\lVert h(0) \right\rVert^2_{H^{M, N}}}{(K+1)^{2M}}, \end{array} $ | (68) |
for some constant
$ \begin{array}{l} \left\lVert {\hat{h}}_{\mathit{\boldsymbol{\beta}}}(0)\right\rVert^2_{H^N_{\mathbf{x}}} \leq \frac{D\left\lVert h(0) \right\rVert^2_{H^{M, N}}}{(|{\mathit{\boldsymbol{\beta}}}|+1)^{2M}}. \end{array} $ |
Similarly, one can get the bound for
$ \begin{array}{l} \left\lVert \nabla_{\mathbf{x}}{\hat{\phi}}_{\mathit{\boldsymbol{\beta}}}(0)\right\rVert^2_{H^N_{\mathbf{x}}} \leq \frac{D\left\lVert \nabla_{\mathbf{x}}\phi(0) \right\rVert^2_{H^{M, N}}}{(|{\mathit{\boldsymbol{\beta}}}|+1)^{2M}}. \end{array} $ |
Therefore the condition (66) becomes,
hence a sufficient initial condition for the stability of the gPC-SG method is,
If can be bounded by a finite constant
To sum up, another sufficient condition to enjoy the stability of gPC-SG method as in (25) is that firstly the bound of the basis
$ \begin{array}{l} \left\lVert h(0) \right\rVert^2_{H^{M, N}} + \frac{\left\lVert \nabla_{\mathbf{x}}\phi(0) \right\rVert^2_{H^{M, N}}}{\epsilon^2} \leq \frac{C_0}{AD\epsilon^{1+a}}, \end{array} $ | (69) |
for
In this section, we will prove Theorem 4.2. Let us define the projection of the analytic perturbative solution
$ \begin{array}{l} \bar{h}^K : = (\int h{\mathit{\boldsymbol{\Phi}}}^K d\mu({\mathbf{z}}))\cdot {\mathit{\boldsymbol{\Phi}}}^K, \quad\nabla_{\mathbf{x}}\bar{\phi}^K : = (\int \nabla_{\mathbf{x}}\phi{\mathit{\boldsymbol{\Phi}}}^K d \nu({\mathbf{z}}))\cdot {\mathit{\boldsymbol{\Phi}}}^K. \end{array} $ |
Then we can decompose the error of the approximation solution
$ \begin{array}{l} h - {\hat{h}^K} = h^K_p + h^K_e: = (h - \bar{h}^K) + (\bar{h}^K - {\hat{h}^K}), \end{array} $ | (70) |
$ \begin{array}{l} \nabla_{\mathbf{x}}\phi - \nabla_{\mathbf{x}}{\hat{\phi}^K} = \nabla_{\mathbf{x}}\phi^K_p + \nabla_{\mathbf{x}}\phi^K_e: = (\nabla_{\mathbf{x}}\phi - \nabla_{\mathbf{x}}\bar{\phi}^K) + (\nabla_{\mathbf{x}}\bar{\phi}^K -\nabla_{\mathbf{x}} {\hat{\phi}^K}) , \end{array} $ | (71) |
where
$ \begin{array}{l} {\mathbf{h}}^K_e : = \int( h - {\hat{h}^K}) {\mathit{\boldsymbol{\Phi}}}^K d\mu({\mathbf{z}}) = (h_{e, {\mathit{\boldsymbol{\beta}}}})_{|{\mathit{\boldsymbol{\beta}}}| \leq k}, \text{ where }h_{e, {\mathit{\boldsymbol{\beta}}}} = \int( h - {\hat{h}^K}) \Phi_{\mathit{\boldsymbol{\beta}}} d\mu({\mathbf{z}}); \quad \\ {\mathit{\boldsymbol{\phi}}}^K_e = \int( \nabla_{\mathbf{x}}\phi - {\hat{\phi}^K}) {\mathit{\boldsymbol{\Phi}}}^K d\mu({\mathbf{z}}) = (\nabla_{\mathbf{x}}\phi_{e, {\mathit{\boldsymbol{\beta}}}})_{|{\mathit{\boldsymbol{\beta}}}| \leq k}, \\ \text{ where }\nabla_{\mathbf{x}}\phi_{e, {\mathit{\boldsymbol{\beta}}}} = \int( \nabla_{\mathbf{x}}\phi - {\hat{\phi}^K}) \Phi_{\mathit{\boldsymbol{\beta}}} d\mu({\mathbf{z}});\\ \tilde{E}_{h^K_e} = \left\lVert h^K_e\right\rVert_\mu^2 ; \quad \tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e} = \left\lVert\ \nabla_{\mathbf{x}}\phi^K_e \right\rVert_\mu^2; \quad\\ \tilde{D}_{h^K_e} = \left\lVert \left\lVert (1-\Pi)h^K_e\right\rVert_{L^2_{{\mathbf{v}}, \nu}} \right\rVert^2 ; \quad \tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e} = \left\lVert \nabla_{\mathbf{x}}\phi^K_e \right\rVert^2; \quad \tilde{D}_{\sigma^K_e} = \left\lVert\sigma^K_e \right\rVert^2. \end{array} $ |
Here is the proof sketch of the spectral convergence of the gPC-SG method. Project the microscopic system for the perturbative solution (4)-(5) onto the truncated subspace
$ \left\{ \begin{array}{l} {{\partial }_{t}}\mathbf{h}_{e}^{K}+\frac{1}{{{\epsilon }^{a}}}\mathbf{v}\cdot {{\nabla }_{\mathbf{x}}}\mathbf{h}_{e}^{K}+\frac{1}{\epsilon }\mathbf{v}\sqrt{\mathcal{M}}\phi _{e}^{K}-\frac{1}{{{\epsilon }^{1+a}}}\mathcal{L}\mathbf{h}_{e}^{K} \\ = \frac{1}{\epsilon }\int{\left[ {{\nabla }_{\mathbf{x}}}\phi \cdot ({{\nabla }_{\mathbf{v}}}h-\frac{\mathbf{v}}{2}h)-{{{\hat{\phi }}}^{K}}\cdot ({{\nabla }_{\mathbf{v}}}{{{\hat{h}}}^{K}}-\frac{\mathbf{v}}{2}{{{\hat{h}}}^{K}}) \right]}{{\mathbf{\Phi }}^{K}}d\mu (\mathbf{z}),&~~~~ \left( 72 \right) \\ {{\Delta }_{\mathbf{x}}}\phi _{e}^{K} = -\sigma _{e}^{K}.&~~~~\left( 73 \right) \\ \end{array} \right. $ |
If one does energy estimate to the above system, one has microscopic error estimates as in Lemma 6.1. If one multiplies
$ \begin{array}{l} \partial_{t} {\mathbf{{\mathbf{u}}}}^K_e + \frac{1}{\epsilon^a} \nabla_{\mathbf{x}}{\mathbf{ \pmb{\mathit{ σ}}}}^K_e + \frac{1}{\epsilon^a} \nabla_{\mathbf{x}}\cdot \int {\mathbf{v}}\otimes{\mathbf{v}}\sqrt{\mathcal{M}} (1-\Pi){\mathbf{h}}^K_e d{\mathbf{v}} +\frac{1}{\epsilon^{1+a}}{\mathbf{{\mathbf{u}}}}^K_e + \frac{1}{\epsilon} {\mathit{\boldsymbol{\phi}}}^K_e \\ = -\frac{1}{\epsilon}\int (\nabla_{\mathbf{x}}\phi\sigma - \nabla_{\mathbf{x}}{\hat{\phi}^K}{\hat{\sigma}^K}) {\mathit{\boldsymbol{\Phi}}}^K d\nu({\mathbf{z}}) \end{array} $ | (74) |
If one does energy estimate to it, one will obtain estimates as Lemma 6.2. If one combines the microscopic and macroscopic error estimates in a proper way as in Lemma 6.3, and then based on Corollary 1, one can obtain the spectral convergence of the gPC-SG method.
From Theorems 2.1 and 4.1, one can derive the following Corollary.
Corollary 1. Under the same condition in Theorems 2.1 and 4.1, if
$ \begin{array}{l} \left\lVert \sigma \right\rVert^2_{H^{r, 2}} \leq \left\lVert h \right\rVert^2_{H^{r, 2}} \leq D_rE^{r, 3}_q(0), \quad\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert^2_{H^{r, 2}} \leq \epsilon^2D_rE^{r, 3}_q(0), \end{array} $ | (75) |
$ \begin{array}{l} \left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_\omega \leq \left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}} \leq\epsilon^2 \xi\hat{E}^{K, 3}_\omega(0), \end{array} $ | (76) |
(77) |
where
Proof. (75) and (76) is a direct corollary from Theorems 2.1 and 4.1 respectively. (77) comes from the classical approximation theorem of orthogonal basis. For
where the second inequality comes from Theorem 2.1, similar bounds can be obtained for
Lemma 6.1. The microscopic error estimate is
(78) |
Proof. If one multiplies
$ \begin{array}{l} \frac{1}{2}\partial_t( \tilde{E}_{h^K_e} + \frac{1}{\epsilon^{1-a}}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e} ) + \frac{\lambda}{\epsilon^{1+a}} \tilde{D}_{h^K_e} \\ \leq \frac{1 }{\epsilon} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\langle \nabla_{\mathbf{x}}\phi \cdot (\nabla_{\mathbf{v}} h- \frac{{\mathbf{v}}}{2}h) - \nabla_{\mathbf{x}}{\hat{\phi}^K} \cdot (\nabla_{\mathbf{v}} {\hat{h}^K} - \frac{{\mathbf{v}}}{2}{\hat{h}^K})\Phi_{\mathit{\boldsymbol{\beta}}}, \, h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle_\mu . \end{array} $ | (79) |
By (30) and integral by parts, the nonlinear term becomes,
$ \begin{array}{l} \text{RHS of }(79) = -\frac{1}{\epsilon}\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\langle (\nabla_{\mathbf{x}}\phi h - \nabla_{\mathbf{x}}{\hat{\phi}^K} {\hat{h}^K} )\Phi_{\mathit{\boldsymbol{\beta}}}, (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle_\mu . \end{array} $ | (80) |
First notice that
$ \begin{array}{l} \nabla_{\mathbf{x}}\phi h - \nabla_{\mathbf{x}}{\hat{\phi}^K} {\hat{h}^K} = (\nabla_{\mathbf{x}}\phi - \nabla_{\mathbf{x}}{\hat{\phi}^K})h + \nabla_{\mathbf{x}}{\hat{\phi}^K}(h - {\hat{h}^K} ) \\ = (\nabla_{\mathbf{x}}\phi^K_e + \nabla_{\mathbf{x}}\phi^K_p)h + \nabla_{\mathbf{x}} {\hat{\phi}^K}(h^K_e +h^K_p)\\ = \underbrace{ \nabla_{\mathbf{x}} {\hat{\phi}^K}h^K_e}_{I} + \underbrace{ h^K_p\nabla_{\mathbf{x}} {\hat{\phi}^K} + h(\nabla_{\mathbf{x}}\phi^K_e + \nabla_{\mathbf{x}}\phi^K_p)}_{II}. \end{array} $ |
For
$ \begin{array}{l} \left\lvert\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\langle I \Phi_{\mathit{\boldsymbol{\beta}}}, \, (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle_\mu\right\rvert\\ = \left\lvert\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\langle \int\nabla_{\mathbf{x}} {\hat{\phi}^K}h^K_e\Phi_{\mathit{\boldsymbol{\beta}}}\, d\mu({\mathbf{z}}) , (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle\right\rvert \\ = \left\lvert\sum\limits_{|\mathit{\boldsymbol{\gamma}}|, |{\mathit{\boldsymbol{\kappa}}}|, |{\mathit{\boldsymbol{\beta}}}|\leq K} E_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}} \left\langle \nabla_{\mathbf{x}}{\hat{\phi}}_\mathit{\boldsymbol{\gamma}}\, h_{e, {\mathit{\boldsymbol{\kappa}}}}, \, (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle \right\rvert\\ \leq \frac{\sqrt{5}}{2}\sum\limits_{|\mathit{\boldsymbol{\gamma}}|, |{\mathit{\boldsymbol{\kappa}}}|, |{\mathit{\boldsymbol{\beta}}}|\leq K}\left\lvert\frac{E_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}}{\omega_\mathit{\boldsymbol{\gamma}}}\left\lVert \omega_\mathit{\boldsymbol{\gamma}}{\hat{\phi}}_\mathit{\boldsymbol{\gamma}} \right\rVert_{H^2_{\mathbf{x}}}\left\lVert h_{e, {\mathit{\boldsymbol{\kappa}}}}\right\rVert \left\lVert (1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rVert_\nu \right\rvert \\ \leq \frac{\sqrt{5}}{4} \sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|\leq K}\sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K}\frac{\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}}{q_\mathit{\boldsymbol{\gamma}}}(\frac{1}{\delta_1}\left\lVert\omega_\mathit{\boldsymbol{\gamma}} {\hat{\phi}}_\mathit{\boldsymbol{\gamma}} \right\rVert^2_{H^2_{\mathbf{x}}}\left\lVert h_{e, {\mathit{\boldsymbol{\kappa}}}}\right\rVert^2 + \delta_1\left\lVert(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rVert^2_\nu ) \end{array} $ |
$ \begin{array}{l} \leq \frac{\sqrt{5}}{4} \left[\frac{1}{\delta_1}(\sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K}\frac{1}{q_\mathit{\boldsymbol{\gamma}}}\left\lVert\omega_\mathit{\boldsymbol{\gamma}} {\hat{\phi}}_\mathit{\boldsymbol{\gamma}} \right\rVert^2_{H^2_{\mathbf{x}}})(\sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|\leq K}\left\lVert h_{e, {\mathit{\boldsymbol{\kappa}}}}\right\rVert^2)(\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}) \\ + \delta_1(\sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K}\frac{1}{q_\mathit{\boldsymbol{\gamma}}})(\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\lVert(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rVert^2_\nu)(\sum\limits_{|{\mathit{\boldsymbol{\kappa}}}|\leq K}\chi_{\mathit{\boldsymbol{\gamma}}{\mathit{\boldsymbol{\kappa}}}{\mathit{\boldsymbol{\beta}}}}) \right] \\ \leq \frac{\sqrt{5}}{4}\left[\frac{1}{\delta_1}(\sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K}\frac{2|\mathit{\boldsymbol{\gamma}}|}{q_\mathit{\boldsymbol{\gamma}}})\left\lVert {\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}}(\tilde{D}_{\sigma^K_e} + \tilde{D}_{h^K_e}) + \delta_1(\sum\limits_{|\mathit{\boldsymbol{\gamma}}|\leq K}\frac{2|\mathit{\boldsymbol{\gamma}}|}{q_\mathit{\boldsymbol{\gamma}}})\tilde{D}_{h^K_e} \right] \\ \leq \frac{\sqrt{5}}{2}A(\frac{1}{\delta_1}\left\lVert {\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}}(\tilde{D}_{\sigma^K_e} + \tilde{D}_{h^K_e}) + \delta_1\tilde{D}_{h^K_e}), \end{array} $ | (81) |
where the second inequality is because of
For II, by the Sobolev embedding (21), one has,
$ \begin{array}{l} \left\lVert\left\lVert h^K_p \right\rVert_{L^\infty_{\mathbf{x}}}\right\rVert_{L^\infty_{\mathbf{z}}}\leq C_S\left\lVert h^K_p \right\rVert_{H^r_{\mathbf{z}}(H^2_{\mathbf{x}})}, \quad \left\lVert\left\lVert h \right\rVert_{L^\infty_{\mathbf{x}}}\right\rVert_{L^\infty_{\mathbf{z}}}\leq C_S\left\lVert h \right\rVert_{H^r_{\mathbf{z}}(H^2_{\mathbf{x}})}, \end{array} $ |
where
$ \begin{array}{l} \left\lvert\sum\limits_{|{\mathit{\boldsymbol{\beta}}}|\leq K}\left\langle II \Phi_{\mathit{\boldsymbol{\beta}}}, \, (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h_{e, {\mathit{\boldsymbol{\beta}}}} \right\rangle_\mu\right\rvert\\ = \left\lvert\left\langle h^K_p{\hat{\phi}^K} + h(\nabla_{\mathbf{x}}\phi^K_e + \nabla_{\mathbf{x}}\phi^K_p) , (\frac{{\mathbf{v}}}{2}+\nabla_{\mathbf{v}})(1-\Pi)h^K_e\right\rangle\right\rvert\\ \leq \delta_2\left\lVert h^K_p \right\rVert^2_{H^{r, 2}}\left\lVert {\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2 + \delta_2\left\lVert h \right\rVert^2_{H^{r, 2}}(\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e} + \left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2) + \frac{5}{2\delta_2}\tilde{D}_{h^K_e}. \end{array} $ | (82) |
Combine (81) and (82), one has,
$ \begin{array}{l} (80) \leq \frac{1}{\epsilon}\left[(\delta_2\left\lVert h^K_p \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2 +\delta_2 \left\lVert h \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2) +\frac{\sqrt{5}A}{2\delta_1}\left\lVert {\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}}\tilde{D}_{\sigma^K_e} \\ + (\frac{\sqrt{5}A}{2\delta_1}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}} + \frac{\sqrt{5}A\delta_1}{2} + \frac{5}{2\delta_2})\tilde{D}_{h^K_e} + \delta_2\left\lVert h \right\rVert^2_{H^{r, 2}}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e} \right], \end{array} $ | (83) |
for
Lemma 6.2. The macroscopic error estimate is
$ \begin{array}{l} \partial_t G_e + \frac{1}{4\epsilon^a}\tilde{D}_{\sigma^K_e} + \frac{1}{\epsilon}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}\\ \leq \frac{4}{\epsilon^a}\tilde{D}_{h^K_e} + \frac{5}{2\epsilon}(\left\lVert \sigma^K_p \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2 + \left\lVert \sigma \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2 ) \\ + ( \frac{20A^2}{\epsilon}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_{H^2_{{\mathbf{x}}, \omega}}^2 +\frac{10}{\epsilon}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^{r, 2}}^2 )\tilde{D}_{\sigma^K_e}+ \frac{1}{2\epsilon}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}, \end{array} $ | (84) |
where
Proof. Multiplying
$ \begin{array}{l} \left\lvert\left\langle \nabla_{\mathbf{x}}{\hat{\phi}^K}\sigma^K_e + \sigma^K_p\nabla_{\mathbf{x}}{\hat{\phi}^K} + \sigma(\nabla_{\mathbf{x}}\phi^K_e + \nabla_{\mathbf{x}}\phi^K_p), \nabla_{\mathbf{x}}\phi^K_e\right\rangle\right\rvert \\ \leq 2A(\delta_3\left\lVert {\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_{H^2_{{\mathbf{x}}, \omega}}^2 \tilde{D}_{\sigma^K_e} + \frac{1}{\delta_3}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e} ) + \frac{1}{2\delta_4}\left\lVert \sigma^K_p \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2+\frac{\delta_4}{2}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}\\ +\left\langle \sigma\nabla_{\mathbf{x}}\phi^K_e, \nabla_{\mathbf{x}}\phi^K_e\right\rangle + \frac{1}{2\delta_5}\left\lVert \sigma \right\rVert^2_{H^{r, 2}} \left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2 + \frac{\delta_5}{2}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}, \end{array} $ | (85) |
for
$ \begin{array}{l} \left\langle \sigma\nabla_{\mathbf{x}}\phi^K_e, \nabla_{\mathbf{x}}\phi^K_e\right\rangle = -2\left\langle \nabla_{\mathbf{x}}\phi \sigma^K_e, \nabla_{\mathbf{x}}\phi^K_e\right\rangle \leq \frac{1}{\delta_6}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^{r, 2}}^2\tilde{D}_{\sigma^K_e} + \delta_6\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}, \end{array} $ |
for
Combine Lemma 6.1, Lemma 6.2 in a proper way, one has the following Lemma.
Lemma 6.3. Under the condition of
$ \begin{array}{l} \hat{E}^{K, N}(0) \leq \frac{\tilde{C}_0}{\epsilon^{1+a}}, \quad E^{r, 3}_q(0) \leq \frac{\tilde{C}_0}{\epsilon^{1+a}}, \end{array} $ |
one has micro-macro error estimates,
$ \begin{array}{l} \partial_tE_e + \frac{\lambda}{32\epsilon^{1+a}}\tilde{E}_{h^K_e} + \frac{\lambda}{16\epsilon^2}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e} \leq I, \end{array} $ |
where
$ \begin{array}{l} \frac{\lambda}{16}(\tilde{E}_{h^K_e} + \frac{1}{\epsilon^2}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}) \leq E_e \leq (1+\frac{\lambda}{4}) (\tilde{E}_{h^K_e} + \frac{1}{\epsilon^2}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}), \\ I\leq \frac{31D_M}{\lambda K^{2M}}(\xi E^{M+r, 3}_q(0)\hat{E}^{K, 3}_\omega(0) + D_rE^{r, 3}_q(0)E^{M, 3}_q(0) ). \end{array} $ |
Proof. (78)
$ \begin{array}{l} \frac{1}{2}\partial_tE_e + \frac{\lambda}{2\epsilon^{1+a}} \tilde{D}_{h^K_e}+ \frac{\lambda}{32\epsilon^{1+a}}\tilde{D}_{\sigma^K_e} + \frac{\lambda}{8\epsilon^2}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e} \\ \leq \underbrace{ \frac{30}{\epsilon^{1-a}\lambda}(\left\lVert h^K_p \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2 + \left\lVert h \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2 )}_{I}\\ \underbrace{ + \frac{5\lambda}{16\epsilon^2}(\left\lVert \sigma^K_p \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_\omega^2 + \left\lVert \sigma \right\rVert^2_{H^{r, 2}}\left\lVert \nabla_{\mathbf{x}}\phi^K_p \right\rVert_\mu^2 ) }_{I} \\ + \underbrace{(\frac{15A^2}{\epsilon^{1-a}\lambda}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}} +\frac{\lambda}{6\epsilon^{1+a}} )}_{II}\tilde{D}_{h^K_e} \end{array} $ |
$ \begin{array}{l} +\underbrace{ (\frac{15A^2}{\epsilon^{1-a}\lambda}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert^2_{H^2_{{\mathbf{x}}, \omega}} + \frac{\lambda}{8\epsilon}( \frac{20A^2}{\epsilon}\left\lVert \nabla_{\mathbf{x}}{\hat{\mathit{\boldsymbol{\phi}}}^K} \right\rVert_{H^2_{{\mathbf{x}}, \omega}}^2 +\frac{10}{\epsilon}\left\lVert \nabla_{\mathbf{x}}\phi \right\rVert_{H^{r, 2}}^2 ))}_{III} \tilde{D}_{\sigma^K_e}\\ + \underbrace{(\frac{30}{\epsilon^{1-a}\lambda}\left\lVert h \right\rVert^2_{H^{r, 2}}+ \frac{\lambda}{16\epsilon^2})}_{IV}\tilde{D}_{\nabla_{\mathbf{x}}\phi^K_e}, \end{array} $ | (86) |
where
$ \begin{array}{l} \frac{\lambda}{16}(\tilde{E}_{h^K_e} +\frac{1}{\epsilon^2}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e})\leq E_e\leq (1+\frac{\lambda}{4})(\tilde{E}_{h^K_e} +\frac{1}{\epsilon^2}\tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}). \end{array} $ |
By Corollary 1, one has,
$ \begin{array}{l} I \leq \frac{31DD_M}{\lambda (K+1)^{2M}}(\xi E^{M+r, 3}_q(0)\hat{E}^{K, 3}_\omega(0) + D_rE^{r, 3}_q(0)E^{M, 3}_q(0) ), \\ II \leq \frac{15\epsilon^{1+a}A^2\xi}{\lambda}\hat{E}^{K, 3}_\omega(0) + \frac{\lambda}{6\epsilon^{1+a}}, \\ III \leq \frac{16A^2\xi}{\lambda} \hat{E}^{K, 3}_\omega(0)+ \frac{5\lambda D_rE^{r, 3}_q(0)}{4}, \\ IV \leq \frac{30D_r}{\lambda\epsilon^{1-a}}E^{r, 3}_q(0) + \frac{\lambda}{16\epsilon^2}. \end{array} $ |
In order to control the RHS of (86) by the dissipation terms on the LHS, we require
$ \begin{array}{l} \hat{E}^{K, 3}_\omega(0) \leq \frac{\lambda^2}{64\times 32\epsilon^{1+a}A^2\xi}, \quad E^{r, 3}_q(0) \leq \frac{\lambda^2}{32\times 30D_r\epsilon^{1+a}}. \end{array} $ |
Under the above initial condtion, (86) becomes,
which completes the proof.
Based on the micro-macro error estimates and the fact that
$ \begin{array}{l} \tilde{E}_{h^K_e}(t) \leq \frac{16 I}{\lambda } t -\frac{\lambda}{32\epsilon^{1+a}}\int_0^t \tilde{E}_{h^K_e}(s)ds, \\ \tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}(t) \leq \frac{16\epsilon^2 I}{\lambda } t -\frac{\lambda}{16}\int_0^t \tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}(s)ds. \end{array} $ |
By Grownwall's inequality, one has,
$ \begin{array}{l} \tilde{E}_{h^K_e}(t) \leq \frac{16 }{\lambda } t e^{ -\frac{\lambda}{2\epsilon^{1+a}}t}I, \quad \tilde{E}_{\nabla_{\mathbf{x}}\phi^K_e}(t) \leq \frac{16 }{\lambda } t e^{ -2t}\epsilon^2I. \end{array} $ |
Then by (70), (71), one can bound the error of the approximation solution
Hence, under the condition of
$ \begin{array}{l} E^{M+r, 3}_q, \hat{E}^{K, 3}_\omega(0) \leq \frac{C_0}{\epsilon^{1+a}}, \quad\hat{E}^{K, 3}_\omega(0) \leq \frac{\lambda^2}{64\times 32\epsilon^{1+a}A^2\xi}, \quad \\ E^{r, 3}_q(0) \leq \frac{\lambda^2}{32\times 30D_r\epsilon^{1+a}}, \end{array} $ | (87) |
one can obtain
$ \begin{array}{l} \left\lVert h - {\hat{h}^K} \right\rVert^2_\mu \leq \frac{ I_0(t)e^{ -\frac{\lambda}{2\epsilon^{1+a}}t}}{(K+1)^{2M}}, \end{array} $ |
where
$ \begin{array}{l} I_0 \\ = (D_ME^{M+r, 3}_q(0) +\frac{16\times31DD_M t}{\lambda^2}(\xi E^{M+r, 3}_q(0)\hat{E}^{K, 3}_\omega(0) + D_rE^{r, 3}_q(0)E^{M, 3}_q(0) ) )\\ \leq DD_ME^{M+r, 3}_q(0) \left[1+ \frac{500}{\lambda^2} (\xi\hat{E}^{K, 3}_\omega(0) +D_rE^{r, 3}_q(0))t\right]. \end{array} $ |
Note that the initial condition (59) in Theorem 4.2 is a sufficient condition to (87).
First, notice that
$ \begin{array}{l} \sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}\frac{|{\mathbf{i}}|}{q_{\mathbf{i}}}a_{\mathbf{i}} \leq \sqrt{\sum\limits_{{\mathbf{j}}\leq {\mathit{\boldsymbol{\beta}}}}( \frac{|{\mathbf{j}}|}{q_{\mathbf{j}}})^2\sum\limits_{{\mathbf{j}}\leq {\mathit{\boldsymbol{\beta}}}}a_{\mathbf{i}}^2} \leq A\sqrt{\sum\limits_{{\mathbf{i}}\leq {\mathit{\boldsymbol{\beta}}}}a_{\mathbf{i}}^2}, \end{array} $ |
where
$ \begin{array}{l} A\leq \int_1^\infty \frac{|{\mathbf{j}}|}{(|{\mathbf{j}}| + 1)^{q}}d{\mathbf{j}} \leq \int_1^\infty \frac{d \left\lVert{\mathbf{j}}\right\rVert}{\left\lVert{\mathbf{j}}\right\rVert^{q}}dj_1\cdots dj_d, \end{array} $ |
by changing variables,
$ \begin{array}{l} j_1 & = \rho\cos\theta_1, \\ j_2 & = \rho\sin\theta_1\cos\theta_2, \\ \quad\quad\quad\vdots\\ j_{d-1} & = \rho\sin\theta_1\cdots \sin\theta_{d-2}\cos\theta_{d-1}, \\ j_d & = \rho\sin\theta_1\cdots \sin\theta_{d-2}\sin\theta_{d-1}, \end{array} $ |
one has,
$ \begin{array}{l} A\leq \int_0^\infty (\frac{d}{\rho^{(q-1)}}) \rho^{d-1}(\sin\theta_1)^{d-2}(\sin\theta_2)^{d-3} \cdots(\sin\theta_{d-2})d\rho\, d\theta_1\cdots d\theta_{d-1}\\ = \int_0^\infty (\frac{d}{\rho^{q-d}}) \, d\rho \int_0^\pi (\sin\theta_1)^{d-2} \, d\theta_1 \cdots \int_0^\pi \sin\theta_{d-2}\, d\theta_{d-2}\int_0^{2\pi}1\, d\theta_{d-1}. \end{array} $ |
Since,
$\int_0^\pi {{{(\sin {\theta _1})}^{d - 2}}} {\mkern 1mu} d{\theta _1} \cdots \int_0^\pi {\sin } {\theta _{d - 2}}{\mkern 1mu} d{\theta _{d - 2}} = \left\{ {\begin{array}{*{20}{l}} {\frac{{{\pi ^{m - 1}}}}{{(m - 1)!}},\quad d = 2m}\\ {\frac{{{2^{m - 1}}{\pi ^{m - 2}}}}{{(2m - 3)(2m - 5) \cdots 3 \cdot 1}},\quad d = 2m - 1,} \end{array}} \right. $ |
by simple calculation,
$ \begin{array}{l} A\leq 22d\pi \int_0^\infty \frac{1}{\rho^{q-d}}\, d\rho = 22d\pi(2q - d -2), \quad\text{for }q > d+1, \end{array} $ |
which completes the proof.
The author would like to express her special thanks to her Ph.D. advisor, Shi Jin, for his useful discussions and constant encouragement, and also for Renjun Duan for a helpful discussion.