We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.
Citation: Luca Lussardi, Stefano Marini, Marco Veneroni. 2018: Stochastic homogenization of maximal monotone relations and applications, Networks and Heterogeneous Media, 13(1): 27-45. doi: 10.3934/nhm.2018002
[1] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[2] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[3] | Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478 |
[4] | Choonkil Park, K. Tamilvanan, Batool Noori, M. B. Moghimi, Abbas Najati . Fuzzy normed spaces and stability of a generalized quadratic functional equation. AIMS Mathematics, 2020, 5(6): 7161-7174. doi: 10.3934/math.2020458 |
[5] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
[6] | Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336 |
[7] | Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116 |
[8] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[9] | Debao Yan . Quantitative analysis and stability results in $ \beta $-normed space for sequential differential equations with variable coefficients involving two fractional derivatives. AIMS Mathematics, 2024, 9(12): 35626-35644. doi: 10.3934/math.20241690 |
[10] | Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211 |
We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.
In this paper, we discuss the existence and multiplicity of standing wave solutions for the following perturbed fractional p-Laplacian systems with critical nonlinearity
$ {εps(−Δ)spu+V(x)|u|p−2u=K(x)|u|p∗s−2u+Fu(x,u,v),x∈RN,εps(−Δ)spv+V(x)|v|p−2v=K(x)|v|p∗s−2v+Fv(x,u,v),x∈RN, $
|
(1.1) |
where $ \varepsilon $ is a positive parameter, $ N > ps, s\in (0, 1), p^{*}_{s} = \frac{Np}{N-ps} $ and $ (-\Delta)^{s}_{p} $ is the fractional p-Laplacian operator, which is defined as
$ (−Δ)spu(x)=limε→0∫RN∖Bε(x)|u(x)−u(y)|p−2(u(x)−u(y))|x−y|N+psdy,x∈RN, $
|
where $ B_{\varepsilon}(x) = \{y\in \mathbb{R}^{N}: |x-y| < \varepsilon\} $. The functions $ V(x), K(x) $ and $ F(x, u, v) $ satisfy the following conditions:
$(V_{0})\; V\in C(\mathbb{R}^{N}, \mathbb{R}), \min_{x\in \mathbb{R}^{N}} V(x) = 0 {\rm{\; and\; there\; is\; a\; constant}}\; b > 0 {\rm{\; such \; that\; the\; set}}\; $ $ V^{b}: = \{x\in \mathbb{R}^{N}: V(x) < b\} {\rm{\; has\; finite\; Lebesgue\; measure}}; $
$(K_{0})\; K\in C(\mathbb{R}^{N}, \mathbb{R}), 0 < \inf K\leq \sup K < \infty; $
$(F_{1})\; F\in C^{1}(\mathbb{R}^{N} \times \mathbb{R}^{2}, \mathbb{R})\; {{\rm{and}}}\; F_{s}(x, s, t), F_{t}(x, s, t) = o(|s|^{p-1} + |t|^{p-1}) $ $ {\rm{uniformly\; in}}\; x\in \mathbb{R}^{N}\; {{\rm{as}}} \; |s|+|t|\rightarrow 0;$
$(F_{2})\; {\rm{there \; exist}}\; C_{0} > 0\; {\rm{ and}}\; p < \kappa < p_{s}^{*}\; {\rm{ such that}} $ $|F_{s}(x, s, t)|, |F_{t}(x, s, t)|\leq C_{0}(1+ |s|^{\kappa-1} + |t|^{\kappa-1}); $
$(F_{3})\; {\rm{there \; exist}}\; l_{0} > 0, \; d > p \; {\rm{and}}\; \mu\in (p, p_{s}^{*}) \; {\rm{such\; that}}\; F(x, s, t)\geq l_{0}(|s|^{d} +|t|^{d})\; {\rm{and}} $ $0 < \mu F(x, s, t)\leq F_{s}(x, s, t)s + F_{t}(x, s, t)t \; {{\rm{for \; all}}}\; (x, s, t)\in \mathbb{R}^{N}\times \mathbb{R}^{2};$
$(F_{4})\; F_{s}(x, -s, t) = -F_{s}(x, s, t)\; {{\rm{and}}}\; F_{t}(x, s, -t) = -F_{t}(x, s, t)\; {\rm{for\; all}}\; (x, s, t)\in \mathbb{R}^{N} \times \mathbb{R}^{2}. $
Conditions $ (V_{0}), (K_{0}) $, suggested by Ding and Lin [11] in studying perturbed Schrödinger equations with critical nonlinearity, and then was used in [28,32,33].
In recent years, a great deal of attention has been focused on the study of standing wave solutions for perturbed fractional Schrödinger equation
$ ε2s(−Δ)su+V(x)u=f(u)inRN, $
|
(1.2) |
where $ s\in (0, 1) $, $ N > 2 $s and $ \varepsilon > 0 $ is a small parameter. It is well known that the solution of (1.2) is closely related to the existence of solitary wave solutions for the following eqation
$ iεωt−ε2(−Δ)sω−V(x)ω+f(ω)=0,(x,t)∈RN×R, $
|
where $ i $ is the imaginary unit. $ (-\Delta)^{s} $ is the fractional Laplacian operator which arises in many areas such as physics, phase transitions, chemical reaction in liquids, finance and so on, see [1,6,18,22,27]. Additionally, Eq (1.2) is a fundamental equation of fractional quantum mechanics. For more details, please see [17,18].
Equation (1.2) was also investigated extensively under various hypotheses on the potential and the nonlinearity. For example, Floer and Weinstein [12] first considered the existence of single-peak solutions for $ N = 1 $ and $ f(t) = t^{3} $. They obtained a single-peak solution which concentrates around any given nondegenerate critical point of $ V $. Jin, Liu and Zhang [16] constructed a localized bound-state solution concentrating around an isolated component of the positive minimum point of $ V $, when the nonlinear term $ f(u) $ is a general critical nonlinearity. More related results can be seen in [5,7,10,13,14,26,43] and references therein. Recently, Zhang and Zhang [46] obtained the multiplicity and concentration of positive solutions for a class of fractional unbalanced double-phase problems by topological and variational methods. Related to (1.2) with $ s = 1 $, see [31,39] for quasilinear Schrödinger equations.
On the other hand, fractional p-Laplacian operator can be regarded as an extension of fractional Laplacian operator. Many researchers consider the following equation
$ εps(−Δ)spu+V(x)|u|p−2u=f(x,u). $
|
(1.3) |
When $ f(x, u) = A(x)|u|^{p^{*}_{s}-2}u + h(x, u) $, Li and Yang [21] obtained the existence and multiplicity of weak solutions by variational methods. When $ f(x, u) = \lambda f(x)|u|^{q-2}u + g(x)|u|^{r-2}u $, under suitable assumptions on nonlinearity and weight functions, Lou and Luo [19] established the existence and multiplicity of positive solutions via variational methods. With regard to the p-fractional Schrödinger-Kirchhoff, Song and Shi [29] considered the following equation with electromagnetic fields
$ {εpsM([u]ps,Aε)(−Δ)sp,Aεu+V(x)|u|p−2u=|u|p∗s−2u+h(x,|u|p)|u|p−2u,x∈RN,u(x)→0,as→∞. $
|
(1.4) |
They obtained the existence and multiplicity solutions for (1.4) by using the fractional version of concentration compactness principle and variational methods, see also [24,25,34,35,38,41] and references therein. Related to (1.3) with $ s = 1 $, see [15,23].
Recently, from a mathematical point of view, (fractional) elliptic systems have been the focus for many researchers, see [2,8,9,20,30,37,42,44,45]. As far as we know, there are few results concerned with the (fractional) p-Laplacian systems with a small parameter. In this direction, we cite the work of Zhang and Liu [40], who studied the following p-Laplacian elliptic systems
$ {−εpΔpu+V(x)|u|p−2u=K(x)|u|p∗−2u+Hu(u,v),x∈RN,−εpΔpv+V(x)|v|p−2v=K(x)|v|p∗−2v+Hv(u,v),x∈RN. $
|
(1.5) |
By using variational methods, they proved the existence of nontrivial solutions for (1.5) provided that $ \varepsilon $ is small enough. In [36], Xiang, Zhang and Wei investigated the following fractional p-Laplacian systems without a small parameter
$ {(−Δ)spu+a(x)|u|p−2u=Hu(x,u,v),x∈RN,(−Δ)sqv+b(x)|v|p−2v=Hv(x,u,v),x∈RN. $
|
(1.6) |
Under some suitable conditions, they obtained the existence of nontrivial and nonnegative solutions for (1.6) by using the mountain pass theorem.
Motivated by the aforementioned works, it is natural to ask whether system (1.5) has a nontrivial solution when the p-Laplacian operator is replaced by the fractional p-Laplacian operator. As far as we know, there is no related work in this direction so far. In this paper, we give an affirmative answer to this question considering the existence and multiplicity of standing wave solutions for (1.1).
Now, we present our results of this paper.
Theorem 1.1. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then for any $ \tau > 0 $, there is $ \Gamma_{\tau} > 0 $ such that if $ \varepsilon < \Gamma_{\tau} $, system (1.1) has at least one solution $ (u_{\varepsilon}, v_{\varepsilon})\rightarrow (0, 0) $ in $ W $ as $ \varepsilon\rightarrow 0 $, where $ W $ is stated later, satisfying:
$ μ−pμp[∫∫R2Nεps(|uε(x)−uε(y)|p|x−y|N+ps+|vε(x)−vε(y)|p|x−y|N+ps)dxdy+∫RNV(x)(|uε|p+|vε|p)dx]≤τεN $
|
and
$ sN∫RNK(x)(|uε|p∗s+|vε|p∗s)dx+μ−pp∫RNF(x,uε,vε)dx≤τεN. $
|
Theorem 1.2. Let $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{4}) $ hold. Then for any $ m\in \mathbb{N} $ and $ \tau > 0 $ there is $ \Gamma_{m\tau} > 0 $ such that if $ \varepsilon < \Gamma_{m\tau} $, system (1.1) has at least $ m $ pairs of solutions $ (u_{\varepsilon}, v_{\varepsilon}) $, which also satisfy the above estimates in Theorem 1.1. Moreover, $ (u_{\varepsilon}, v_{\varepsilon}) \rightarrow (0, 0) $ in $ W $ as $ \varepsilon\rightarrow 0 $.
Remark 1.1. On one hand, our results extend the results in [40], in which the authors considered the existence of solutions for perturbed $ p $-Laplacian system, i.e., system (1.1) with $ s = 1 $. On the other hand, our results also extend the results in [21] to a class of perturbed fractional $ p $-Laplacian system (1.1).
Remark 1.2. Compared with the results obtained by [12,13,14,15,16], when $ \varepsilon\rightarrow0 $, the solutions of Theorems 1.1 and 1.2 are close to trivial solutions.
In this paper, our goal is to prove the existence and multiplicity of standing wave solutions for (1.1) by variational approach. The main difficulty lies on the lack of compactness of the energy functional associated to system (1.1) because of unbounded domain $ \mathbb{R}^{N} $ and critical nonlinearity. To overcome this difficulty, we adopt some ideas used in [11] to prove that $ (PS)_{c} $ condition holds.
The rest of this article is organized as follows. In Section 2, we introduce the working space and restate the system in a equivalent form by replacing $ \varepsilon^{-ps} $ with $ \lambda $. In Section 3, we study the behavior of $ (PS)_{c} $ sequence. In Section 4, we complete the proof of Theorems 2.1 and 2.2, respectively.
To obtain the existence and multiplicity of standing wave solutions of system (1.1) for small $ \varepsilon $, we rewrite (1.1) in a equivalent form. Let $ \lambda = \varepsilon^{-ps} $, then system (1.1) can be expressed as
$ {(−Δ)spu+λV(x)|u|p−2u=λK(x)|u|p∗s−2u+λFu(x,u,v),x∈RN,(−Δ)spv+λV(x)|v|p−2v=λK(x)|v|p∗s−2v+λFv(x,u,v),x∈RN, $
|
(2.1) |
for $ \lambda\rightarrow +\infty $.
We introduce the usual fractional Sobolev space
$ Ws,p(RN):={u∈Lp(RN):[u]s,p<∞} $
|
equipped with the norm
$ ||u||s,p=(|u|p+[u]ps,p)1p, $
|
where $ |\cdot|_{p} $ is the norm in $ L^{p}(\mathbb{R}^{N}) $ and
$ [u]s,p=(∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)1p $
|
is the Gagliardo seminorm of a measurable function $ u: \mathbb{R}^{N}\rightarrow \mathbb{R} $. In this paper, we continue to work in the following subspace of $ W^{s, p}(\mathbb{R}^{N}) $ which is defined by
$ Wλ:={u∈Ws,p(RN):∫RNλV(x)|u|pdx<∞,λ>0} $
|
with the norm
$ ||u||λ=([u]ps,p+∫RNλV(x)|u|pdx)1p. $
|
Notice that the norm $ ||\cdot||_{s, p} $ is equivalent to $ ||\cdot||_{\lambda} $ for each $ \lambda > 0 $. It follows from $ (V_{0}) $ that $ W_{\lambda} $ continuously embeds in $ W^{s, p}(\mathbb{R}^{N}) $. For the fractional system (2.1), we shall work in the product space $ W = W_{\lambda}\times W_{\lambda} $ with the norm $ ||(u, v)||^{p} = ||u||^{p}_{\lambda} +||v||^{p}_{\lambda} $ for any $ (u, v)\in W $.
We recall that $ (u, v)\in W $ is a weak solution of system (2.1) if
$ ∫∫R2N|u(x)−u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))|x−y|N+psdxdy+λ∫RNV(x)|u|p−2uϕdx+∫∫R2N|v(x)−v(y)|p−2(v(x)−v(y))(ψ(x)−ψ(y))|x−y|N+psdxdy+λ∫RNV(x)|v|p−2vψdx=λ∫RNK(x)(|u|p∗s−2uϕ+|v|p∗s−2vψ)dx+λ∫RN(Fu(x,u,v)ϕ+Fv(x,u,v)ψ)dx $
|
for all $ (\phi, \psi)\in W $.
Note that the energy functional associated with (2.1) is defined by
$ Φλ(u,v)=1p∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdy+1p∫RNλV(x)|u|pdx+1p∫∫R2N|v(x)−v(y)|p|x−y|N+psdxdy+1p∫RNλV(x)|v|pdx−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx=1p||(u,v)||p−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx. $
|
Clearly, it is easy to check that $ \Phi_{\lambda}\in C^{1}(W, \mathbb{R}) $ and its critical points are weak solution of system (2.1).
In order to prove Theorem 1.1 and 1.2, we only need to prove the following results.
Theorem 2.1. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then for any $ \tau > 0 $, there is $ \Lambda_{\tau} > 0 $ such that if $ \lambda\geq\Lambda_{\tau} $, system (2.1) has at least one solution $ (u_{\lambda}, v_{\lambda})\rightarrow (0, 0) $ in $ W $ as $ \lambda\rightarrow \infty $, satisfying:
$ μ−pμp[∫∫R2N(|uλ(x)−uλ(y)|p|x−y|N+ps+|vλ(x)−vλ(y)|p|x−y|N+ps)dxdy+∫RNλV(x)(|uλ|p+|vλ|p)dx]≤τλ1−Nps $
|
(2.2) |
and
$ sN∫RNK(x)(|uλ|p∗s+|vλ|p∗s)dx+μ−pp∫RNF(x,uλ,vλ)dx≤τλ−Nps. $
|
(2.3) |
Theorem 2.2. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{4}) $ hold. Then for any $ m\in \mathbb{N} $ and $ \tau > 0 $ there is $ \Lambda_{m\tau} > 0 $ such that if $ \lambda\geq\Lambda_{m\tau} $, system (2.1) has at least $ m $ pairs of solutions $ (u_{\lambda}, v_{\lambda}) $, which also satisfy the estimates in Theorem 2.1. Moreover, $ (u_{\lambda}, v_{\lambda}) \rightarrow (0, 0) $ in $ W $ as $ \lambda\rightarrow \infty $.
In this section, we are focused on the compactness of the functional $ \Phi_{\lambda} $.
Recall that a sequence $ \{(u_{n}, v_{n})\}\subset W $ is a $ (PS)_{c} $ sequence at level $ c $, if $ \Phi_{\lambda}(u_{n}, v_{n})\rightarrow c $ and $ \Phi'_{\lambda}(u_{n}, v_{n})\rightarrow 0 $. $ \Phi_{\lambda} $ is said to satisfy the $ (PS)_{c} $ condition if any $ (PS)_{c} $ sequence contains a convergent subsequence.
Proposition 3.1. Assume that the conditions $ (V_{0}), (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then there exists a constant $ \alpha > 0 $ independent of $ \lambda $ such that, for any $ (PS)_{c} $ sequence $ \{(u_{n}, v_{n})\}\subset W $ for $ \Phi_{\lambda} $ with $ (u_{n}, v_{n})\rightharpoonup (u, v) $, either $ (u_{n}, v_{n})\rightarrow (u, v) $ or $ c - \Phi_{\lambda}(u, v) \geq \alpha\lambda^{1-\frac{N}{ps}} $.
Corollary 3.1. Under the assumptions of Proposition 3.1, $ \Phi_{\lambda} $ satisfies the $ (PS)_{c} $ condition for all $ c < \alpha\lambda^{1-\frac{N}{ps}} $.
The proof of Proposition 3.1 consists of a series of lemmas which will occupy the rest of this section.
Lemma 3.1. Assume that $ (V_{0}), (K_{0}) $ and $ (F_{3}) $ are satisfied. Let $ \{(u_{n}, v_{n})\}\subset W $ be a $ (PS)_{c} $ sequence for $ \Phi_{\lambda} $. Then $ c\geq 0 $ and $ \{(u_{n}, v_{n})\} $ is bounded in $ W $.
Proof. Let $ \{(u_{n}, v_{n})\} $ be a $ (PS)_{c} $ sequence for $ \Phi_{\lambda} $, we obtain that
$ Φλ(un,vn)→c,Φ′λ(un,vn)→0,n→∞. $
|
By $ (K_{0}) $ and $ (F_{3}) $, we deduce that
$ c+o(1)||(un,vn)||=Φλ(un,vn)−1μ⟨Φ′λ(un,vn),(un,vn)⟩=(1p−1μ)||(un,vn)||p+λ(1μ−1p∗s)∫RNK(x)(|u|p∗s+|v|p∗s)dx+λ∫RN[1μ(Fu(x,un,vn)un+Fv(x,un,vn)vn)−F(x,un,vn)]dx≥(1p−1μ)||(un,vn)||p, $
|
(3.1) |
which implies that there exists $ M > 0 $ such that
$ ||(un,vn)||p≤M. $
|
Thus, $ \{(u_{n}, v_{n})\} $ is bounded in $ W $. Taking the limit in (3.1), we show that $ c\geq0 $. This completes the proof.
From the above lemma, there exists $ (u, v)\in W $ such that $ (u_{n}, v_{n})\rightharpoonup (u, v) $ in $ W $. Furthermore, passing to a subsequence, we have $ u_{n}\rightarrow u $ and $ v_{n}\rightarrow v $ in $ L^{\gamma}_{loc}(\mathbb{R}^{N}) $ for any $ \gamma\in [p, p_{s}^{*}) $ and $ u_{n}(x)\rightarrow u(x) $ and $ v_{n}(x)\rightarrow v(x) $ a.e. in $ \mathbb{R}^{N} $. Clearly, $ (u, v) $ is a critical point of $ \Phi_{\lambda} $.
Lemma 3.2. Let $ \{(u_{n}, v_{n})\} $ be stated as in Lemma 3.1 and $ \gamma\in [p, p_{s}^{*}) $. Then there exists a subsequence $ \{(u_{n_{j}}, v_{n_{j}})\} $ such that for any $ \varepsilon > 0 $, there is $ r_{\varepsilon} > 0 $ with
$ limsupj→∞∫Bj∖Br|unj|γdx≤ε,limsupj→∞∫Bj∖Br|vnj|γdx≤ε, $
|
for all $ r\geq r_{\varepsilon} $, where, $ B_{r}: = \{x\in \mathbb{R}^{N}: |x|\leq r\} $.
Proof. The proof is similar to the one of Lemma 3.2 of [11]. We omit it here.
Let $ \sigma: [0, \infty)\rightarrow [0, 1] $ be a smooth function satisfying $ \sigma(t) = 1 $ if $ t\leq 1 $, $ \sigma(t) = 0 $ if $ t\geq2 $. Define $ \overline{u}_{j}(x) = \sigma(\frac{2|x|}{j})u(x) $, $ \overline{v}_{j}(x) = \sigma(\frac{2|x|}{j})v(x) $. It is clear that
$ ||u−¯uj||λ→0and||v−¯vj||λ→0asj→∞. $
|
(3.2) |
Lemma 3.3. Let $ \{(u_{n_{j}}, v_{n_{j}})\} $ be stated as in Lemma 3.2, then
$ limj→∞∫RN[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx=0 $
|
and
$ limj→∞∫RN[Fv(x,unj,vnj)−Fv(x,unj−¯uj,vnj−¯vj)−Fv(x,¯uj,¯vj)]ψdx=0 $
|
uniformly in $ (\phi, \psi)\in W $ with $ ||(\phi, \psi)||\leq 1 $.
Proof. By (3.2) and the local compactness of Sobolev embedding, we know that for any $ r > 0 $,
$ limj→∞∫Br[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx=0, $
|
(3.3) |
uniformly for $ ||\phi||\leq 1 $. For any $ \varepsilon > 0 $, there exists $ r_{\varepsilon} > 0 $ such that
$ limsupj→∞∫Bj∖Br|¯uj|γdx≤∫RN∖Br|u|γdx≤ε, $
|
for all $ r\geq r_{\varepsilon} $, see [Lemma 3.2, 11]. From $ (F_{1}) $ and $ (F_{2}) $, we obtain
$ |Fu(x,u,v)|≤C0(|u|p−1+|v|p−1+|u|κ−1+|v|κ−1). $
|
(3.4) |
Thus, from (3.3), (3.4) and the Hölder inequality, we have
$ limsupj→∞∫RN[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx≤limsupj→∞∫Bj∖Br[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx≤C1limsupj→∞∫Bj∖Br[(|unj|p−1+|¯uj|p−1+|vnj|p−1+|¯vj|p−1)]ϕdx+≤C2limsupj→∞∫Bj∖Br[(|unj|κ−1+|¯uj|κ−1+|vnj|κ−1+|¯vj|κ−1)]ϕdx≤C1limsupj→∞[|unj|p−1Lp(Bj∖Br)+|¯uj|p−1Lp(Bj∖Br)+|vnj|p−1Lp(Bj∖Br)+|¯vj|p−1Lp(Bj∖Br)]|ϕ|p+C2limsupj→∞[|unj|κ−1Lκ(Bj∖Br)+|¯uj|κ−1Lκ(Bj∖Br)+|vnj|κ−1Lκ(Bj∖Br)+|¯vj|κLκ(Bj∖Br)]|ϕ|κ≤C3εp−1p+C4εκ−1κ, $
|
where $ C_{1}, C_{2}, C_{3} $ and $ C_{4} $ are positive constants. Similarly, we can deduce that the other equality also holds.
Lemma 3.4. Let $ \{(u_{n_{j}}, v_{n_{j}})\} $ be stated as in Lemma 3.2, the following facts hold:
$ (i)\; \Phi_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}})\rightarrow c - \Phi_{\lambda}(u, v); $
$(ii)\; \Phi'_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}}) \rightarrow 0 \; {\rm{in}} \; W^{-1}\; ({\rm{the \; dual\; space\; of\; W}}). $
Proof. $ (i) $ We have
$ Φλ(unj−¯uj,vnj−¯vj)=Φλ(unj,vnj)−Φλ(¯uj,¯vj)+λp∗s∫RNK(x)(|unj|p∗s−|unj−¯uj|p∗s−|¯uj|p∗s+|vnj|p∗s−|vnj−¯vj|p∗s−|¯vj|p∗s)dx+λ∫RN(F(x,unj,vnj)−F(x,unj−¯uj,vnj−¯vj)−F(x,¯uj,¯vj))dx. $
|
Using (3.2) and the Brézis-Lieb Lemma [4], it is easy to get
$ limj→∞∫RNK(x)(|unj|p∗s−|unj−¯uj|p∗s−|¯uj|p∗s+|vnj|p∗s−|vnj−¯vj|p∗s−|¯vj|p∗s)dx=0 $
|
and
$ limj→∞∫RN(F(x,unj,vnj)−F(x,unj−¯uj,vnj−¯vj)−F(x,¯uj,¯vj))dx=0. $
|
Using the fact that $ \Phi_{\lambda} (u_{n_{j}}, v_{n_{j}}) \rightarrow c $ and $ \Phi_{\lambda} (\overline{u}_{j}, \overline{v}_{{j}})\rightarrow \Phi_{\lambda}(u, v) $ as $ j\rightarrow \infty $, we have
$ Φλ(unj−¯uj,vnj−¯vj)→c−Φλ(u,v). $
|
$ (ii) $ We observe that for any $ (\phi, \psi)\in W $ satisfying $ ||(\phi, \psi)||\leq 1 $,
$ ⟨Φ′λ(unj−¯uj,vnj−¯vj),(ϕ,ψ)⟩=⟨Φ′λ(unj,vnj),(ϕ,ψ)⟩−⟨Φ′λ(¯uj,¯vj),(ϕ,ψ)⟩+λ∫RNK(x)[(|unj|p∗s−2unj−|unj−¯uj|p∗s−2(unj−¯uj)−|¯uj|p∗s−2¯uj)ϕ+(|vnj|p∗s−2vnj−|vnj−¯vj|p∗s−2(vnj−¯vj)−|¯vj|p∗s−2¯vj)ψ]dx+λ∫RN[(Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj))ϕ+(Fv(x,unj,vnj)−Fv(x,unj−¯uj,vnj−¯vj)−Fv(x,¯uj,¯vj))ψ]dx. $
|
It follows from a standard argument that
$ limj→∞∫RNK(x)(|unj|p∗s−2unj−|unj−¯uj|p∗s−2(unj−¯uj)−|¯uj|p∗s−2¯uj)ϕdx=0 $
|
and
$ limj→∞∫RNK(x)(|vnj|p∗s−2vnj−|vnj−¯vj|p∗s−2(vnj−¯vj)−|¯vj|p∗s−2¯vj)ψdx=0 $
|
uniformly in $ ||(\phi, \psi)||\leq1 $. By Lemma 3.3, we obtain $ \Phi'_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}}) \rightarrow 0 $. We complete this proof.
Set $ u^{1}_{j} = u_{n_{j}} - \overline{u}_{j} $, $ v^{1}_{j} = v_{n_{j}} - \overline{v}_{j} $, then $ u_{n_{j}} -u = u^{1}_{j} + (\overline{u}_{j} - u) $, $ v_{n_{j}} -v = v^{1}_{j} + (\overline{v}_{j} - v) $. From (3.2), we have $ (u_{n_{j}}, v_{n_{j}})\rightarrow (u, v) $ if and only if $ (u^{1}_{j}, v^{1}_{j})\rightarrow (0, 0) $. By Lemma 3.4, one has along a subsequence that $ \Phi_{\lambda}(u^{1}_{j}, v^{1}_{j}) \rightarrow c -\Phi_{\lambda}(u, v) $ and $ \Phi'_{\lambda}(u^{1}_{j}, v^{1}_{j})\rightarrow 0 $.
Note that $ \langle \Phi'_{\lambda}(u^{1}_{j}, v^{1}_{j}), (u^{1}_{j}, v^{1}_{j}) \rangle = 0 $, by computation, we get
$ ∫∫R2N|u1j(x)−u1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|u1j|pdx+∫∫R2N|v1j(x)−v1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|v1j|pdx−λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx−λ∫RNF(x,u1j,v1j)dx=0 $
|
(3.5) |
Hence, by $ (F_{3}) $ and (3.5), we have
$ Φλ(u1j,v1j)−1p⟨Φ′λ(u1j,v1j),(u1j,v1j)⟩=(1p−1p∗s)λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+λ∫RN[1p(Fu(x,u1j,v1j)u1j+Fu(x,u1j,v1j)v1j)−F(x,u1j,v1j)]dx≥λsKminN∫RN(|u1j|p∗s+|v1j|p∗s)dx, $
|
where $ K_{min} = \inf_{x\in \mathbb{R}^{N}}K(x) > 0 $. So, it is easy to see that
$ |u1j|p∗sp∗s+|v1j|p∗sp∗s≤N(c−Φλ(u,v))λsKmin+o(1). $
|
(3.6) |
Denote $ V_{b}(x) = \max \{V(x), b\} $, where $ b $ is the positive constant from assumption of $ (V_{0}) $. Since the set $ V^{b} $ has finite measure and $ (u^{1}_{j}, v^{1}_{j})\rightarrow (0, 0) $ in $ L^{p}_{loc}\times L^{p}_{loc} $, we obtain
$ ∫RNV(x)(|u1j|p+|v1j|p)dx=∫RNVb(x)(|u1j|p+|v1j|p)dx+o(1). $
|
(3.7) |
By $ (K_{0}), (F_{1}) $ and $ (F_{2}) $, we can find a constant $ C_{b} > 0 $ such that
$ ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+∫RN(Fu(x,u1j,v1j)u1j+Fv(x,u1j,v1j)v1j)dx≤b(|u1j|pp+|v1j|pp)+Cb(|u1j|p∗sp∗s+|v1j|p∗sp∗s). $
|
(3.8) |
Let $ S $ is fractional Sobolev constant which is defined by
$ S|u|pp∗s≤∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdyforallu∈Ws,p(RN). $
|
(3.9) |
Proof of Proposition 3.1. Assume that $ (u_{n_{j}}, v_{n_{j}})\nrightarrow(u, v) $, then $ \lim\inf_{j\rightarrow \infty}||(u^{1}_{j}, v^{1}_{j})|| > 0 $ and $ c -\Phi_{\lambda}(u, v) > 0 $.
From (3.5), (3.7), (3.8) and (3.9), we deduce
$ S(|u1j|pp∗s+|v1j|pp∗s)≤∫∫R2N|u1j(x)−u1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|u1j|pdx+∫∫R2N|v1j(x)−v1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|v1j|pdx−∫RNλV(x)(|u1j|p+|v1j|p)dx=λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+λ∫RN(Fu(x,u1j,v1j)u1j+Fv(x,u1j,v1j)v1j)dx−λ∫RNVb(x)(|u1j|p+|v1j|p)dx≤λCb(|u1j|p∗sp∗s+|v1j|p∗sp∗s)+o(1). $
|
Thus, by (3.6), we have
$ S≤λCb(|u1j|p∗sp∗s+|v1j|p∗sp∗s)p∗s−pp∗s+o(1)≤λCb(N(c−Φλ(u,v))λsKmin)sN+o(1), $
|
or equivalently
$ αλ1−Nps≤c−Φλ(u,v), $
|
where $ \alpha = \frac{s K_{min}}{N}(\frac{S}{C_{b}})^{\frac{N}{ps}} $. The proof is complete.
Lemma 4.1. Suppose that $ (V_{0}) $, $ (K_{0}), (F_{1}), (F_{2}) $ and $ (F_{3}) $ are satisfied, then the functional $ \Phi_{\lambda} $ satisfies the following mountain pass geometry structure:
$ (i) $ there exist positive constants $ \rho $ and $ a $ such that $ \Phi_{\lambda}(u, v)\geq a $ for $ ||(u, v)|| = \rho $;
$ (ii) $ for any finite-dimensional subspace $ Y\subset W $,
$ Φλ(u,v)→−∞,as(u,v)∈W,||(u,v)||→+∞. $
|
$ (iii) $ for any $ \tau > 0 $ there exists $ \Lambda_{\tau} > 0 $ such that each $ \lambda\geq \Lambda_{\tau} $, there exists $ \widetilde{\omega}_{\lambda}\in Y $ with $ ||\widetilde{\omega}_{\lambda}|| > \rho $, $ \Phi_{\lambda}(\widetilde{\omega}_{\lambda})\leq 0 $ and
$ maxt≥0Φλ(t˜ωλ)≤τλ1−Nps. $
|
Proof. $ (i) $ From $ (F_{1}), (F_{2}) $, we have for any $ \varepsilon > 0 $, there is $ C_{\varepsilon} > 0 $ such that
$ 1p∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx+∫RNF(x,u,v)dx≤ε|(u,v)|pp+Cε|(u,v)|p∗sp∗s. $
|
(4.1) |
Thus, combining with (4.1) and Sobolev inequality, we deduce that
$ Φλ(u,v)=1p||(u,v)||p−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx≥1p||(u,v)||p−λεC5||(u,v)||p−λC6Cε||(u,v)||p∗s, $
|
where $ \varepsilon $ is small enough and $ C_{5}, C_{6} > 0 $, thus $ (i) $ is proved because $ p_{s}^{*} > p $.
$ (ii) $ By $ (F_{3}) $, we define the functional $ \Psi_{\lambda}\in C^{1}(W, \mathbb{R}) $ by
$ Ψλ(u,v)=1p||(u,v)||p−λl0∫RN(|u|d+|v|d)dx. $
|
Then
$ Φλ(u,v)≤Ψλ(u,v),forall(u,v)∈W. $
|
For any finite-dimensional subspace $ Y\subset W $, we only need to prove
$ Ψλ(u,v)→−∞,as(u,v)∈Y,||(u,v)||→+∞. $
|
In fact, we have
$ Ψλ(u,v)=1p||(u,v)||p−λl0|(u,v)|dd. $
|
Since all norms in a finite dimensional space are equivalent and $ p < d < p_{s}^{*} $, thus $ (ii) $ holds.
$ (iii) $ From Corollary 3.1, for $ \lambda $ large and $ c $ small enough, $ \Phi_{\lambda} $ satisfies $ (PS)_{c} $ condition. Thus, we will find a special finite dimensional-subspace by which we construct sufficiently small minimax levels for $ \Phi_{\lambda} $ when $ \lambda $ large enough.
Recall that
$ inf{∫R2N|φ(x)−φ(y)|p|x−y|N+psdxdy:φ∈C∞0(RN),|φ|d=1}=0,p<d<p∗s, $
|
see [40] for this proof. For any $ 0 < \varepsilon < 1 $, we can take $ \varphi_{\varepsilon}\in C^{\infty}_{0}(\mathbb{R}^{N}) $ with $ |\varphi_{\varepsilon}|_{d} = 1 $, supp $ \varphi_{\varepsilon}\subset B_{r_{\varepsilon}}(0) $ and $ [\varphi_{\varepsilon}]^{p}_{p, s} < \varepsilon $.
Let
$ ¯ωλ(x):=(ωλ(x),ωλ(x))=(φε(λ1psx),φε(λ1psx)). $
|
For $ t\geq 0 $, $ (F_{3}) $ imply that
$ Φλ(t¯ωλ)≤2tpp∫∫R2N|ωλ(x)−ωλ(y)|p|x−y|N+psdxdy+2tpp∫RNλV(x)|ωλ|pdx−λ∫RNF(x,tωλ,tωλ)dx≤λ1−Nps{2tpp∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+2tpp∫RNV(λ−1psx)|φε|pdx−2l0td∫RN|φε|ddx}≤λ1−Nps2l0(d−p)p(∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+∫RNV(λ−1psx)|φε|pdxl0d)dd−p. $
|
Indeed, for $ t > 0 $, define
$ g(t)=2tpp∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+2tpp∫RNλV(λ−1psx)|φε|pdx−2l0td∫RN|φε|ddx. $
|
It is easy to show that $ t_{0} = (\frac{\int\int_{\mathbb{R}^{2N}}\frac{|\varphi_{\varepsilon}(x)-\;\varphi_{\varepsilon}(y)|\;^{p}\;}{|x-y|^{N+ps}}\;\;\;dxdy + \int_{\mathbb{R}^{N}} V(\lambda^{-\frac{1}{ps}}x)\;|\;\varphi_{\varepsilon}\;|^{p} dx}{l_{0}d})^{\frac{1}{d-p}} $ is a maximum point of $ g $ and
$ maxt≥0g(t)=g(t0)=2l0(d−p)p(∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+∫RNV(λ−1psx)|φε|pdxl0d)dd−p. $
|
Since $ V(0) = 0 $ and supp $ \varphi_{\varepsilon} \subset B_{r_{\varepsilon}}(0) $, there exists $ \Lambda_{\varepsilon} > 0 $ such that
$ V(λ−1psx)<ε|φε|pp,∀|x|≤rε,λ>Λε. $
|
Hence, we have
$ maxt≥0Φλ(t¯ωλ)≤2l0(d−p)p(1l0d)dd−p(2ε)dd−pλ1−Nps,∀λ>Λε. $
|
Choose $ \varepsilon > 0 $ such that
$ 2l0(d−p)p(1l0d)dd−p(2ε)dd−p≤τ, $
|
and taking $ \Lambda_{\tau} = \Lambda_{\varepsilon} $, from $ (ii) $, we can take $ \overline{t} $ large enough and define $ \widetilde{\omega}_{\lambda} = \overline{t}\overline{\omega}_{\lambda} $, then we have
$ Φλ(˜ωλ)<0andmax0≤t≤1Φλ(t˜ωλ)≤τλ1−Nps. $
|
Proof of Theorem 2.1. From Lemma 4.1, for any $ 0 < \tau < \alpha $, there exists $ \Lambda_{\tau} > 0 $ such that for $ \lambda\geq \Lambda_{\tau} $, we have
$ c=infη∈Γλmaxt∈[0,1]Φλ(η(t))≤τλ1−Nps, $
|
where $ \Gamma_{\lambda} = \{\eta\in C([0, 1], W): \eta(0) = 0, \eta(1) = \widetilde{\omega}_{\lambda}\} $. Furthermore, in virtue of Corollary 3.1, we obtain that $ (PS)_{c} $ condition hold for $ \Phi_{\lambda} $ at $ c $. Therefore, by the mountain pass theorem, there is $ (u_{\lambda}, v_{\lambda})\in W $ such that $ \Phi'_{\lambda}(u_{\lambda}, v_{\lambda}) = 0 $ and $ \Phi_{\lambda}(u_{\lambda}, v_{\lambda}) = c $.
Finally, we prove that $ (u_{\lambda}, v_{\lambda}) $ satisfies the estimates in Theorem 2.1.
Since $ (u_{\lambda}, v_{\lambda}) $ is a critical point of $ \Phi_{\lambda} $, there holds for $ \theta\in [p, p_{s}^{*}] $
$ τλ1−Nps≥Φλ(uλ,vλ)−1θ⟨Φ′λ(uλ,vλ),(uλ,vλ)⟩≥(1p−1θ)||(uλ,vλ)||p+λ(1θ−1p∗s)∫RNK(x)(|uλ|p∗s+|vλ|p∗s)dx+λ(μθ−1)∫RNF(x,uλ,vλ)dx. $
|
Taking $ \theta = \mu $, we get the estimate (2.2) and taking $ \theta = p $ yields the estimate (2.3).
To obtain the multiplicity of critical points, we will adopt the index theory defined by the Krasnoselski genus.
Proof of Theorem 2.2. Denote the set of all symmetric (in the sense that $ -A = A $) and closed subsets of $ A $ by $ \sum $. For any $ A\in\sum $ let gen $ (A) $ be the Krasnoselski genus and
$ i(A)=mink∈Υgen(k(A)⋂∂Bρ), $
|
where $ \Upsilon $ is the set of all odd homeomorphisms $ k\in C(W, W) $ and $ \rho $ is the number from Lemma 4.1. Then $ i $ is a version of Benci's pseudoindex [3]. $ (F_{4}) $ implies that $ \Phi_{\lambda} $ is even. Set
$ cλj:=infi(A)≥jsup(u,v)∈AΦλ(u,v),1≤j≤m. $
|
If $ c_{\lambda_{j}} $ is finite and $ \Phi_{\lambda} $ satisfies $ (PS)_{c_{\lambda_{j}}} $ condition, then we know that all $ c_{\lambda_{j}} $ are critical values for $ \Phi_{\lambda} $.
Step 1. We show that $ \Phi_{\lambda} $ satisfies $ (PS)_{c_{\lambda_{j}}} $ condition at all levels $ c_{\lambda_{j}} < \tau\lambda^{1- \frac{N}{ps}} $.
To complete the claim, we need to estimate the level $ c_{\lambda_{j}} $ in special finite-dimensional subspaces.
Similar to proof in Lemma 4.1, for any $ m\in \mathbb{N} $, $ \varepsilon > 0 $ and $ j = 1, 2, \cdot \cdot \cdot, m $, one can choose $ m $ functions $ \varphi^{j}_{\varepsilon}\in C^{\infty}_{0}(\mathbb{R}^{N}) $ with supp $ \varphi^{i}_{\varepsilon}\bigcap $ supp $ \varphi^{j}_{\varepsilon} = \emptyset $ if $ i\neq j $, $ |\varphi^{j}_{\varepsilon}|_{d} = 1 $ and $ [\varphi^{j}_{\varepsilon}]^{p}_{p, s} < \varepsilon $.
Let $ r^{m}_{\varepsilon } > 0 $ be such that supp $ \varphi^{j}_{\varepsilon}\subset B_{r^{m}_{\varepsilon }}(0) $. Set
$ ¯ωjλ(x):=(ωjλ(x),ωjλ(x))=(φjε(λ1psx),φjε(λ1psx)) $
|
and define
$ Fmλ:=Span{¯ω1λ,¯ω2λ,⋅⋅⋅,¯ωmλ}. $
|
Then $ i(F^{m}_{\lambda}) = \dim F^{m}_{\lambda} = m $. Observe that for each $ \widetilde{\omega} = \sum^{m}_{j = 1}t_{j}\overline{\omega}^{j}_{\lambda}\in F^{m}_{\lambda} $,
$ Φλ(˜ω)=m∑j=1Φλ(tj¯ωjλ) $
|
and for $ t_{j} > 0 $
$ Φλ(tj¯ωjλ)≤2tpjp∫∫R2N|ωjλ(x)−ωjλ(y)|p|x−y|N+psdxdy+2tpjp∫RNλV(x)|ωjλ|pdx−λ∫RNF(x,tjωjλ,tjωjλ)dx≤λ1−Nps{2tpjp∫∫R2N|φjε(x)−φjε(y)|p|x−y|N+psdxdy+2tpjp∫RNV(λ−1psx)|φjε|pdx−2l0tdj∫RN|φjε|ddx}. $
|
Set
$ ηε:=max{|φjε|pp:j=1,2,⋅⋅⋅,m}. $
|
Since $ V(0) = 0 $ and supp $ \varphi^{j}_{\varepsilon} \subset B_{r^{m}_{\varepsilon }}(0) $, there exists $ \Lambda_{m \varepsilon } > 0 $ such that
$ V(λ−1psx)<εηε,∀|x|≤rmε,λ>Λmε. $
|
Consequently, there holds
$ sup˜w∈FmλΦλ(˜w)≤ml0(2ε)dd−pλ1−Nps,∀λ>Λmε. $
|
Choose $ \varepsilon > 0 $ small that $ ml_{0}(2\varepsilon)^{\frac{d}{d-p}} < \tau $. Thus for any $ m\in N $ and $ \tau\in(0, \alpha) $, there exists $ \Lambda_{m \tau } = \Lambda_{ m \varepsilon} $ such that $ \lambda > \Lambda_{m\tau } $, we can choose a $ m $-dimensional subspace $ F^{m}_{\lambda} $ with $ \max \Phi_{\lambda}(F^{m}_{\lambda}) \leq \tau \lambda^{1 - \frac{N}{ps}} $ and
$ cλ1≤cλ2≤⋅⋅⋅≤sup˜w∈FmλΦλ(˜w)≤τλ1−Nps. $
|
From Corollary 3.1, we know that $ \Phi_{\lambda} $ satisfies the $ (PS) $ condition at all levels $ c_{\lambda_{j}} $. Then all $ c_{\lambda_{j}} $ are critical values.
Step 2. We prove that (2.1) has at least $ m $ pairs of solutions by the mountain-pass theorem.
By Lemma 4.1, we know that $ \Phi_{\lambda} $ satisfies the mountain pass geometry structure. From step 1, we note that $ \Phi_{\lambda} $ also satisfies $ (PS)_{c_{\lambda_{j}}} $ condition at all levels $ c_{\lambda_{j}} < \tau\lambda^{1- \frac{N}{ps}} $. By the usual critical point theory, all $ c_{\lambda_{j}} $ are critical levels and $ \Phi_{\lambda} $ has at least $ m $ pairs of nontrivial critical points satisfying
$ a≤Φλ(u,v)≤τλ1−Nps. $
|
Thus, (2.1) has at least $ m $ pairs of solutions. Finally, as in the proof of Theorem 2.1, we know that these solutions satisfy the estimates (2.2) and (2.3).
In this paper, we have obtained the existence and multiplicity of standing wave solutions for a class of perturbed fractional p-Laplacian systems involving critical exponents by variational methods. In the next work, we will extend the study to the case of perturbed fractional p-Laplacian systems with electromagnetic fields.
The author is grateful to the referees and the editor for their valuable comments and suggestions.
The author declares no conflict of interest.
1. | Nazek Alessa, K. Tamilvanan, K. Loganathan, T. S. Karthik, John Michael Rassias, Zoran Mitrovic, Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-β-Normed Spaces, 2021, 2021, 2314-8888, 1, 10.1155/2021/5577833 | |
2. | K Tamilvanan, B Deepa, S Muthu selvi, R Prakash, R Sathish Kumar, Intuitionistic fuzzy stability results of additive functional equation by two different approaches, 2021, 1964, 1742-6588, 022024, 10.1088/1742-6596/1964/2/022024 | |
3. | K. Tamilvanan, M. Kameswari, B. Sripathy, 2022, Chapter 13, 978-981-19-6115-1, 243, 10.1007/978-981-19-6116-8_13 | |
4. | K. Tamilvanan, Nazek Alessa, K. Loganathan, G. Balasubramanian, Ngawang Namgyel, Liliana Guran, General Solution and Stability of Additive-Quadratic Functional Equation in IRN-Space, 2021, 2021, 2314-8888, 1, 10.1155/2021/8019135 | |
5. | Jagjeet Jakhar, Shalu Sharma, Jyotsana Jakhar, Majeed A. Yousif, Pshtiwan Othman Mohammed, Alina Alb Lupas, Nejmeddine Chorfi, Orthogonal Stability and Solution of a Three-Variable Functional Equation in Extended Banach Spaces, 2024, 12, 2227-7390, 2868, 10.3390/math12182868 | |
6. | Pervinder Singh, Vinod K. Gupta, Isaac Lare Animasaun, Taseer Muhammad, Qasem M. Al-Mdallal, Dynamics of Newtonian Liquids with Distinct Concentrations Due to Time-Varying Gravitational Acceleration and Triple Diffusive Convection: Weakly Non-Linear Stability of Heat and Mass Transfer, 2023, 11, 2227-7390, 2907, 10.3390/math11132907 |