From a systems theory of sociology to modeling the onset and evolution of criminality

  • Received: 01 October 2014 Revised: 01 January 2015
  • 35Q91, 91C99, 91D10.

  • This paper proposes a systems theory approach to the modeling of onset and evolution of criminality in a territory. This approach aims at capturing the complexity features of social systems. Complexity is related to the fact that individuals have the ability to develop specific heterogeneously distributed strategies, which depend also on those expressed by the other individuals. The modeling is developed by methods of generalized kinetic theory where interactions and decisional processes are modeled by theoretical tools of stochastic game theory.

    Citation: Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler. From a systems theory of sociology to modeling the onset and evolution of criminality[J]. Networks and Heterogeneous Media, 2015, 10(3): 421-441. doi: 10.3934/nhm.2015.10.421

    Related Papers:

    [1] Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler . From a systems theory of sociology to modeling the onset and evolution of criminality. Networks and Heterogeneous Media, 2015, 10(3): 421-441. doi: 10.3934/nhm.2015.10.421
    [2] Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares . Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks and Heterogeneous Media, 2015, 10(1): 167-194. doi: 10.3934/nhm.2015.10.167
    [3] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [4] A.C. Rocha, L.H.A. Monteiro . On the spread of charitable behavior in a social network: a model based on game theory. Networks and Heterogeneous Media, 2023, 18(2): 842-854. doi: 10.3934/nhm.2023036
    [5] Giuseppe Toscani, Andrea Tosin, Mattia Zanella . Kinetic modelling of multiple interactions in socio-economic systems. Networks and Heterogeneous Media, 2020, 15(3): 519-542. doi: 10.3934/nhm.2020029
    [6] Marina Dolfin, Mirosław Lachowicz . Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 2015, 10(4): 877-896. doi: 10.3934/nhm.2015.10.877
    [7] Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro . Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks and Heterogeneous Media, 2018, 13(1): 1-26. doi: 10.3934/nhm.2018001
    [8] Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269
    [9] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [10] Guillaume Cantin, Cristiana J. Silva, Arnaud Banos . Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks and Heterogeneous Media, 2022, 17(3): 333-357. doi: 10.3934/nhm.2022010
  • This paper proposes a systems theory approach to the modeling of onset and evolution of criminality in a territory. This approach aims at capturing the complexity features of social systems. Complexity is related to the fact that individuals have the ability to develop specific heterogeneously distributed strategies, which depend also on those expressed by the other individuals. The modeling is developed by methods of generalized kinetic theory where interactions and decisional processes are modeled by theoretical tools of stochastic game theory.


    [1] G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1 (2008), 249-278. doi: 10.3934/krm.2008.1.249
    [2] L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Lett., 25 (2012), 490-495. doi: 10.1016/j.aml.2011.09.043
    [3] W. B. Arthur, S. N. Durlauf and D. A. Lane, Eds., The Economy as an Evolving Complex System II, Studies in the Sciences of Complexity, XXVII, Addison-Wesley, 1997.
    [4] K. D. Baily, Sociology and the New System Theory - Towards a Theoretical Synthesis, Suny Press, 1994.
    [5] P. Ball, Why Society is a Complex Matter: Meeting Twenty-first Century Challenges with a New Kind of Science, Springer-Verlag, Heidelberg, 2012. doi: 10.1007/978-3-642-29000-8
    [6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237. doi: 10.1073/pnas.0711437105
    [7] N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692. doi: 10.1142/S0218202507002431
    [8] N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts: Looking for the Black Swan, Kinet. Relat. Mod., 6 (2013), 459-479. doi: 10.3934/krm.2013.6.459
    [9] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci., 22 (2012), paper No.1230004. doi: 10.1142/S0218202512300049
    [10] N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), paper No.1140006. doi: 10.1142/S0218202511400069
    [11] N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity'', and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913. doi: 10.1142/S021820251350053X
    [12] N. Bellomo and M. Pulvirenti, Eds., Modeling in Applied Sciences - A Kinetic Theory Approach, Birkhäuser, Boston, 2000. doi: 10.1007/978-1-4612-0513-5
    [13] A. Bellouquid, E. De Angelis and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Math. Models Methods Appl. Sci., 23 (2013), 949-978. doi: 10.1142/S0218202512500650
    [14] B. Berenji, T. Chou and M. D'Orsogna, Recidivism and rehabilitation of criminal offenders: A carrot and stick evolutionary games, PLOS ONE, 9 (2014), 885531. doi: 10.1371/journal.pone.0085531
    [15] H. Berestycki, J. Wei and M. Winter, Existence of symmetric and asymmetric spikes of a crime hotspot model, SAM J. Math. Anal., 46 (2014), 691-719. doi: 10.1137/130922744
    [16] L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kohnert and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007), 7301-7306. doi: 10.1073/pnas.0610172104
    [17] J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalized peer incidence, Math. Models Methods Appl. Sci., 24 (2014), 719-750. doi: 10.1142/S0218202513500656
    [18] F. Colasuonno and M. C. Salvatori, Existence and uniqueness of solutions to a Cauchy problem modeling the dynamics of socio-political conflicts, in Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems (eds. J. B. Serrin, E. L. Mitidieri and V. D. Radulescu), Series Cont. Math. AMS, Providence, USA, Contemporary Mathematics, 594 (2013), 155-165. doi: 10.1090/conm/594/11789
    [19] T. Davies, H. Fry, A. Wilson and S. Bishop, A Mathematical Model of the London Riots and Their Policing, Scientific Report, 2013. doi: 10.1038/srep01303
    [20] E. De Angelis, On the mathematical theory of post-Darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci., 24 (2014), 2723-2742. doi: 10.1142/S0218202514500353
    [21] S. De Lillo, M. Delitala and M. C. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19 (2009), 1405-1425. doi: 10.1142/S0218202509003838
    [22] M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models Methods Appl. Sci., 24 (2014), 2361-2381. doi: 10.1142/S0218202514500237
    [23] M. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental,adversarial game, PLOS ONE, 8 (2013), e61458. doi: 10.1371/journal.pone.0061458
    [24] M. D'Orsogna and M. Perc, Statistical physics of crime: A review, Phys. Life Rev., 12 (2014), 1-21.
    [25] B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, P. R. Soc. London, 465 (2009), 3687-3708. doi: 10.1098/rspa.2009.0239
    [26] P. Fajnzlber, D. Lederman and N. Loayza, Inequality and violent crime, J. Law Econ., 45 (2002), 1-39. doi: 10.1086/338347
    [27] M. Felson, What every mathematician should know about modelling crime, Eur. J. Appl. Math., 21 (2010), 275-281. doi: 10.1017/S0956792510000070
    [28] S. Harrendorf, M. Heiskanen and S. Malby, International Statistics on Crime and Justice, European Institute for Crime Prevention and Control, affiliated with the United Nations (HEUNI), 2010.
    [29] D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, 2nd edition, Springer, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-11546-2
    [30] C. C. Hsieh and M. D. Pugh, Poverty, income inequality, and violent crime: A meta-analysis of recent aggregate data studies, Crim. Just. Rev., 18 (1993), 182-202. doi: 10.1177/073401689301800203
    [31] E. Jager and L. Segel, On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52 (1992), 1442-1468. doi: 10.1137/0152083
    [32] A. P. Kirman and N. J. Vriend, Learning to be loyal. A study of the Marseille fish market, in Interaction and Market Structure, Lecture Notes in Economics and Mathematical Systems, 484, Springer-Verlag, Heidelberg, 2000, 33-56. doi: 10.1007/978-3-642-57005-6_3
    [33] D. Knopoff, On the modeling of migration phenomena on small networks, Math. Models Methods Appl. Sci., 23 (2013), 541-563. doi: 10.1142/S0218202512500558
    [34] D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426. doi: 10.1142/S0218202513400137
    [35] R. M. May, Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793. doi: 10.1126/science.1094442
    [36] S. McCalla, M. Short and P. J. Brantingham, The effects of sacred value networks within and evolutionary, adversarial game, J. Stat. Phys., 151 (2013), 673-688. doi: 10.1007/s10955-012-0678-4
    [37] G. Mohler and M. Short, Geographic profiling form kinetic models of criminal behavior, SIAM J. Appl. Math., 72 (2012), 163-180. doi: 10.1137/100794080
    [38] M. A. Nowak, Evolutionary Dynamics. Exploring the Equations of Life, Harvard University Press, 2006.
    [39] J. C. Nuño, M. A. Herrero and M. Primicerio, A mathematical model of a criminal-prone society, Discr. Cont. Dyn. Syst. S, 4 (2011), 193-207. doi: 10.3934/dcdss.2011.4.193
    [40] H. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392
    [41] P. Ormerod, Crime: Economic incentives and social networks, IEA Hobart Paper, 151 (2005), 1-54. doi: 10.2139/ssrn.879716
    [42] L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, USA, 2013.
    [43] P. Pucci and M. C. Salvatori, On an initial value problem modeling evolution and selection in living systems, Disc. Cont. Dyn. Syst. S, 7 (2014), 807-821. doi: 10.3934/dcdss.2014.7.807
    [44] M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society, Phys. Rev. E, 82 (2010), 066114, 7pp. doi: 10.1103/PhysRevE.82.066114
    [45] M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029
    [46] H. A. Simon, Models of Bounded Rationality: Empirically Grounded Economic Reason, Volume 3, MIT Press, Cambridge, MA, 1997.
    [47] P. E. Tetlock, Thinking the unthinkable: Sacred values and taboo cognitions, Trends Cogn. Sci., 7 (2003), 320-324. doi: 10.1016/S1364-6613(03)00135-9
  • This article has been cited by:

    1. Mirosław Lachowicz, From particle systems to learning processes, 2016, 16, 15710645, 150, 10.1016/j.plrev.2015.12.002
    2. B. Aylaj, N. Bellomo, N. Chouhad, D. Knopoff, On the Interaction Between Soft and Hard Sciences: the Role of Mathematical Sciences, 2021, 49, 2305-221X, 3, 10.1007/s10013-019-00381-3
    3. M. Dolfin, The Political Replacement Effect in a Kinetic Model of Social Dynamics with Phase Transition, 2018, 9, 2038-0909, 50, 10.2478/caim-2018-0013
    4. Stefano Gualandi, Giuseppe Toscani, Human behavior and lognormal distribution. A kinetic description, 2019, 29, 0218-2025, 717, 10.1142/S0218202519400049
    5. Bertram Düring, Oliver Wright, On a kinetic opinion formation model for pre-election polling, 2022, 380, 1364-503X, 10.1098/rsta.2021.0154
    6. Zixuan Qiu, Bin Li, Eventual smoothness of generalized solutions to a singular chemotaxis system for urban crime in space dimension 2, 2023, 31, 2688-1594, 3218, 10.3934/era.2023163
    7. David Poyato, Juan Soler, Modeling social crowds, 2016, 18, 15710645, 50, 10.1016/j.plrev.2016.07.013
    8. Nicola Bellomo, Damián A. Knopoff, Pietro Terna, Special Issue “Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems”—Editorial and Research Perspectives, 2020, 12, 2073-8994, 456, 10.3390/sym12030456
    9. Yiru Cai, Chuntian Wang, Yuan Zhang, A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministic-Markov-process limit, 2022, 32, 0218-2025, 619, 10.1142/S0218202522500142
    10. Giuseppe Toscani, 2021, Chapter 7, 978-3-030-67103-7, 209, 10.1007/978-3-030-67104-4_7
    11. Yue Zhong, Shaoyong Lai, Chunhua Hu, Investigations to the dynamics of wealth distribution in a kinetic exchange model, 2021, 404, 00963003, 126231, 10.1016/j.amc.2021.126231
    12. Giacomo Dimarco, Giuseppe Toscani, Kinetic Modeling of Alcohol Consumption, 2019, 177, 0022-4715, 1022, 10.1007/s10955-019-02406-0
    13. Damián A. Knopoff, Learning dynamics: A fundamental building block in social models, 2016, 16, 15710645, 148, 10.1016/j.plrev.2015.12.004
    14. Ahmed Elaiw, Mohammed Alghamdi, Nicola Bellomo, On Entropy Dynamics for Active “Living” Particles, 2017, 19, 1099-4300, 525, 10.3390/e19100525
    15. Marina Dolfin, Mirosław Lachowicz, Modeling opinion dynamics: How the network enhances consensus, 2015, 10, 1556-181X, 877, 10.3934/nhm.2015.10.877
    16. David Poyato, Juan Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models, 2017, 27, 0218-2025, 1089, 10.1142/S0218202517400103
    17. Charles Z. Marshak, M. Puck Rombach, Andrea L. Bertozzi, Maria R. D'Orsogna, Growth and containment of a hierarchical criminal network, 2016, 93, 2470-0045, 10.1103/PhysRevE.93.022308
    18. CHUNTIAN WANG, YUAN ZHANG, ANDREA L. BERTOZZI, MARTIN B. SHORT, A stochastic-statistical residential burglary model with independent Poisson clocks, 2021, 32, 0956-7925, 32, 10.1017/S0956792520000029
    19. Chuntian Wang, Yuan Zhang, Andrea L. Bertozzi, Martin B. Short, 2019, Chapter 8, 978-3-030-20296-5, 245, 10.1007/978-3-030-20297-2_8
    20. Elena Ballante, Chiara Bardelli, Mattia Zanella, Silvia Figini, Giuseppe Toscani, Economic Segregation Under the Action of Trading Uncertainties, 2020, 12, 2073-8994, 1390, 10.3390/sym12091390
    21. Giacomo Dimarco, Giuseppe Toscani, Social climbing and Amoroso distribution, 2020, 30, 0218-2025, 2229, 10.1142/S0218202520500426
    22. Wenhan Feng, Bayi Li, Zebin Chen, Peng Liu, Bing Xue, City size based scaling of the urban internal nodes layout, 2021, 16, 1932-6203, e0250348, 10.1371/journal.pone.0250348
    23. Marina Dolfin, Learning and dynamics in social systems, 2016, 16, 15710645, 146, 10.1016/j.plrev.2015.12.001
    24. Giulia Furioli, Ada Pulvirenti, Elide Terraneo, Giuseppe Toscani, Non-Maxwellian kinetic equations modeling the dynamics of wealth distribution, 2020, 30, 0218-2025, 685, 10.1142/S0218202520400023
    25. Chaohao Pan, Bo Li, Chuntian Wang, Yuqi Zhang, Nathan Geldner, Li Wang, Andrea L. Bertozzi, Crime modeling with truncated Lévy flights for residential burglary models, 2018, 28, 0218-2025, 1857, 10.1142/S0218202518400080
    26. Stefano Gualandi, Giuseppe Toscani, Call center service times are lognormal: A Fokker–Planck description, 2018, 28, 0218-2025, 1513, 10.1142/S0218202518500410
    27. Dongnam Ko, Enrique Zuazua, Asymptotic behavior and control of a “guidance by repulsion” model, 2020, 30, 0218-2025, 765, 10.1142/S0218202520400047
    28. L. Urrutia, Information on living systems: A kinetic approach, 2016, 16, 15710645, 156, 10.1016/j.plrev.2016.01.016
    29. Juan Calvo, Juanjo Nieto, Some aspects on kinetic modeling of evacuation dynamics, 2016, 18, 15710645, 42, 10.1016/j.plrev.2016.08.008
    30. G. Ajmone Marsan, N. Bellomo, L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, 2016, 26, 0218-2025, 1051, 10.1142/S0218202516500251
    31. Damián A. Knopoff, Germán A. Torres, On an optimal control strategy in a kinetic social dynamics model, 2018, 9, 2038-0909, 22, 10.2478/caim-2018-0014
    32. M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti, Escaping the trap of 'blocking': A kinetic model linking economic development and political competition, 2017, 10, 1937-5077, 423, 10.3934/krm.2017016
    33. D. Burini, S. De Lillo, L. Gibelli, Collective learning modeling based on the kinetic theory of active particles, 2016, 16, 15710645, 123, 10.1016/j.plrev.2015.10.008
    34. N. Bellomo, F. Brezzi, J. Soler, Active particles methods and challenges in behavioral systems, 2020, 30, 0218-2025, 653, 10.1142/S0218202520020017
    35. Diletta Burini, Livio Gibelli, Nisrine Outada, 2017, Chapter 6, 978-3-319-49994-9, 229, 10.1007/978-3-319-49996-3_6
    36. Bin Li, Li Xie, Generalized solution and eventual smoothness in a logarithmic Keller–Segel system for criminal activities, 2023, 33, 0218-2025, 1281, 10.1142/S0218202523500306
    37. Bin Li, Li Xie, Generalised solution to a 2D parabolic-parabolic chemotaxis system for urban crime: Global existence and large-time behaviour, 2024, 35, 0956-7925, 409, 10.1017/S0956792523000268
    38. Nicola Bellomo, Diletta Burini, Valeria Secchini, Pietro Terna, 2024, 9781009548755, 10.1017/9781009548755
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4702) PDF downloads(148) Cited by(38)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog