Citation: Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler. From a systems theory of sociology to modeling the onset and evolution of criminality[J]. Networks and Heterogeneous Media, 2015, 10(3): 421-441. doi: 10.3934/nhm.2015.10.421
[1] | Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler . From a systems theory of sociology to modeling the onset and evolution of criminality. Networks and Heterogeneous Media, 2015, 10(3): 421-441. doi: 10.3934/nhm.2015.10.421 |
[2] | Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares . Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks and Heterogeneous Media, 2015, 10(1): 167-194. doi: 10.3934/nhm.2015.10.167 |
[3] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[4] | A.C. Rocha, L.H.A. Monteiro . On the spread of charitable behavior in a social network: a model based on game theory. Networks and Heterogeneous Media, 2023, 18(2): 842-854. doi: 10.3934/nhm.2023036 |
[5] | Giuseppe Toscani, Andrea Tosin, Mattia Zanella . Kinetic modelling of multiple interactions in socio-economic systems. Networks and Heterogeneous Media, 2020, 15(3): 519-542. doi: 10.3934/nhm.2020029 |
[6] | Marina Dolfin, Mirosław Lachowicz . Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 2015, 10(4): 877-896. doi: 10.3934/nhm.2015.10.877 |
[7] | Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro . Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks and Heterogeneous Media, 2018, 13(1): 1-26. doi: 10.3934/nhm.2018001 |
[8] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[9] | Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243 |
[10] | Guillaume Cantin, Cristiana J. Silva, Arnaud Banos . Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks and Heterogeneous Media, 2022, 17(3): 333-357. doi: 10.3934/nhm.2022010 |
[1] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1 (2008), 249-278. doi: 10.3934/krm.2008.1.249
![]() |
[2] |
L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Lett., 25 (2012), 490-495. doi: 10.1016/j.aml.2011.09.043
![]() |
[3] | W. B. Arthur, S. N. Durlauf and D. A. Lane, Eds., The Economy as an Evolving Complex System II, Studies in the Sciences of Complexity, XXVII, Addison-Wesley, 1997. |
[4] | K. D. Baily, Sociology and the New System Theory - Towards a Theoretical Synthesis, Suny Press, 1994. |
[5] |
P. Ball, Why Society is a Complex Matter: Meeting Twenty-first Century Challenges with a New Kind of Science, Springer-Verlag, Heidelberg, 2012. doi: 10.1007/978-3-642-29000-8
![]() |
[6] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237. doi: 10.1073/pnas.0711437105
![]() |
[7] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692. doi: 10.1142/S0218202507002431
![]() |
[8] |
N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts: Looking for the Black Swan, Kinet. Relat. Mod., 6 (2013), 459-479. doi: 10.3934/krm.2013.6.459
![]() |
[9] |
N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci., 22 (2012), paper No.1230004. doi: 10.1142/S0218202512300049
![]() |
[10] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), paper No.1140006. doi: 10.1142/S0218202511400069
![]() |
[11] |
N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity'', and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913. doi: 10.1142/S021820251350053X
![]() |
[12] |
N. Bellomo and M. Pulvirenti, Eds., Modeling in Applied Sciences - A Kinetic Theory Approach, Birkhäuser, Boston, 2000. doi: 10.1007/978-1-4612-0513-5
![]() |
[13] |
A. Bellouquid, E. De Angelis and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Math. Models Methods Appl. Sci., 23 (2013), 949-978. doi: 10.1142/S0218202512500650
![]() |
[14] |
B. Berenji, T. Chou and M. D'Orsogna, Recidivism and rehabilitation of criminal offenders: A carrot and stick evolutionary games, PLOS ONE, 9 (2014), 885531. doi: 10.1371/journal.pone.0085531
![]() |
[15] |
H. Berestycki, J. Wei and M. Winter, Existence of symmetric and asymmetric spikes of a crime hotspot model, SAM J. Math. Anal., 46 (2014), 691-719. doi: 10.1137/130922744
![]() |
[16] |
L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kohnert and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007), 7301-7306. doi: 10.1073/pnas.0610172104
![]() |
[17] |
J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalized peer incidence, Math. Models Methods Appl. Sci., 24 (2014), 719-750. doi: 10.1142/S0218202513500656
![]() |
[18] |
F. Colasuonno and M. C. Salvatori, Existence and uniqueness of solutions to a Cauchy problem modeling the dynamics of socio-political conflicts, in Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems (eds. J. B. Serrin, E. L. Mitidieri and V. D. Radulescu), Series Cont. Math. AMS, Providence, USA, Contemporary Mathematics, 594 (2013), 155-165. doi: 10.1090/conm/594/11789
![]() |
[19] |
T. Davies, H. Fry, A. Wilson and S. Bishop, A Mathematical Model of the London Riots and Their Policing, Scientific Report, 2013. doi: 10.1038/srep01303
![]() |
[20] |
E. De Angelis, On the mathematical theory of post-Darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci., 24 (2014), 2723-2742. doi: 10.1142/S0218202514500353
![]() |
[21] |
S. De Lillo, M. Delitala and M. C. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19 (2009), 1405-1425. doi: 10.1142/S0218202509003838
![]() |
[22] |
M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models Methods Appl. Sci., 24 (2014), 2361-2381. doi: 10.1142/S0218202514500237
![]() |
[23] |
M. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental,adversarial game, PLOS ONE, 8 (2013), e61458. doi: 10.1371/journal.pone.0061458
![]() |
[24] | M. D'Orsogna and M. Perc, Statistical physics of crime: A review, Phys. Life Rev., 12 (2014), 1-21. |
[25] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, P. R. Soc. London, 465 (2009), 3687-3708. doi: 10.1098/rspa.2009.0239
![]() |
[26] |
P. Fajnzlber, D. Lederman and N. Loayza, Inequality and violent crime, J. Law Econ., 45 (2002), 1-39. doi: 10.1086/338347
![]() |
[27] |
M. Felson, What every mathematician should know about modelling crime, Eur. J. Appl. Math., 21 (2010), 275-281. doi: 10.1017/S0956792510000070
![]() |
[28] | S. Harrendorf, M. Heiskanen and S. Malby, International Statistics on Crime and Justice, European Institute for Crime Prevention and Control, affiliated with the United Nations (HEUNI), 2010. |
[29] |
D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, 2nd edition, Springer, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-11546-2
![]() |
[30] |
C. C. Hsieh and M. D. Pugh, Poverty, income inequality, and violent crime: A meta-analysis of recent aggregate data studies, Crim. Just. Rev., 18 (1993), 182-202. doi: 10.1177/073401689301800203
![]() |
[31] |
E. Jager and L. Segel, On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52 (1992), 1442-1468. doi: 10.1137/0152083
![]() |
[32] |
A. P. Kirman and N. J. Vriend, Learning to be loyal. A study of the Marseille fish market, in Interaction and Market Structure, Lecture Notes in Economics and Mathematical Systems, 484, Springer-Verlag, Heidelberg, 2000, 33-56. doi: 10.1007/978-3-642-57005-6_3
![]() |
[33] |
D. Knopoff, On the modeling of migration phenomena on small networks, Math. Models Methods Appl. Sci., 23 (2013), 541-563. doi: 10.1142/S0218202512500558
![]() |
[34] |
D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426. doi: 10.1142/S0218202513400137
![]() |
[35] |
R. M. May, Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793. doi: 10.1126/science.1094442
![]() |
[36] |
S. McCalla, M. Short and P. J. Brantingham, The effects of sacred value networks within and evolutionary, adversarial game, J. Stat. Phys., 151 (2013), 673-688. doi: 10.1007/s10955-012-0678-4
![]() |
[37] |
G. Mohler and M. Short, Geographic profiling form kinetic models of criminal behavior, SIAM J. Appl. Math., 72 (2012), 163-180. doi: 10.1137/100794080
![]() |
[38] | M. A. Nowak, Evolutionary Dynamics. Exploring the Equations of Life, Harvard University Press, 2006. |
[39] |
J. C. Nuño, M. A. Herrero and M. Primicerio, A mathematical model of a criminal-prone society, Discr. Cont. Dyn. Syst. S, 4 (2011), 193-207. doi: 10.3934/dcdss.2011.4.193
![]() |
[40] |
H. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392
![]() |
[41] |
P. Ormerod, Crime: Economic incentives and social networks, IEA Hobart Paper, 151 (2005), 1-54. doi: 10.2139/ssrn.879716
![]() |
[42] | L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, USA, 2013. |
[43] |
P. Pucci and M. C. Salvatori, On an initial value problem modeling evolution and selection in living systems, Disc. Cont. Dyn. Syst. S, 7 (2014), 807-821. doi: 10.3934/dcdss.2014.7.807
![]() |
[44] |
M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society, Phys. Rev. E, 82 (2010), 066114, 7pp. doi: 10.1103/PhysRevE.82.066114
![]() |
[45] |
M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029
![]() |
[46] | H. A. Simon, Models of Bounded Rationality: Empirically Grounded Economic Reason, Volume 3, MIT Press, Cambridge, MA, 1997. |
[47] |
P. E. Tetlock, Thinking the unthinkable: Sacred values and taboo cognitions, Trends Cogn. Sci., 7 (2003), 320-324. doi: 10.1016/S1364-6613(03)00135-9
![]() |
1. | Mirosław Lachowicz, From particle systems to learning processes, 2016, 16, 15710645, 150, 10.1016/j.plrev.2015.12.002 | |
2. | B. Aylaj, N. Bellomo, N. Chouhad, D. Knopoff, On the Interaction Between Soft and Hard Sciences: the Role of Mathematical Sciences, 2021, 49, 2305-221X, 3, 10.1007/s10013-019-00381-3 | |
3. | M. Dolfin, The Political Replacement Effect in a Kinetic Model of Social Dynamics with Phase Transition, 2018, 9, 2038-0909, 50, 10.2478/caim-2018-0013 | |
4. | Stefano Gualandi, Giuseppe Toscani, Human behavior and lognormal distribution. A kinetic description, 2019, 29, 0218-2025, 717, 10.1142/S0218202519400049 | |
5. | Bertram Düring, Oliver Wright, On a kinetic opinion formation model for pre-election polling, 2022, 380, 1364-503X, 10.1098/rsta.2021.0154 | |
6. | Zixuan Qiu, Bin Li, Eventual smoothness of generalized solutions to a singular chemotaxis system for urban crime in space dimension 2, 2023, 31, 2688-1594, 3218, 10.3934/era.2023163 | |
7. | David Poyato, Juan Soler, Modeling social crowds, 2016, 18, 15710645, 50, 10.1016/j.plrev.2016.07.013 | |
8. | Nicola Bellomo, Damián A. Knopoff, Pietro Terna, Special Issue “Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems”—Editorial and Research Perspectives, 2020, 12, 2073-8994, 456, 10.3390/sym12030456 | |
9. | Yiru Cai, Chuntian Wang, Yuan Zhang, A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministic-Markov-process limit, 2022, 32, 0218-2025, 619, 10.1142/S0218202522500142 | |
10. | Giuseppe Toscani, 2021, Chapter 7, 978-3-030-67103-7, 209, 10.1007/978-3-030-67104-4_7 | |
11. | Yue Zhong, Shaoyong Lai, Chunhua Hu, Investigations to the dynamics of wealth distribution in a kinetic exchange model, 2021, 404, 00963003, 126231, 10.1016/j.amc.2021.126231 | |
12. | Giacomo Dimarco, Giuseppe Toscani, Kinetic Modeling of Alcohol Consumption, 2019, 177, 0022-4715, 1022, 10.1007/s10955-019-02406-0 | |
13. | Damián A. Knopoff, Learning dynamics: A fundamental building block in social models, 2016, 16, 15710645, 148, 10.1016/j.plrev.2015.12.004 | |
14. | Ahmed Elaiw, Mohammed Alghamdi, Nicola Bellomo, On Entropy Dynamics for Active “Living” Particles, 2017, 19, 1099-4300, 525, 10.3390/e19100525 | |
15. | Marina Dolfin, Mirosław Lachowicz, Modeling opinion dynamics: How the network enhances consensus, 2015, 10, 1556-181X, 877, 10.3934/nhm.2015.10.877 | |
16. | David Poyato, Juan Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models, 2017, 27, 0218-2025, 1089, 10.1142/S0218202517400103 | |
17. | Charles Z. Marshak, M. Puck Rombach, Andrea L. Bertozzi, Maria R. D'Orsogna, Growth and containment of a hierarchical criminal network, 2016, 93, 2470-0045, 10.1103/PhysRevE.93.022308 | |
18. | CHUNTIAN WANG, YUAN ZHANG, ANDREA L. BERTOZZI, MARTIN B. SHORT, A stochastic-statistical residential burglary model with independent Poisson clocks, 2021, 32, 0956-7925, 32, 10.1017/S0956792520000029 | |
19. | Chuntian Wang, Yuan Zhang, Andrea L. Bertozzi, Martin B. Short, 2019, Chapter 8, 978-3-030-20296-5, 245, 10.1007/978-3-030-20297-2_8 | |
20. | Elena Ballante, Chiara Bardelli, Mattia Zanella, Silvia Figini, Giuseppe Toscani, Economic Segregation Under the Action of Trading Uncertainties, 2020, 12, 2073-8994, 1390, 10.3390/sym12091390 | |
21. | Giacomo Dimarco, Giuseppe Toscani, Social climbing and Amoroso distribution, 2020, 30, 0218-2025, 2229, 10.1142/S0218202520500426 | |
22. | Wenhan Feng, Bayi Li, Zebin Chen, Peng Liu, Bing Xue, City size based scaling of the urban internal nodes layout, 2021, 16, 1932-6203, e0250348, 10.1371/journal.pone.0250348 | |
23. | Marina Dolfin, Learning and dynamics in social systems, 2016, 16, 15710645, 146, 10.1016/j.plrev.2015.12.001 | |
24. | Giulia Furioli, Ada Pulvirenti, Elide Terraneo, Giuseppe Toscani, Non-Maxwellian kinetic equations modeling the dynamics of wealth distribution, 2020, 30, 0218-2025, 685, 10.1142/S0218202520400023 | |
25. | Chaohao Pan, Bo Li, Chuntian Wang, Yuqi Zhang, Nathan Geldner, Li Wang, Andrea L. Bertozzi, Crime modeling with truncated Lévy flights for residential burglary models, 2018, 28, 0218-2025, 1857, 10.1142/S0218202518400080 | |
26. | Stefano Gualandi, Giuseppe Toscani, Call center service times are lognormal: A Fokker–Planck description, 2018, 28, 0218-2025, 1513, 10.1142/S0218202518500410 | |
27. | Dongnam Ko, Enrique Zuazua, Asymptotic behavior and control of a “guidance by repulsion” model, 2020, 30, 0218-2025, 765, 10.1142/S0218202520400047 | |
28. | L. Urrutia, Information on living systems: A kinetic approach, 2016, 16, 15710645, 156, 10.1016/j.plrev.2016.01.016 | |
29. | Juan Calvo, Juanjo Nieto, Some aspects on kinetic modeling of evacuation dynamics, 2016, 18, 15710645, 42, 10.1016/j.plrev.2016.08.008 | |
30. | G. Ajmone Marsan, N. Bellomo, L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, 2016, 26, 0218-2025, 1051, 10.1142/S0218202516500251 | |
31. | Damián A. Knopoff, Germán A. Torres, On an optimal control strategy in a kinetic social dynamics model, 2018, 9, 2038-0909, 22, 10.2478/caim-2018-0014 | |
32. | M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti, Escaping the trap of 'blocking': A kinetic model linking economic development and political competition, 2017, 10, 1937-5077, 423, 10.3934/krm.2017016 | |
33. | D. Burini, S. De Lillo, L. Gibelli, Collective learning modeling based on the kinetic theory of active particles, 2016, 16, 15710645, 123, 10.1016/j.plrev.2015.10.008 | |
34. | N. Bellomo, F. Brezzi, J. Soler, Active particles methods and challenges in behavioral systems, 2020, 30, 0218-2025, 653, 10.1142/S0218202520020017 | |
35. | Diletta Burini, Livio Gibelli, Nisrine Outada, 2017, Chapter 6, 978-3-319-49994-9, 229, 10.1007/978-3-319-49996-3_6 | |
36. | Bin Li, Li Xie, Generalized solution and eventual smoothness in a logarithmic Keller–Segel system for criminal activities, 2023, 33, 0218-2025, 1281, 10.1142/S0218202523500306 | |
37. | Bin Li, Li Xie, Generalised solution to a 2D parabolic-parabolic chemotaxis system for urban crime: Global existence and large-time behaviour, 2024, 35, 0956-7925, 409, 10.1017/S0956792523000268 | |
38. | Nicola Bellomo, Diletta Burini, Valeria Secchini, Pietro Terna, 2024, 9781009548755, 10.1017/9781009548755 |