
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2015.10.421
c©American Institute of Mathematical Sciences
Volume 10, Number 3, September 2015 pp. 421–441

FROM A SYSTEMS THEORY OF SOCIOLOGY TO MODELING

THE ONSET AND EVOLUTION OF CRIMINALITY

Nicola Bellomo

Department of Mathematics, Faculty Sciences, King Abdulaziz University

Jeddah, Saudi Arabia

and
Politecnico Torino, Corso Duca degli Abruzzi 24

10129 Torino, Italy

Francesca Colasuonno

Department of Mathematical Sciences, Politecnico of Torino
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Damián Knopoff

Centro de Investigación y Estudios de Matemática (CONICET)
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Abstract. This paper proposes a systems theory approach to the modeling

of onset and evolution of criminality in a territory. This approach aims at
capturing the complexity features of social systems. Complexity is related to

the fact that individuals have the ability to develop specific heterogeneously

distributed strategies, which depend also on those expressed by the other indi-
viduals. The modeling is developed by methods of generalized kinetic theory

where interactions and decisional processes are modeled by theoretical tools of

stochastic game theory.

1. Plan of the paper. This paper aims at developing a systems theory approach
to the modeling of the phenomena of criminality in a territory. This objective
is pursued bearing in mind the idea that all living systems in general, and social
systems in particular, are complex [4]. This feature, as observed in [8], as well as in
the collection of articles [5], is related to the fact that individuals have the ability
to develop specific strategies, which depend also on those expressed by the other
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individuals. These strategies are heterogeneously distributed. Moreover, individuals
in socio-economic systems are able to learn from their experience. This implies that
the expression of the strategy evolves in time, and consequently that interaction
dynamics undergo modifications.

The main feature of these systems is that their collective overall behavior is
determined by the dynamics of their interactions, while the modeling of individual
dynamics does not lead in a straightforward way to a mathematical description of
collective emerging behaviors. Therefore, the challenging objective of the modeling
consists in transferring the dynamics at the scale of individual entities into collective
emerging behaviors.

The contents are mainly motivated by two well defined hints. The first one is
related to the idea that the dynamical processes in Economics and Social Sciences
are highly affected by individual (rational or irrational) behaviors, reactions, and
interactions. These concepts have begun to impose themselves to the traditional as-
sumption of rational socio-economic behavior, starting from the concept of bounded
rationality [46]. Therefore, the contribution of mathematics to a deeper understand-
ing of the relationships between individual behaviors and collective outcomes may be
fundamental [8]. This new methodological approach looks at Economics, and Social
Sciences in general, as evolving complex systems, where interactions among hetero-
geneous individuals can even produce unpredictable emerging outcomes [3, 32]. In
this context, mathematical tools are required to capture the evolving characteristics
of socio-economic systems and incorporate some of their main complexity features.

This paper is also motivated by an increasing interest in the public safety and
security in cities. An important contribution is that of Felson [27] who gives -from
a criminologist’s point of view- some basic hints for mathematicians concerning the
modeling of crime. He introduces the presence of three fundamental elements that
participate in the phenomena, namely offenders, targets and guardians. Additional
phenomenological interpretations are given in [28] and [41]. Further interesting
contributions are proposed by D’Orsogna and coworkers [14, 23, 24], who develop a
statistical dynamics approach, where interactions are modeled by evolutive games.
This approach shows some interconnection with the stochastic differential game
theory reviewed in [11].

Many of the existing models refer to the spatially homogeneous case, while some
others introduce the geographic or spatially dependent component in kinetic theory
[37] and statistical [19, 45] methods. Tools of games theory [38] have been success-
fully used to model criminality, starting from the so-called prisoner’s dilemma and
moving towards more sophisticated games. In [44], a game involving N players is
considered, where each of them may express four different strategies: paladin, apa-
thetic, informant or villain, while in [36] a network study is considered by taking into
account subgroups of players through sacred value networks [47]. Methodologically
different approaches can be based on deterministic dynamical systems [17, 39].

The second hint is offered by recent developments of methods of kinetic theory
and statistical mechanics in fields far from the classical one of molecular fluid dy-
namics. Methods of the generalized kinetic theory have been first applied to model
the social dynamics of insects [31], followed by a blow up in a rapidly growing
literature covering a variety of applications. Among them and without claim of
completeness, modeling of social systems [1, 22], opinion formation with dynamics
over networks [34], migration phenomena [33], selective mutations in epidemiology
[21], Darwinian mutation and selection on cancer phenomena contrasted by immune
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cells [13, 20], and crowd dynamics [9]. The mathematical approach developed in
the previously cited papers belongs to the so-called kinetic theory for active parti-
cles, for short KTAP approach, which refers to large population of living entities
interacting with rules modeled by theoretical tools of game theory. The collection
of surveys [12] witnesses the beginning of a systematic use of methods of the kinetic
theory in a variety of applications, which have been subsequently developed in the
last decades by several authors, among others [25, 29, 42].

The novelty of the present paper with respect to the existing literature mainly
consists in two specific contributions. The first one is the methodological approach,
where specific models are referred to a mathematical structure claimed to capture
the main features of living, hence complex, systems; this idea overcomes the tradi-
tional concepts of bounded rationality and rationality in general. This method is
proposed in [11] as a tool to model complexity and complex systems. The second
contribution refers to a detailed analysis of the interplay between wealth distribution
and criminality. The authors are assuming that people with need are the ones com-
mitting the crimes, by first entering in the low criminality level and subsequently
some of them increase their criminal actions by interactions with other criminals.
This concept is shared by various authors [26, 30]; in more detail, it is claimed that
social organization including wealth policy can contribute to a peaceful town [16].
However we are aware that a different stream is doubtful about this idea. Of course
crime can come from corrupt police or citizens socially well positioned, for example
politicians or bankers. Therefore, rather than sharing a specific sociological the-
ory, we aim at offering mathematical tools, and hence models in charge to predict
specific phenomena.

Focusing on the content of the paper, let us consider a population of individuals
distributed in a certain territory. They can be subdivided (in a simplified way, to
fix ideas) into citizens, criminals and detectives. Each aggregation of individuals
expresses with a certain intensity its own function-strategy. For instance, citizens
operate to improve their own wealth, criminals to subtract it from them and to hide
themselves from the chase of detectives, who operate to contrast criminality. The
modeling approach aims at studying the interplay between individuals of different
aggregations and their growth or decay, which can include transition from one pop-
ulation to the other. Various concomitant causes can, in general, play a role in
the development or depletion of criminality, for instance migration phenomena and
welfare policy.

This paper is organized through five more sections. In detail, Section 2 presents
a phenomenological description of the complex system treated in this paper, sub-
sequently a modeling strategy is proposed. Section 3 introduces, starting from the
description of interactions at the scale of individuals, the mathematical structures
suitable to provide the basis for the derivation of specific models. A mathematical
model is derived in Section 4 based on the said general framework for a society with
wealth distribution that remains constant in time. Some simulations are presented
in Section 5 in order to test the predictive ability of the model. Finally, Section 6
focuses on the development of a general systems theory approach to sociology.

2. From a phenomenological description to a modeling strategy. Let us
consider a large population of individuals with a spatially homogeneous distribution
over certain territory, say a town or a region. The specific features of the population
are heterogeneously distributed among individuals, who can, however, be subdivided
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into different groups such as citizens owning a certain amount of wealth, small or
large, criminals with different levels of villainy, and detectives who are in charge
of chasing criminals. Moreover, migration phenomena can be possibly taken into
account considering that large towns can attract people from surrounding areas.

Let us briefly summarize the approach, proposed in [11], to model complex sys-
tems by the kinetic theory for active particles.

• Individuals are viewed as active particles that have the ability to express a
specific strategy, called activity, which defines their micro-state, namely the
state at the microscopic scale.

• Active particles are subdivided into functional subsystems, such that they
express a specific activity for each subsystem.

• The activity variable is heterogeneously distributed over the particles, while
the overall state of the population of active particles is delivered, for each
subsystem, by a distribution function over the micro-state.

• Interactions between particles are modeled by theoretical tools of game theory,
while the equations describing the dynamics of particles are obtained by a
balance in the elementary volume in the space of the micro-states. The inflow
and outflow of particles, into and from the said volume, are determined by
interactions.

• The solution of mathematical problems, typically initial and initial-boundary
value problems, provides the time evolution of the aforesaid distribution func-
tions and hence of the macroscopic description obtained by weighted averaged
quantities. Emerging behaviors can be depicted by both distribution function
and macro-quantities.

An approach, according to the specific features of the class of systems under
consideration, can be proposed as described by the following sequential steps:

1. Subdivision of the overall system into functional subsystems, each of them
with the ability of expressing a different activity (strategy);

2. Modeling interactions at the micro-scale, namely between active particles of
the same or different functional subsystems; including learning dynamics,
which might generate transition from one subsystem to the other;

3. Derivation of a mathematical structure suitable to describe the evolution in
time of the distribution function over the micro-state of particles of each sub-
system;

4. Derivation of mathematical models related to the structures introduced in the
previous item;

5. Analysis and validation of models.

This approach will be formalized, in the next sections, being aware that it is
limited to a simple picture of the complex variety of social and economic dynamics
that effectively occur in our society. Nevertheless, we claim that it has to be regarded
as a first step towards a more general systems theory approach to sociology. This
preliminary step will be followed by the study of more complex case studies outlined
in the last section, which looks ahead to research perspectives.

3. From interactions to a structure modeling collective dynamics. This
section shows how the strategy presented in Section 2 can be transferred into the
derivation of a mathematical structure that can offer the framework suitable to
model the collective dynamics involving different categories of citizens interacting
in a territory. The contents are presented throughout the next three subsections
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corresponding to the sequential steps 1-3 of the aforesaid strategy, where the last
paragraph also proposes a critical analysis in view of the modeling approach. The
approach is based on the assumption that the total number of citizens and the
wealth distribution are constant in time.

3.1. Subdivision into functional subsystems and representation. Let us
consider a population homogeneously distributed in a territory. Individuals in the
population are regarded as active particles subdivided into a small number of groups
according to the specific functions they express in the competition treated in this
paper. The present approach aims at studying how the size of these groups evolves
in time, how crime arises and can be controlled in a society, and how the probability
distribution functions over the activity variable within each functional subsystem
evolve in time. In other words, how the wealth probability distribution over the
level of criminality and the expertise of detectives evolve in time. Therefore, in
consonance with the phenomenological description given in the preceding section,
the following subdivision into functional subsystems is proposed:

i = 1 Normal citizens, whose microscopic state is identified by their wealth, which
constitutes the attraction for the eventual perpetration of criminal acts.

i = 2 Criminals, whose microscopic state is given by their criminal ability, namely
their ability to succeed in the perpetration of illegal acts.

i = 3 Detectives are assumed to chase criminals and to catch them with a certain
effectiveness depending on their ability. This ability is characterized by their moti-
vation, expertise and efficiency, and the higher these attributes are the easier will
be for them to catch criminals.

The microscopic variables are assumed to be, for each functional subsystem, a
real variable u taking values in the subsetsD1, D2, D3 ⊂ R+

0 , respectively. Assuming
that a maximal activity value can be identified in each functional subsystem, these
three sets are taken, for the sake of simplicity, to be the interval [0, 1], although
it is important to keep in mind that the meaning of the variable differs from one
functional subsystem to another. However, worse conditions correspond to lower
values of the activity variable, while increasing values of u correspond to higher
abilities to express the strategy.

The following table specifies the activity variable for each functional subsystem:

Functional subsystem Micro-state

i = 1, citizens u ∈ D1, wealth

i = 2, criminals u ∈ D2, criminal ability

i = 3, detectives u ∈ D3, experience/prestige

Table 1. Microscopic variable for each functional subsystem.
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The representation of the system is delivered by the distribution functions

fi : [0, T )×Di → R+
0 , i = 1, 2, 3, (1)

where T > 0 is a certain final time, possibly∞. In this way, fi(t, u) du denotes, un-
der suitable integrability conditions, the number of active particles of the functional
subsystem i whose state, at time t, is in the interval [u, u+ du]. Therefore

ni(t) =

∫
Di

fi(t, u) du, i = 1, 2, 3, (2)

defines the size of group i.
At each time t ∈ [0, T ), the total size of the population is given by

N(t) =

3∑
i=1

ni(t),

which is assumed to remain constant in time. Under this assumption, the distribu-
tion functions can be normalized with respect to N0 := N(0), hence we put

N(t) = N0 = 1 for all t ∈ [0, T ), (3)

so that fi defines the fraction of individuals belonging, at each time t, to the func-
tional i-subsystem, called also i-particles.

Additional macro-scale information is given by higher order moments:

Eνi [fi](t) =
1

ni(t)

∫
Du

uνfi(t, u) du. (4)

In particular, the first order moment E1
i [fi](t) will be simply denoted by Ei[fi](t).

3.2. Micro-scale interactions. Let us model the interactions at the microscopic
scale, which can modify the micro-state of the interacting pairs and/or promote
transitions from one subsystem to another. Interactions between active particles
involve three types of particles: the candidate h-particle, the test i-particles, with
micro-state u, which are representative of the whole system; the field k-particles,
with micro-state u∗, whose presence triggers the interactions of the candidate par-
ticles; and the candidate h-particles, with micro-state u∗, which can reach in prob-
ability the micro-state u and the functional subsystem i of the test particles after
interactions with field particles.

Another kind of interactions are those in which the candidate h-particle with
state u∗ feels the mean value Eh within its functional subsystem [34]. Therefore,
individuals are subject to follow a certain tendency, namely an attractive streaming
effect. This effect appears in several types of social dynamics and account the trend
of the crowd to imitate the average behavior of the others. In our specific case, this
means that the level of villainy of a criminal (respectively, the level of efficiency of
a detective) is also affected by the mean criminal ability (respectively, by the mean
detectives’ efficiency). Hence, a high criminality environment induces a further
growth of criminality. Therefore, the role of prevention and persuasion is important
[14].

Theoretical tools of stochastic game theory are used to model the following terms
related to the aforesaid interactions:

• The encounter rate ηhk(u∗, u
∗) between a candidate h-particle with state u∗

and a field k-particle with state u∗.
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• The interaction rate µh(u∗,Eh) between a candidate h-particle, with state u∗,
and the mean activity within its functional subsystem.

• The transition probability density Bihk(u∗ → u|u∗, u∗), which denotes the
probability density that a candidate h-particle with state u∗ ends up into the
state u of the test i-particle as a result of the interaction with a field k-particle
with state u∗, satisfying that

3∑
i=1

∫
Di

Bihk(u∗ → u|u∗, u∗) du = 1, (5)

for all type of inputs (u∗, u
∗) and for all h, k = 1, 2, 3.

• The transition probability density Mh(u∗ → u|u∗,Eh) denotes the probabil-
ity that a candidate h-particle with state u∗ ends up into the state u after
interacting with the mean activity value Eh, satisfying that∫

Dh

Mh(u∗ → u|u∗,Eh) du = 1, for all u∗ ∈ Dh,Eh ∈ Dh. (6)

3.3. Derivation of a mathematical structure. The balance of particles in the
elementary volume of the space of micro-states leads to the following structure:

∂tfi(t, u) = Ji[f ](t, u) =

=

3∑
h,k=1

∫
Dh

∫
Dk

ηhk(u∗, u
∗)Bihk(u∗ → u|u∗, u∗)fh(t, u∗)fk(t, u∗) du∗ du

∗

−fi(t, u)

3∑
k=1

∫
Dk

ηik(u, u∗) fk(t, u∗) du∗

+

∫
Di

µi(u∗,Ei)Mi(u∗ → u|u∗,Ei)fi(t, u∗)du∗ − µi(u,Ei)fi(t, u) (7)

for i = 1, 2, 3, and where the square brackets are used to denote dependence on the
whole set of distribution functions f = {fi}, which is simply related, in the models
proposed in this paper, to the mean value Ei.

Before tackling technical issues it is worth discussing in some detail the proper
role played by the mathematical structure (7) toward the derivation of particular
models. As it is known [35], the modeling of living systems cannot take advantage
of field theories, like in the case of inert matter. Therefore heuristic approaches
are generally adopted, relying mainly on personal intuitions of the modelers, while
more rigorous approaches can be developed by grounding models on the prelimi-
nary derivation of abstract mathematical structures consistent with the description
presented in Section 2.

4. Derivation of models. The derivation of the mathematical model is obtained
within the general structure given by Eq.(7) by particularizing the terms η, µ, B
andM. The approach is limited only to the so-called non-trivial interactions, which
are those that modify the micro-state of the interacting particles.

4.1. Encounter rate. Let us consider the encounter rates ηhk and µh. The mod-
eling approach is based on heuristic assumptions that let us quantify the frequency
of interactions, depending on the micro-states and distribution functions of the in-
teracting particles. Table 2 presents the encounter rates ηhk for binary interactions
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between h-candidate and k-field particles, while Table 3 refers to particles that in-
teract with the mean activity value within their functional subsystem. η0 and µ0

are positive constants in the expression of the encounter rates.

Interaction Qualitative description Encounter rate η
Closer social states

1 ↔ 1© tend to interact η11(u∗, u
∗) = η0 (1− |u∗ − u∗|)

more frequently
Experienced lawbreakers

2 ↔ 2© are more expected to η22(u∗, u
∗) = η0(u∗ + u∗)

expose themselves
Experienced detectives

2 ↔ 3© are more likely to hunt η23(u∗, u
∗) = η0

(
(1− u∗) + u∗

)
less experienced criminals

Table 2. Non-trivial interactions between a h-candidate particle
(represented by a square) with state u∗ and a k-field particle (repre-
sented by a circle) with state u∗. (Interaction rates are symmetric,
namely η23 = η32)

Interaction Qualitative description Encounter rate µ
Criminals interact with

2 ↔ E2 the mean value through µ2(u∗,E2) = µ0|u∗ − E2|
the mean-micro state distance

Detectives interact with
3 ↔ E3 the mean value through µ3(u∗,E3) = µ0|u∗ − E3|

the mean micro-state distance

Table 3. Non-trivial interactions between a h-candidate particle
(represented by a square) with activity u∗ and the mean activity
value Eh.

4.2. Transition probability densities. The modeling of the transition probabil-
ity densities Bihk(u∗ → u|u∗, u∗) is performed under the simplified assumption that
the output of the interaction is a delta function over the most probable value. This
choice needs dealing with some technical features related to the modeling of inter-
actions as Eq. (7) requires that the output of the interaction belongs to the open
interval (0, 1) and the distribution functions have compact support on this interval.
The parameters of the model take values in [0, 1). Table 4 defines their meaning.

Bearing this in mind, the so-called table of games, that gives the probability
distributions of candidate’s payoffs conditioned to the states of the interacting in-
dividuals, is proposed according to the following assumptions:

• The social structure of the population i = 1 is assumed to be fixed, namely,
the time interval is sufficiently short that the wealth distribution is constant
in time.

• Citizens are susceptible to become criminals, motivated by their wealth state.
In more detail, a candidate citizen with activity u∗ interacting with a richer
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Parameters
αT Susceptibility of citizens to become criminals
αB Susceptibility of criminals to reach back the state of normal citizens
β Learning dynamics among criminals
γ Motivation/efficacy of security forces to catch criminals
λ Learning dynamics among detectives

Table 4. Parameters involved in the table of games.

one with activity u∗ > u∗ can become a criminal, mutating into functional
subsystem 2 with a very low criminal ability u = ε ≈ 0. In particular it is
assumed that the transition probability increases with decreasing wealth:

B211(u∗ → u|u∗, u∗) =
1

ε
αT (1− u∗)u∗χ[0,ε)(u),

B111(u∗ → u|u∗, u∗) = (1− αT (1− u∗)u∗)δu∗(u),

(8)

where χ[0,ε) denotes the indicator function for the interval [0, ε).

• Criminals interact among themselves resulting in a dynamics by which less
experienced criminals mimic the more experienced ones, moreover also inter-
action with less experienced lawbreakers increases the level of criminality

B222(u∗ → u|u∗, u∗) = δu∗+β(1−u∗)u∗(u), (9)

where 0 ≤ β < 1 .

• Detectives of functional subsystem h = 3 chase criminals of functional subsys-
tem k = 2 and the latter are constrained to step back decreasing their activity
value as the price to be paid for being caught. At the same time, detectives
gain experience from a well-done job increasing their activity. Due to this
action criminals are induced to return to the state of normal citizens with a
probability which increases with decreasing values of their level of criminality
and increasing values of skill of detectives:

B332(u∗ → u|u∗, u∗) = δu∗+γu∗(1−u∗)(u), (10)

and 
B123(u∗ → u|u∗, u∗) =

1

ε
αB(1− u∗)u∗χ[0,ε)(u),

B223(u∗ → u|u∗, u∗) = (1− αB(1− u∗)u∗) δu∗−γu∗u∗(u).

(11)

The dynamics of interactions is visualized in Figures 1–3, where black and gray
bullets correspond, respectively, to pre-interaction and post-interaction states.

4.3. Modeling the stream effect. Functional subsystems of criminals and de-
tectives are subject to interactions with their respective mean activity values. The
dynamics is similar to that of Eq.(9), in which only those who are less experienced
than the mean tend to learn and move towards it

M2(u∗ → u|u∗,E2) = δβu∗+(1−β)E2
(u). (12)

Analogously, also detectives show a trend toward the mean value

M3(u∗ → u|u∗,E3) = δλu∗+(1−λ)E3
(u), (13)
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Figure 1. Interaction between citizens may end up, in the muta-
tion of one of the interacting individuals, into the functional sub-
system of criminals.

Figure 2. Progression to higher values of criminality.

Figure 3. Interaction between detectives and criminals may cause
a reduction of the criminal’s activity and an increase of the detec-
tive’s activity.

where 0 ≤ λ < 1 is related to the tendency of detectives to approach the mean
security level of the forces.

4.4. Derivation of the model. The mathematical structure (7) can be specified
for each distribution function fi by means of the tables of games given by Eqs.(8)-
(13) and the interaction rates proposed in Tables 2 and 3. Accordingly, the evolution
equations read:

∂tf1(t, u) = −αT (1− u)f1(t, u)

∫ 1

0

η11(u, u∗)u∗f1(t, u∗)du∗

+
1

ε
αBχ[0,ε)(u)

∫ 1

0

∫ 1

0

η23(u∗, u
∗)(1− u∗)u∗f2(t, u∗)f3(t, u∗)du∗du

∗, (14)

∂tf2(t, u) =
1

ε
αTχ[0,ε)(u)

∫ 1

0

∫ 1

0

η11(u∗, u
∗)(1− u∗)u∗f1(t, u∗)f1(t, u∗)du∗du

∗

+

∫ 1

0

χ[βu∗,1](u)
1

1− βu∗
η22

(
u− βu∗

1− βu∗
, u∗
)
f2

(
t,
u− βu∗

1− βu∗

)
f2(t, u∗)du∗

+

∫ 1

0

χ[0,1−γu∗](u)
1

1− γu∗
η23

(
u

1− γu∗
, u∗
)[

1− αB
(

1− u

1− γu∗

)
u∗
]
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·f2
(
t,

u

1− γu∗

)
f3(t, u∗)du∗

−f2(t, u)

3∑
k=2

∫ 1

0

η2k(u, u∗)fk(t, u∗)du∗

+
1

β
χ[(1−β)E2,β+(1−β)E2](u)µ2

(
u− (1− β)E2

β
,E2

)
f2

(
t,
u− (1− β)E2

β

)
−µ2(u,E2)f2(t, u), (15)

and

∂tf3(t, u) =

∫ 1

0

χ[γu∗,1](u)
1

1− γu∗
η32

(
u− γu∗

1− γu∗
, u∗
)

·f3
(
t,
u− γu∗

1− γu∗

)
f2(t, u∗)du∗ − f3(t, u)

∫ 1

0

η32(u, u∗)f2(t, u∗)du∗

+
1

λ
χ[(1−λ)E3,λ+(1−λ)E3](u)µ3

(
u− (1− λ)E3

λ
,E3

)
f3

(
t,
u− (1− λ)E3

λ

)
−µ3(u,E3)f3(t, u). (16)

5. Simulations and critical analysis. The mathematical structure proposed in
Eq. (7) has generated, as we have seen, a model stated in terms of a system of
ordinary differential equations. Coupling this system to the initial conditions, the
statement of the initial value problem is as follows:{

∂tfi(t, u) = Ji[f ](t, u),

fi(0, u) = f0i (u)
for i = 1, 2, 3, (17)

where the operators Ji[f ] have been defined in Eq. (7) and in the specific model
Eqs. (14)–(16), and f0i ∈ L1(0, 1), with f0i ≥ 0 a.e. in [0, 1] for i = 1, 2, 3. Let us
now consider the space X = [L1(0, 1)]3, endowed with the norm

‖ψ‖ =

3∑
i=1

‖ψi‖1 =

3∑
i=1

∫ 1

0

|ψi(u)|du,

and let

X+ =
{
ψ ∈ L1(0, 1) : ψ ≥ 0 a.e. in [0, 1]

}
and X+ = {ψ ∈X : ψi ∈ X+, i = 1, 2, 3}

denote the positive cones of L1(0, 1) and X, respectively.
A natural solution space for problem (17) is C1([0, T ),X), 0 < T ≤ ∞, that is

the space of [L1(0, 1)]3–functions f = f(t) of class C1([0, T )).
We shall denote by f0 = (f01 , f

0
2 , f

0
3 ). Due to the normalization (3), we assume

that ‖f0‖ = 1. This implies immediately that if f is a non-negative solution of (17)
(i.e. f ∈ C1([0, T ),X+)), then ‖f(t, ·)‖ = 1 for all t ∈ [0, T ), by Eqs. (5)–(6).

The following classical existence and uniqueness theorem can be stated:

Theorem 5.1. Let f0 be in X+, and suppose that there exist two positive constants
Cη, Cµ such that

sup
(u∗,u∗)∈[0,1]2

ηhk(u∗, u
∗) ≤ Cη, sup

u∗∈[0,1]
sup

ψi∈X+

µi(u∗,Ei[ψi]) ≤ Cµ,
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for all h, k, i = 1, 2, 3. Let Mi = Mi(u∗, u,Ei[ψi]) and µi = µi(u∗,Ei[ψi]) be
Lipschitz continuous with respect to ψi for all i = 1, 2, 3. Then (17) admits a
unique solution f ∈ C1([0,∞),X+).

This result follows from an application of the Banach fixed point theorem, where
the Lipschitz property of the right hand side of the first equation in (17) leads to
local existence and uniqueness, while positivity is shown by taking the exponential
form of the differential equation. Then, a continuation argument leads to existence
and uniqueness of solutions for large times. The technical details of the proof are
given in Appendix. The interested reader is also addressed to [2, 18, 43] for proofs
referred to equations with similar structure and analytic properties.

Simulations have to be selected to put in evidence emerging behaviors of interest
to test the predictive ability of the model. Therefore, some specific case studies are
selected with the aim to investigate the relationship between the social structure
and the levels of criminality in a society. In particular, it is important to understand
how the prosperity of a society and the social differences between individuals impact
on the rise of criminal acts. The focus is limited not only to the influence of the
mean wealth value, but also to the shape of the wealth distribution at equal mean
wealth value.

These two topics are treated in the next two subsections, while the importance
of the number of effective security agents to fight against criminality is studied in
the third subsection. Then, although the development of an exhaustive sensitivity
analysis of all parameters is not treated here, a detailed study of the role of two
of them is proposed in the fourth subsection, namely focusing on the susceptibility
of citizens to become criminals αT and the efficacy of security forces γ, in order to
test their importance in the prevention of crime. Finally, Table 5 summarizes the
result of all simulations.

5.1. Case 1: Dynamics for different mean wealth values. Simulations aim
at depicting the time evolution of the number of criminals, starting from the ideal
situation of n2(t = 0) = 0, for different values of the mean wealth of citizens. With
that purpose we took a variety of initial conditions f1(0, u), all of which had a small
rich cluster and a larger low-middle class cluster, as shown in Fig. 4(a), with mean
wealth taking values E1 = 0.25, 0.35, 0.44 and 0.53. The solution is computed for
large times and Fig. 4(b) represents the final distribution of criminals f2. Only two
curves are shown in this figure for the sake of clarity. Figure 4(c) shows the evolution
of the size of the population of criminals over time, n2(t), for these different values of
E1. In all cases, simulations were developed for the following values of parameters:
αT = 0.01, αB = 0.1, β = 0.1, γ = 0.25 and λ = 0.9. These figures show that a
poor society leads to high levels of crime. This trend holds for a broad variety of
parameters.

5.2. Case 2: Dynamics for different shapes of wealth distribution. Simu-
lations are developed corresponding to fixed values of the mean wealth, specifically
two values are selected, low (E1 = 0.2) and high (E1 = 0.6), while two different
shapes are considered for each case corresponding to higher and lower concentra-
tions of wealth in the middle class, as depicted in Fig. 5(a) and 5(c). In this case
we take a non-zero initial condition for the number of criminals, considering that
n2(0)/n1(0) = 0.05 (corresponding to a society where the initial number of criminals
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Figure 4. (a) Initial wealth distributions corresponding to differ-
ent mean wealth values. All of them consist in a fixed small rich
cluster and a large poorer cluster centered on different points of
the activity domain. (b) Large time distribution of criminals for
two of the selected mean wealth values. (c) Evolution of the size
of functional subsystem 2, n2(t), for different values of E1.

is 5% of the number of citizens), and we define the quantity

ϕ(t) =
n2(t)− n2(0)

n2(0)
· 102,

as a measure of the relative percentage change in the population of criminals. Simu-
lations were developed for the set of parameters: αT = 0.0001, αB = 0.15, β = 0.1,
γ = 0.15 and λ = 0.9, Figs. 5(b) and 5(d) report the evolution of ϕ. We can ob-
serve that a poorer society produces a growth in the number of criminals, that is
still more accentuated for unequal wealth distributions. The model is capable to
produce the opposite behavior for a richer society, giving a reduction in the number
of criminals for the same choice of parameters.

5.3. Case 3: On the role of the number of detectives. Another interesting
topic consists in investigating the influence of the number of detectives in the devel-
opment of crime. Taking into account the worldwide distribution of police agents
per country, the rates have a median of 303.3 officers per 100,000 people and a mean
of 341.8 officers [28]. Of course, these numbers depend on the social and structural
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Figure 5. (a) Two wealth distributions for a poor society with
E1 = 0.2 lead to different curves for the relative change of the
population of criminals (b), where the most unequal distribution
generates a larger increase. Analogously, (c) shows two wealth
distributions for a rich society with E1 = 0.6 that generate, for
the same set of model parameters, a reduction in the number of
criminals (d).

differences between countries. Let us show the evolution of the number of criminals,
taking a fixed initial mean wealth E1 = 0.433 and a fixed ratio n2(0)/n1(0) = 0.1,
for different values of n3(0)/n1(0) (in particular we consider two cases: 1110 and
330 detectives per 100,000 citizens). In all cases the initial distribution of detectives
f3(0, ·) is a Gaussian–type function with mean value 0.5. Figure 6(a) shows the ini-
tial distribution of criminals f2(0, ·) and Fig. 6(b) shows the large time distribution
for different values of n3(0)/n1(0). We take the set of parameters: αT = 0.0001,
αB = 0.15, β = 0.05, γ = 0.01 and λ = 0.9. In Figs. 6(c) and 6(d) we show the
evolution of the macroscopic quantities ϕ(t) and E2(t). The results show that for
this selection of parameters the expected number cited in [28] keeps the number of
criminals under control. Larger squads contribute to the reduction in the number
of criminals as well as in the mean criminal ability.

5.4. Case 4: Prevention of crime: Is it better to improve the well-being of
the society or to strengthen security forces? Consider a population initially
distributed with n2(0)/n1(0) = 0.05 and with 500 detectives per 100,000 citizens
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Figure 6. (a) Initial distribution of criminals. (b) Large time
distribution of criminals, (c) evolution of ϕ(t) and (d) evolution of
the mean criminal ability, E2(t), for different number of security
agents per citizen. Continuous lines correspond to n3(0)/n1(0) =
3.3 ·10−3 and dashed lines correspond to n3(0)/n1(0) = 11.1 ·10−3.

and let us study the evolution of ϕ(t) with variation of the parameters αT and γ.
The initial distribution of detectives f3(0, ·) is a Gaussian–type function with mean
value 0.5. Figure 7(a) shows the time dynamics of ϕ for different values of αT , and
for αB = 0.05, β = 0.1, γ = 0.5 and λ = 0.9. Fig. 7(b) shows the same dynamics for
αT = 0.0002, and different values of γ. This figure confirms the empirical evidence
that an effective action to fight crime consists in pursuing actions that contribute
to reduce αT (education, employment, etc) and to improve the quality of citizens
[41].

5.5. Critical analysis. Simulations performed in the previous subsections tested
the predictive ability of the model regarding to the raise of criminality in a society
according basically to the wealth distribution within it (cases 1 and 2), the impor-
tance of the number of detectives fighting against crime (case 3) and the advantages
of developing policies that guarantee a better well-being (case 4).

The different emerging behaviors, corresponding to the aforementioned computa-
tional study, are presented and summarized in Table 5. Although the computational
study cannot be considered exhaustive, still some useful indications are delivered.
The most important one is, according to the authors’ bias, the need of a detailed
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Figure 7. Time evolution of ϕ(t) for functional subsystem 2, for
different values of (a) αT and (b) γ.

analysis of the interplay of different dynamics. In this specific case, the welfare
policy and that of the fight against crime. Previous studies, namely [8] - focused
on the dynamics of support and opposition to regimes - and [22] - focused on the
growth or decay of global wealth - have shown that the interaction of two dynamics
can lead to non-expected outputs, in some cases even to non-predictable events.
Presumably, the investigation is worth to be developed even in this specific social
problem studied in this paper.

6. Looking forward. The contents of this paper suggest various perspectives for
further research activity in the field focusing on simulations and model validation,
analytic problems, and understanding the role of space dynamics. These topics are
presented at an introductory level in the next subsections according to a selection
based on the authors’ bias. For each of them some hints for future research activity
will be given.

6.1. Critical size of individuals. The survival of functional subsystems might, in
some cases, depend on their size. If the size of a functional subsystem falls below a
critical value, then interactions reduce to transfer individuals from the original one
towards an aggregation to another one or the dynamics is modified. For instance,
for detectives, their action is negligible if the critical size goes below a certain level
needed for an efficient action.

6.2. Topological domains of interactions. Interactions depend also on the do-
main of the activity variable, within which each particle has the ability to perceive
a sufficient amount of signals and develop consequently a strategy [6, 10]. Accord-
ing to [10], interactions occur in a domain Ω ⊆ Du, while sufficient information
is achieved if a number nc of field particles is involved. Integration of fi over
the activity variable in a domain Ω = [u − sm[f ;nc], u + sM [f ;nc]], which can
be called the topological domain of interaction, can lead to compute sm and sM ,
where sm, sM > 0. However, the solution is unique only in some special cases. For
instance, when u is a scalar defined over the whole real axis, and the sensitivity
is symmetric with respect to u. On the other hand, if u is defined in a bounded
domain or the sensitivity is not symmetric, additional assumptions are required.
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Case 1 - Role of the mean wealth

Increasing number of criminals
Decreasing mean wealth of the society =⇒

Increasing criminal ability

Case 2 - Role of the shape of wealth distribution

Equal distribution =⇒ Slow growth in the number
of criminals

Poor society
Unequal distribution =⇒ Fast growth in the number

of criminals
Equal distribution =⇒ Fast decrease in the number

of criminals
Rich society

Unequal distribution =⇒ Slow decrease in the number
of criminals

Case 3 - Role of the number of detectives

Large number of detectives =⇒ Decreasing number of criminals

Case 4 - Role of parameters αT and γ

=⇒ Number of criminals under control
Low susceptibility

to criminality =⇒ Criminal ability under control
=⇒ Decreasing number of criminals (with little

Increasing ability sensitivity)
of detectives =⇒ Decreasing criminal ability

Table 5. Summary of the simulations results.

The set Ω is a part of the effective interaction domain, which is the intersection
of the theoretical maximum domain of activity of an individual with the support
of fi(t, ·). The topological domain is concerned with the possible activities of in-
dividuals, defined by their effective domain. The choice of the topological domain
depends in this way on the neighborhood of the activity but also on more preferred
activities of the individuals, although not necessarily measured in the Euclidean
distance.

6.3. On the role of external actions. The model presented in Section 4 does
not include an analysis of the role of external actions, which can be applied to
reduce criminality either by repressive (or persuasion) actions, or by improving the
expertise of detectives. In principle, also an educative action can be addressed to
citizens to improve their ability to protect their goods. A simple model consists
in assuming that a macro-scale action, say Ui(t, u) depending on time and activity
variables is applied to all functional subsystems.
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The modeling of this action is achieved by inserting it in the transport term,
which is linear if the action depends only on t and u , while it is nonlinear when it
depends also on the distribution functions, Ui[fi](t, u). Of course these actions have
a cost, which can be related to the benefit of reduction of criminality. Classically,
if this aspect is introduced a control and optimization problem can be developed.

6.4. On the role of space dynamics. Models and simulations proposed in the
paper refer to a population homogeneously distributed in space. A variety of real
world applications suggests to extend the study to populations distributed in net-
works [34], where interaction between nodes can, in some cases, play an important
role in the overall dynamics, for instance inducing migration phenomena [33]. Also
the distribution over space is of practical interest to understand the real localization
of criminality and their level of danger in specific areas of the territory [15]. The
classical problem consists in deriving macroscopic PDEs models from the underly-
ing description at the microscopic scale. The pioneer ideas of paper [40], developed
in [7] for hyperbolic scaling for multicellular systems with internal structures, need
additional nontrivial studies to take into account the heterogeneous features of the
territory.

Appendix: Proof of Theorem 5.1. Consider the Banach space (C T1 , ‖ · ‖∞),
where

C T1 = C([0, T1],X) and ‖f‖∞ = max
t∈[0,T1]

‖f(t, ·)‖

and T1 > 0 will be specified later. Put a > 1 and

C T1
+ =

{
f ∈ C T1 : fi(0, u) = f0i (u), fi(t, u) ≥ 0, ‖f‖∞ ≤ a for all t, u, i

}
.

Clearly, C T1
+ is a non-empty, closed subset of the Banach space C T1 .

Let us now introduce the operator S : C T1
+ → C T1 , defined for all f ∈ C T1

+ as

(S f)i(t, u) = e−Ct
{
f0i (u) +

∫ t

0

eCs
[ 3∑
h,k=1

∫ 1

0

∫ 1

0

ηhk(u∗, u
∗)Bihk(u∗ → u|u∗, u∗)

× fh(s, u∗)fk(s, u∗) du∗ du
∗ − fi(s, u)

(
3∑
k=1

∫ 1

0

ηik(u, u∗) fk(s, u∗) du∗ − aC̃η

)

+

∫ 1

0

µi(u∗,Ei)Mi(u∗ → u|u∗,Ei)fi(s, u∗)du∗ − fi(s, u)(µi(u,Ei)− Cµ)
]
ds

}
for all (t, u) ∈ [0, T1] × [0, 1] and i = 1, 2, 3, where C = aC̃η + Cµ and C̃η =
max{1/5, Cη}.

Let Lµ and LM denote the Lipschitz constants, with respect to ψi, of the terms
µi(u∗,Ei[ψi]) and Mi(u∗, u,Ei[ψi]), respectively, and take T1 > 0 such that

T1 <
1

C
min

{
ln

3a

1 + 2a
, ln

5C + 2aLµ + aLMCµ
5C + 2aLµ + aLMCµ − 1

}
. (18)

The local existence and uniqueness of the solution follows from an application of
the Banach fixed point theorem. Indeed, it is easy to check that if f is a solution
of (17) in [0, T1] × [0, 1] then f is a fixed point of S and vice versa. Furthermore,

S (C T1
+ ) ⊂ C T1

+ , since for all f ∈ C T1
+ it results that S f(0, ·) = f0, (S f)i ≥ 0 for
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i = 1, 2, 3, and for all t ∈ [0, T1]

3∑
i=1

∫ 1

0

(S f)i(t, u)du ≤e−Ct
{
‖f0‖+

∫ t

0

eCs
[
2C̃η‖f(s, ·)‖2 + aC̃η‖f(s, ·)‖

+ 3Cµ‖f(s, ·)‖
]
ds

}
≤ e−Ct + 3a(1− e−Ct)

≤1 + 3a(1− e−CT1) ≤ a,

where (18) is taken into account.

Now, proceeding as in the proof of [43, Theorem 3.1], we obtain, for all f , g ∈ C T1
+ ,

the following inequality:

‖S f −S g‖∞ = max
t∈[0,T1]

3∑
i=1

∫ 1

0

|S f(t, u)−S g(t, u)|du ≤ k‖f − g‖∞,

where k = (1− e−CT1)(5C + 2aLµ + aLMCµ) < 1, by (18).

Therefore, the operator S : C T1
+ → C T1

+ is a contraction, and by the Banach
fixed point theorem there exists a unique solution f of (17) defined in [0, T1]× [0, 1].
By (5)–(6), ‖f(T1, ·)‖ = 1, then, by iterating the reasoning as in the proof of [18,
Theorem 3.5], f can be extended uniquely to a global solution of (17).
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