Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium

  • Received: 01 March 2014 Revised: 01 October 2014
  • 35K05, 35K51, 35K57, 80A22, 80A30.

  • In this paper we consider a three-component reaction-diffusion system with a fast precipitation and dissolution reaction term. We investigate its singular limit as the reaction rate tends to infinity. The limit problem is described by a combination of a Stefan problem and a linear heat equation. The rate of convergence with respect to the reaction rate is established in a specific case.

    Citation: Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium[J]. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669

    Related Papers:

    [1] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [2] Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes . A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755
    [3] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [4] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [5] Steinar Evje, Aksel Hiorth . A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks and Heterogeneous Media, 2010, 5(2): 217-256. doi: 10.3934/nhm.2010.5.217
    [6] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [7] James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167
    [8] Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767
    [9] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [10] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
  • In this paper we consider a three-component reaction-diffusion system with a fast precipitation and dissolution reaction term. We investigate its singular limit as the reaction rate tends to infinity. The limit problem is described by a combination of a Stefan problem and a linear heat equation. The rate of convergence with respect to the reaction rate is established in a specific case.


    [1] N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst, A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638. doi: 10.1016/j.nonrwa.2007.10.019
    [2] N. Bouillard, R. Eymard, R. Herbin and Ph. Montarnal, Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model, Math. Mod. Numer. Anal., 41 (2007), 975-1000. doi: 10.1051/m2an:2007047
    [3] H. Brézis, Analyse Fonctionnelle, Masson, 1983.
    [4] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, handbook of numerical analysis, Handb. Numer. Anal., VII (2000), 713-1020.
    [5] J. Pousin, Infinitely fast kinetics for dissolution and diffusion in open reactive systems, Nonlinear Analysis, 39 (2000), 261-279. doi: 10.1016/S0362-546X(98)00162-X
  • This article has been cited by:

    1. M. Iida, H. Monobe, H. Murakawa, H. Ninomiya, Vanishing, moving and immovable interfaces in fast reaction limits, 2017, 263, 00220396, 2715, 10.1016/j.jde.2017.04.009
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4541) PDF downloads(75) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog