Citation: Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena[J]. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655
| [1] | T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 21 (2011), 361-381. |
| [2] |
T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process, Physica B, 407 (2012), 1424-1426. doi: 10.1016/j.physb.2011.10.016
|
| [3] | T. Aiki and K. Kumazaki, Mathematical modeling of concrete carbonation process with hysteresis effect. Sūrikaisekikenkyūsho Kōkyūroku, 1792 (2012), 98-107. |
| [4] | T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109-129. |
| [5] |
T. Aiki and A. Muntean, Large time behavior of solutions to concrete carbonation problem, Communications on Pure and Applied Analysis, 9 (2010), 1117-1129. doi: 10.3934/cpaa.2010.9.1117
|
| [6] |
T. Aiki and A. Muntean, A free-boundary problem for concrete carbonation: Rigorous justification of $\sqrtt$-law of propagation, Interfaces and Free Bound., 15 (2013), 167-180. doi: 10.4171/IFB/299
|
| [7] |
T. Aiki and A. Muntean, Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry's law and time-dependent Dirichlet data, Nonlinear Anal., 93 (2013), 3-14. doi: 10.1016/j.na.2013.07.002
|
| [8] | T. Aiki, Y. Murase, N. Sato and K. Shirawaka, A mathematical model for a hysteresis appearing in adsorption phenomena, Sūrikaisekikenkyūsho Kōkyūroku, 1856 (2013), 1-12. |
| [9] |
A. Fasano and M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. doi: 10.1016/0022-247X(79)90287-7
|
| [10] |
A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. II, J. Math. Anal. Appl., 58 (1977), 202-231. doi: 10.1016/0022-247X(77)90239-6
|
| [11] | N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87. |
| [12] | K. Maekawa, R. Chaube and T. Kishi, Modeling of Concrete Performance, Taylor and Francis, 1999. |
| [13] |
K. Maekawa, T. Ishida and T. Kishi, Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1 (2003), 91-126. doi: 10.3151/jact.1.91
|
| [14] |
A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: Global existence and uniqueness of solutions, Journal of Mathematical Analysis and Applications, 350 (2009), 234-251. doi: 10.1016/j.jmaa.2008.09.044
|