Citation: Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž. Asymptotic periodicity of flows in time-depending networks[J]. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843
| [1] |
F. Bayazit, Positive evolution families solving nonautonomous difference equations, Positivity, 16 (2012), 653-684. doi: 10.1007/s11117-011-0139-3
|
| [2] | F. Bayazit, On the Asymptotic Behavior of Periodic Evolution Families on Banach Spaces, Ph.D thesis, Eberhard Karls Universität Tübingen, 2012. |
| [3] | A. M. Bayen, R. L. Raffard and C. L. Tomlin, Eulerian network model of air traffic flow in congested areas, Proc. of the American Control Conference, (2004), 5520-5526. |
| [4] | A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of Eulerian transportation networks: application to air traffic control, Proc. of the American Control Conference, (2004), 5539-5545. |
| [5] |
A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of a new Eulerian network model of air traffic flow, IEEE Transactions on Control Systems Technology, 14 (2006), 804-818. doi: 10.1109/TCST.2006.876904
|
| [6] |
B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2
|
| [7] | B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Eberhard Karls Universität Tübingen, 2008. |
| [8] |
B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87. doi: 10.1007/s00209-008-0410-x
|
| [9] |
B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to flows in networks, Physica D, 239 (2010), 1416-1421. doi: 10.1016/j.physd.2009.06.012
|
| [10] |
K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227. doi: 10.1007/s00245-010-9101-1
|
| [11] |
K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, J. Networks Heterogeneous Media, 3 (2008), 709-722. doi: 10.3934/nhm.2008.3.709
|
| [12] | K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math. 194, Springer-Verlag, 2000. |
| [13] | M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, 2006. |
| [14] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
|
| [15] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. of the Royal Society of London, 229 (1956), 317-345. doi: 10.1098/rspa.1955.0089
|
| [16] |
T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461. doi: 10.1515/FORUM.2007.018
|
| [17] | P. K. Menon, G. D. Sweriduk and K. Bilimoria, A new approach for modeling, analysis and control of air traffic flow, AIAA Journal of Guidance, Control and Dynamics, 27 (2004), 737-744. |
| [18] | H. Minc, Nonnegative Matrices, John Wiley & Sons, 1988. |
| [19] | R. Nagel, Semigroup methods for nonautonomous Cauchy problems, Evolution Equations, Lecture Notes in Pure and Appl. Math., 168 (1995), 301-316. |
| [20] | R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, Prog. Nonlinear Differential Equations Appl., 50 (2002), 279-293. |
| [21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1
|
| [22] | A. Radl, Transport processes in networks with scattering ramification nodes, J. Appl. Funct. Anal., 3 (2008), 461-483. |
| [23] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
|
| [24] |
C.-A. Robelin, D. Sun, G. Wu and A. M. Bayen, MILP control of aggregate Eulerian network airspace models, Proc. of the American Control Conference, (2006), 5257-5262. doi: 10.1109/ACC.2006.1657558
|
| [25] | H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, 1974. |
| [26] |
E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463. doi: 10.1007/s00028-005-0221-z
|
| [27] | B. Sridhar and P. K. Menon, Comparison of linear dynamic models for air traffic flow management, Proc. 16th IFAC World Congress, (2005). |
| [28] |
D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595. doi: 10.3934/nhm.2007.2.569
|