Asymptotic periodicity of flows in time-depending networks

  • Received: 01 February 2013 Revised: 01 July 2013
  • Primary: 35R02; Secondary: 47N20, 37B55.

  • We consider a linear transport equation on the edges of a network with time-varying coefficients. Using methods for non-autonomous abstract Cauchy problems, we obtain well-posedness of the problem and describe the asymptotic profile of the solutions under certain natural conditions on the network. We further apply our theory to a model used for air traffic flow management.

    Citation: Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž. Asymptotic periodicity of flows in time-depending networks[J]. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843

    Related Papers:

    [1] Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843
    [2] Jacek Banasiak, Proscovia Namayanja . Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197
    [3] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [4] Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
    [5] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [6] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
    [7] Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028
    [8] Alessandra Pluda . Evolution of spoon-shaped networks. Networks and Heterogeneous Media, 2016, 11(3): 509-526. doi: 10.3934/nhm.2016007
    [9] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [10] Maya Briani, Rosanna Manzo, Benedetto Piccoli, Luigi Rarità . Estimation of NO$ _{x} $ and O$ _{3} $ reduction by dissipating traffic waves. Networks and Heterogeneous Media, 2024, 19(2): 822-841. doi: 10.3934/nhm.2024037
  • We consider a linear transport equation on the edges of a network with time-varying coefficients. Using methods for non-autonomous abstract Cauchy problems, we obtain well-posedness of the problem and describe the asymptotic profile of the solutions under certain natural conditions on the network. We further apply our theory to a model used for air traffic flow management.


    [1] F. Bayazit, Positive evolution families solving nonautonomous difference equations, Positivity, 16 (2012), 653-684. doi: 10.1007/s11117-011-0139-3
    [2] F. Bayazit, On the Asymptotic Behavior of Periodic Evolution Families on Banach Spaces, Ph.D thesis, Eberhard Karls Universität Tübingen, 2012.
    [3] A. M. Bayen, R. L. Raffard and C. L. Tomlin, Eulerian network model of air traffic flow in congested areas, Proc. of the American Control Conference, (2004), 5520-5526.
    [4] A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of Eulerian transportation networks: application to air traffic control, Proc. of the American Control Conference, (2004), 5539-5545.
    [5] A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of a new Eulerian network model of air traffic flow, IEEE Transactions on Control Systems Technology, 14 (2006), 804-818. doi: 10.1109/TCST.2006.876904
    [6] B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2
    [7] B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Eberhard Karls Universität Tübingen, 2008.
    [8] B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87. doi: 10.1007/s00209-008-0410-x
    [9] B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to flows in networks, Physica D, 239 (2010), 1416-1421. doi: 10.1016/j.physd.2009.06.012
    [10] K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227. doi: 10.1007/s00245-010-9101-1
    [11] K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, J. Networks Heterogeneous Media, 3 (2008), 709-722. doi: 10.3934/nhm.2008.3.709
    [12] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math. 194, Springer-Verlag, 2000.
    [13] M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, 2006.
    [14] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
    [15] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. of the Royal Society of London, 229 (1956), 317-345. doi: 10.1098/rspa.1955.0089
    [16] T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461. doi: 10.1515/FORUM.2007.018
    [17] P. K. Menon, G. D. Sweriduk and K. Bilimoria, A new approach for modeling, analysis and control of air traffic flow, AIAA Journal of Guidance, Control and Dynamics, 27 (2004), 737-744.
    [18] H. Minc, Nonnegative Matrices, John Wiley & Sons, 1988.
    [19] R. Nagel, Semigroup methods for nonautonomous Cauchy problems, Evolution Equations, Lecture Notes in Pure and Appl. Math., 168 (1995), 301-316.
    [20] R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, Prog. Nonlinear Differential Equations Appl., 50 (2002), 279-293.
    [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1
    [22] A. Radl, Transport processes in networks with scattering ramification nodes, J. Appl. Funct. Anal., 3 (2008), 461-483.
    [23] P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [24] C.-A. Robelin, D. Sun, G. Wu and A. M. Bayen, MILP control of aggregate Eulerian network airspace models, Proc. of the American Control Conference, (2006), 5257-5262. doi: 10.1109/ACC.2006.1657558
    [25] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, 1974.
    [26] E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463. doi: 10.1007/s00028-005-0221-z
    [27] B. Sridhar and P. K. Menon, Comparison of linear dynamic models for air traffic flow management, Proc. 16th IFAC World Congress, (2005).
    [28] D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595. doi: 10.3934/nhm.2007.2.569
  • This article has been cited by:

    1. Christian Budde, Marjeta Kramar Fijavž, Bi-Continuous semigroups for flows on infinite networks, 2021, 16, 1556-1801, 553, 10.3934/nhm.2021017
    2. Igor Y. Popov, Dmitri S. Nikiforov, Classical and quantum wave dynamics on time-dependent geometric graph, 2018, 56, 05779073, 747, 10.1016/j.cjph.2018.01.007
    3. Marjeta Kramar Fijavž, Aleksandra Puchalska, Semigroups for dynamical processes on metric graphs, 2020, 378, 1364-503X, 20190619, 10.1098/rsta.2019.0619
    4. Alexander Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, 2022, 104, 0037-1912, 256, 10.1007/s00233-021-10250-6
    5. Christian Budde, Semigroups for flows on limits of graphs, 2021, 58, 20843828, 7, 10.4467/20843828AM.21.001.14982
    6. D S Nikiforov, I V Blinova, I Y Popov, Schrödinger and Dirac dynamics on time-dependent quantum graph, 2019, 93, 0973-1458, 913, 10.1007/s12648-018-1352-8
    7. Yassine El Gantouh, Said Hadd, Well-posedness and approximate controllability of neutral network systems, 2021, 16, 1556-1801, 569, 10.3934/nhm.2021018
    8. Klaus-Jochen Engel, Marjeta Kramar Fijavž, Flows on metric graphs with general boundary conditions, 2022, 513, 0022247X, 126214, 10.1016/j.jmaa.2022.126214
    9. Rainer Picard, Sascha Trostorff, Marcus Waurick, Adjoints of Sums of M-Accretive Operators and Applications to Non-Autonomous Evolutionary Equations, 2024, 2, 2939-9084, 10.52825/dae-p.v2i.994
    10. Christian Budde, Marjeta Kramar Fijavž, Well-posedness of non-autonomous transport equation on metric graphs, 2024, 108, 0037-1912, 319, 10.1007/s00233-024-10417-x
    11. Thami Akrid, Mahmoud Baroun,
    μ
    -Pseudo almost periodic solutions to some semilinear boundary equations on networks, 2024, 35, 1012-9405, 10.1007/s13370-023-01148-3
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3691) PDF downloads(264) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog