Citation: Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž. Asymptotic periodicity of flows in time-depending networks[J]. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843
[1] | Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843 |
[2] | Jacek Banasiak, Proscovia Namayanja . Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197 |
[3] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[4] | Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010 |
[5] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[6] | Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004 |
[7] | Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028 |
[8] | Alessandra Pluda . Evolution of spoon-shaped networks. Networks and Heterogeneous Media, 2016, 11(3): 509-526. doi: 10.3934/nhm.2016007 |
[9] | Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773 |
[10] | Maya Briani, Rosanna Manzo, Benedetto Piccoli, Luigi Rarità . Estimation of NO$ _{x} $ and O$ _{3} $ reduction by dissipating traffic waves. Networks and Heterogeneous Media, 2024, 19(2): 822-841. doi: 10.3934/nhm.2024037 |
[1] |
F. Bayazit, Positive evolution families solving nonautonomous difference equations, Positivity, 16 (2012), 653-684. doi: 10.1007/s11117-011-0139-3
![]() |
[2] | F. Bayazit, On the Asymptotic Behavior of Periodic Evolution Families on Banach Spaces, Ph.D thesis, Eberhard Karls Universität Tübingen, 2012. |
[3] | A. M. Bayen, R. L. Raffard and C. L. Tomlin, Eulerian network model of air traffic flow in congested areas, Proc. of the American Control Conference, (2004), 5520-5526. |
[4] | A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of Eulerian transportation networks: application to air traffic control, Proc. of the American Control Conference, (2004), 5539-5545. |
[5] |
A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of a new Eulerian network model of air traffic flow, IEEE Transactions on Control Systems Technology, 14 (2006), 804-818. doi: 10.1109/TCST.2006.876904
![]() |
[6] |
B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2
![]() |
[7] | B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Eberhard Karls Universität Tübingen, 2008. |
[8] |
B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87. doi: 10.1007/s00209-008-0410-x
![]() |
[9] |
B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to flows in networks, Physica D, 239 (2010), 1416-1421. doi: 10.1016/j.physd.2009.06.012
![]() |
[10] |
K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227. doi: 10.1007/s00245-010-9101-1
![]() |
[11] |
K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, J. Networks Heterogeneous Media, 3 (2008), 709-722. doi: 10.3934/nhm.2008.3.709
![]() |
[12] | K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math. 194, Springer-Verlag, 2000. |
[13] | M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, 2006. |
[14] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
![]() |
[15] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. of the Royal Society of London, 229 (1956), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[16] |
T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461. doi: 10.1515/FORUM.2007.018
![]() |
[17] | P. K. Menon, G. D. Sweriduk and K. Bilimoria, A new approach for modeling, analysis and control of air traffic flow, AIAA Journal of Guidance, Control and Dynamics, 27 (2004), 737-744. |
[18] | H. Minc, Nonnegative Matrices, John Wiley & Sons, 1988. |
[19] | R. Nagel, Semigroup methods for nonautonomous Cauchy problems, Evolution Equations, Lecture Notes in Pure and Appl. Math., 168 (1995), 301-316. |
[20] | R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, Prog. Nonlinear Differential Equations Appl., 50 (2002), 279-293. |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1
![]() |
[22] | A. Radl, Transport processes in networks with scattering ramification nodes, J. Appl. Funct. Anal., 3 (2008), 461-483. |
[23] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[24] |
C.-A. Robelin, D. Sun, G. Wu and A. M. Bayen, MILP control of aggregate Eulerian network airspace models, Proc. of the American Control Conference, (2006), 5257-5262. doi: 10.1109/ACC.2006.1657558
![]() |
[25] | H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, 1974. |
[26] |
E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463. doi: 10.1007/s00028-005-0221-z
![]() |
[27] | B. Sridhar and P. K. Menon, Comparison of linear dynamic models for air traffic flow management, Proc. 16th IFAC World Congress, (2005). |
[28] |
D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595. doi: 10.3934/nhm.2007.2.569
![]() |
1. | Christian Budde, Marjeta Kramar Fijavž, Bi-Continuous semigroups for flows on infinite networks, 2021, 16, 1556-1801, 553, 10.3934/nhm.2021017 | |
2. | Igor Y. Popov, Dmitri S. Nikiforov, Classical and quantum wave dynamics on time-dependent geometric graph, 2018, 56, 05779073, 747, 10.1016/j.cjph.2018.01.007 | |
3. | Marjeta Kramar Fijavž, Aleksandra Puchalska, Semigroups for dynamical processes on metric graphs, 2020, 378, 1364-503X, 20190619, 10.1098/rsta.2019.0619 | |
4. | Alexander Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, 2022, 104, 0037-1912, 256, 10.1007/s00233-021-10250-6 | |
5. | Christian Budde, Semigroups for flows on limits of graphs, 2021, 58, 20843828, 7, 10.4467/20843828AM.21.001.14982 | |
6. | D S Nikiforov, I V Blinova, I Y Popov, Schrödinger and Dirac dynamics on time-dependent quantum graph, 2019, 93, 0973-1458, 913, 10.1007/s12648-018-1352-8 | |
7. | Yassine El Gantouh, Said Hadd, Well-posedness and approximate controllability of neutral network systems, 2021, 16, 1556-1801, 569, 10.3934/nhm.2021018 | |
8. | Klaus-Jochen Engel, Marjeta Kramar Fijavž, Flows on metric graphs with general boundary conditions, 2022, 513, 0022247X, 126214, 10.1016/j.jmaa.2022.126214 | |
9. | Rainer Picard, Sascha Trostorff, Marcus Waurick, Adjoints of Sums of M-Accretive Operators and Applications to Non-Autonomous Evolutionary Equations, 2024, 2, 2939-9084, 10.52825/dae-p.v2i.994 | |
10. | Christian Budde, Marjeta Kramar Fijavž, Well-posedness of non-autonomous transport equation on metric graphs, 2024, 108, 0037-1912, 319, 10.1007/s00233-024-10417-x | |
11. |
Thami Akrid, Mahmoud Baroun,
-Pseudo almost periodic solutions to some semilinear boundary equations on networks,
2024,
35,
1012-9405,
10.1007/s13370-023-01148-3
|