
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2013.8.843
c©American Institute of Mathematical Sciences
Volume 8, Number 4, December 2013 pp. 843–855

ASYMPTOTIC PERIODICITY OF FLOWS

IN TIME-DEPENDING NETWORKS

Fatih Bayazit

Mathematisches Institut, Universität Tübingen
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Abstract. We consider a linear transport equation on the edges of a network

with time-varying coefficients. Using methods for non-autonomous abstract
Cauchy problems, we obtain well-posedness of the problem and describe the

asymptotic profile of the solutions under certain natural conditions on the

network. We further apply our theory to a model used for air traffic flow
management.

1. Introduction. Dynamical processes taking place in networks have been of enor-
mous interest in recent years and have various applications for real life phenomena.
We are interested in transport processes or flows in networks. Methods from the
theory of operator semigroups to treat such processes were first used in [14] for a
finite network where a simple transport equation

∂

∂t
u(x, t) =

∂

∂x
u(x, t)

was considered on the edges together with boundary conditions of Kirchhoff-type in
the vertices. These methods were further applied to various generalizations of this
problem in finite [26, 16, 22] or even infinite networks [6, 8]. The authors obtain
well-posedness and describe the asymptotic behavior of the solutions. Further,
[11, 10] studied control problems for flows in networks. See also [9] for a survey of
the semigroup approach to transport processes in networks.
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The processes in all mentioned works are autonomous, i.e. the differential opera-
tors governing the processes do not change in time. Motivated1 by applications to air
traffic flow management (see Section 5), we now study non-autonomous processes.
More precisely, we are interested in transport processes where the boundary con-
ditions in the vertices vary in time. This yields differential operators with varying
domains and the corresponding Cauchy problems become non-autonomous. Solu-
tions to such problems are described by evolution families instead of semigroups,
see [1, 12, 19, 20].

In the following we first define the time-depending network with a transport pro-
cess in it. Our main tool to study such non-autonomous processes is the theory
of difference evolution equations as developed in [1, 2] which we briefly describe
in Section 3. The main results are contained in Sections 4 and 5 where we treat
two different flow processes in a network and prove well-posedness of both of these
problems. Assuming periodic boundary conditions, we obtain asymptotically peri-
odic behavior of the solutions. The period is given in terms of the (time-depending)
network structure.

2. Preliminaries.

2.1. Time-depending networks. The network is modeled by a finite directed
graph G consisting of n vertices v1, . . . , vn and m directed edges (arcs) e1, . . . , em.
We equip every edge ej with time-varying weight ωij(t) ≥ 0 such that

m∑
j=1

ωij(t) = 1 for every t ∈ R+ and every i (1)

(here i numbers either vertices or edges — it depends on the concrete problem
and we will specify it later on). The graph structure is described by the outgoing
incidence matrix Φ− =

(
φ−ij
)
n×m with

φ−ij :=

{
1, if vi

ej−→,
0, otherwise,

and the incoming incidence matrix Φ+ =
(
φ+
ij

)
n×m with

φ+
ij :=

{
1, if

ej−→ vi,

0, otherwise.

Instead of using incidence matrices, it is sometimes more convenient to use adjacency
matrices. Here, we use the (transposed) adjacency matrix of the line graph B =
(bij)m×m with entries

bij :=

{
1, if

ej−→ v
ei−→,

0, otherwise.

A directed graph is called strongly connected if for any pair of distinct vertices
vi, vj there is a directed path in the graph going from vi to vj and vice versa. This
property can be characterized by irreducibility of the usual vertex adjacency matrix
(see e.g. [18, Theorem IV.3.2]), but also by our adjacency matrix of the line graph.

Lemma 2.1. [6, Proposition 4.9] A directed graph is strongly connected if and only
if the matrix B is irreducible.

1We are grateful to Benedetto Piccoli for drawing our attention to this problem.
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2.2. Transport processes. In order to model a transport process on the edges, we
normalize the edges as ej ∼= [0, 1] and parameterize them contrary to the direction
of the flow, i.e., the material flows from 1 to 0. We consider some finite mass
distributed on the edges of the network and denote by uj(x, t) its density at position
x ∈ [0, 1] of the edge ej and at time t, hence uj : [0, 1]× R→ R, j = 1, . . .m.

Our basic assumptions on the process are the following.

1. On each edge ej we describe the transport process by

∂

∂t
uj (x, t) =

∂

∂x
uj (x, t) , x ∈ (0, 1), t ≥ s.

2. The initial distribution of the mass on the edges ej at time s ∈ R is given by

uj(x, s) = fj(x), x ∈ (0, 1).

3. No mass is gained or lost during the process. In particular, no absorption
takes place along the edges, and in each node vi we have a Kirchhoff law

m∑
j=1

φ+
ijuj(0, t) =

m∑
k=1

φ−ikuk(1, t), t ≥ s.

4. In each vertex vi the incoming material is distributed into the outgoing edges
ej according to the time-varying weights ωij(t) ≥ 0 so that (1) holds.

By choosing two different ways to assign the weights ωij(t) to the edges, we will in
Sections 4 and 5 obtain two different flow processes in the network. In the first case
we will assume that the material is collected in the vertex and is then redistributed
according to the weights. In the second case we want to keep track of the origin of
the material and hence the weights will give the proportions of the material that
flows from one edge into another one.

3. Non-autonomous difference equations. To tackle our transport problem
in time-depending networks we will use the theory of positive evolution families
corresponding to a class of non-autonomous difference equations developed in [1]
and [2]. We explain the terminology and state the results needed below.

Choose the Banach space X = L1 ([0, 1],Cm) as the state space of the system.
For a family of matrices (B(t))t∈R ⊆ Mm(C) we define difference operators A(t) :
D (A(t))→ X by

D (A(t)) :=
{
f ∈W 1,1 ([0, 1],Cm) | f(1) = B(t)f(0)

}
and A(t)f := f ′ (2)

for f ∈ D (A(t)) and t ∈ R. The non-autonomous abstract Cauchy problem corre-
sponding to the operators (A(t), D (A(t))) is of the form

(nACP )

{
u̇ (t) = A(t)u(t), t ≥ s,
u(s) = fs ∈ X.

A classical solution to the (nACP ) is a differentiable function u ∈ C1 ([s,∞), X)
such that u(t) ∈ D (A(t)) for every t ≥ s and u satisfies (nACP ). Furthermore, we
say that (nACP ) is well-posed if there exists a unique evolution family (U(t, s))t≥s
such that that the regularity subspaces

Ys := {f ∈ X | [s,∞) 3 t 7→ U(t, s)f is a classical solution to (nACP )}

are dense in X for every s ∈ R. For the definition of the evolution family see [1,
Section 2] or [12, Definition VI.9.2]. We also recommend [19], [20], or [21, Chapter 5]
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for further information on evolution families and their relation to non-autonomous
Cauchy problems.

Since the domains D (A(t)) are time-dependent and do not contain a common
core, none of the usual well-posedness results is applicable in our case. We will use
the following results from [1] instead.

Proposition 1. [1, Theorem 2] Let the mapping t 7→ B(t) be uniformly bounded and
absolutely continuous. Then the (nACP) associated to the operators (A(t), D (A(t)))
given by (2) is well-posed.

In [1] even an explicit formula for the corresponding evolution family is given.
We state here this formula in a special case.

Proposition 2. [1, Equation (8)] Let the mapping t 7→ B(t) be uniformly bounded,
absolutely continuous and 1-periodic, i.e. B(t + 1) = B(t) for every t ∈ R. Then
the unique classical solution to (nACP ) is given by u(t) = U(t, s)fs, where

(U(t, s)f)(x) = Bk(t+ x)f(x+ t− s− k), (3)

for f ∈ X, x ∈ [0, 1], k ≤ x+ t− s < k + 1 and k ∈ N0.

In order to study the asymptotic behavior of the solutions, some more regularity
assumptions are needed. Denote the unit circle by Γ := {z ∈ C | |z| = 1}.

Proposition 3. Let t 7→ B(t) be an absolutely continuous 1-periodic mapping
and let B(t) be a stochastic irreducible matrix for every t ∈ R. Then there is a
family of projections {P (s) | s ∈ R} in L(X), commuting with the evolution family
(U(t, s))t≥s and decomposing the space X as

X = XR(s)⊕XS(s) := P (s)X ⊕ kerP (s),

such that the following properties hold.

(i) The subspaces XR(s) and XS(s) are (U(t, s))t≥s-invariant for every s ∈ R.

(ii) (US(t, s))t≥s :=
(
U(t, s)|XS(s)

)
t≥s is uniformly exponentially stable, i.e. there

exist C ≥ 1 and ω > 0 such that

‖US(t, s)‖ ≤ Ce−ω(t−s), t ≥ s.
(iii) (UR(t, s))t≥s :=

(
U(t, s)|XR(s)

)
t≥s can be extended to an invertible evolution

family (UR(t, s))(t,s)∈R2 which is positive and periodic in evolution, i.e. UR(s+

τ, s) = IXR(s) for every s ∈ R, with the period

τ = lcm {|σ (B(t)) ∩ Γ| | t ∈ [0, 1]} ,
where lcm denotes the least common multiple, and |A| stands for the number
of points of the set A.

(iv) For τ as above there exists a τ -periodic positive group (T (t))t∈R such that

‖U(t, s)− T (t− s)P (s)‖ t→∞−→ 0

for every s ∈ R.

Proof. The m × m matrices B(t) are all stochastic and irreducible, therefore by
Perron-Frobenius theory (see [25, Theorem I.6.5]) the peripheral spectrum σ (B(t))∩
Γ, for every t ∈ R, is a finite group consisting of (at most m) roots of unity which
are all first order poles of the resolvent. Hence the union⋃

t∈[0,1]

{σ (B(t)) ∩ Γ}
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is a finite discrete set and the least common multiple lcm in (iii) is well defined. The
stochasticity of the matrices B(t) also implies that the evolution family (U(t, s))t≥s
given in (3) consists of positive contractions. Combining Proposition 6, Definitions
7 and 8, and Theorem 9 from [1] we now obtain the decomposition of the space X
with properties (i) and (ii). Finally, (iii) follows from [1, Theorem 25] and (iv) from
[1, Theorem 26].

4. Flows in nonautonomous networks. Consider now a finite weighted network
G as in Section 2.1 with incidence matrices Φ− and Φ+. The time-dependent weights
ωij(t) ≥ 0 in every vertex vi give the proportions of the incoming material to be
distributed into the outgoing edges ej at time t, where

ωij(t) ≡ 0 if φ−ij = 0.

This condition reflects the fact that the edges of our network are fixed and the
flow takes place only on the edges of the network. Note however that it might
happen that no material is sent from the vertex vi into the edge ej at time t0 for
some t0, meaning that ωij(t0) = 0 even if φ−ij 6= 0. We store the weights in the

time-dependent weighted outgoing incidence matrix Φ−w(t) = (φw,ij(t))n×m defined
as

φ−w,ij(t) :=

{
ωij(t), if vi

ej−→,
0, otherwise.

The m × m time-dependent weighted adjacency matrix of the line graph Bw(t) is
obtained by

Bw(t) :=
(
Φ−w(t)

)T
Φ+. (4)

Note that the nonzero entries of Bw(t) are in one-to-one correspondence with the
nonzero entries of the unweighted adjacency matrix B of the line graph. We assume
that there is no absorption in the vertices, hence (1) holds for every i ∈ {1, . . . , n}
and all t ∈ R+, and the matrices Bw(t) are all column-stochastic.

By Gt we will denote the network at time t obtained from the adjacency matrix
Bw(t). This means that Gt ⊆ G where the edges of G with no inflow at time t are
deleted.

Under these assumptions we study the following transport process in G.

(nF )


∂
∂tuj (x, t) = ∂

∂xuj (x, t) , x ∈ (0, 1), t ≥ s,
uj (s, 0) = fj (s) , s ∈ (0, 1), (IC)

φ−ijuj (1, t) = ωij(t)
∑m

k=1 φ
+
ikuk (0, t) , t ≥ 0 (nBC)

for i = 1, . . . , n and j = 1, . . . ,m. It is of the form given in Section 2.2. Note
that the non-autonomous boundary conditions (nBC) together with (1) imply the
Kirchhoff law (3).

In order to use the results from Section 3, we now take the Banach space X =
L1 ([0, 1],Cm) and the difference operators AB(t) on X associated to the family of
matrices (Bw(t))t∈R as defined in (2), hence

AB(t)f := f ′ with domain D (AB(t)) :=
{
f ∈W 1,1 ([0, 1],Cm) | f(1) = Bw(t)f(0)

}
.

Proposition 4. The non-autonomous abstract Cauchy problem (nACP ) corre-
sponding to (AB, D (AB(t))) is an abstract version of the transport process in the
time-depending network (nF ).
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Proof. We only need to observe that the non-autonomous boundary conditions
(nBC) of the problem (nF ) are hidden in the domain D (AB(t)):

g ∈W 1,1 ([0, 1],Cm) satisfies (nBC) ⇐⇒ g(1) = Bw(t)g(0),

similarly as in [6, Prop. 3.1].

The well-posedness of the analogous problem in the autonomous case (even for
infinite networks) accompanied with an explicit formula for the solution was shown
in [6, Prop. 3.3]. By Propositions 1 and 2 we can prove a well-posedness result of our
non-autonomous flow problem (nF ) for a special class of periodic time-dependent
networks.

Corollary 1. If the mappings t 7→ ωij(t) are absolutely continuous, then (nF ) is
well-posed.

In particular, if in addition, the mappings t 7→ Bw(t) are 1-periodic, i.e. Bw(t+
1) = Bw(t) for all t ∈ R, then the unique classical solution t 7→ u(t, ·) to the non-
autonomous flow problem (nF ) in G is obtained by the evolution family in (3) as

u(t, x) = (U(t, s)fs) (x) = Bk
w(t+ x)fs(x+ t− s− k), (5)

where fs is given by the initial conditions (IC), t ≥ s, x ∈ [0, 1], k ≤ x+t−s < k+1,
and k ∈ N0.

Note that the period is assumed to be 1 only as a matter of convenience. We
could take any natural number and modify the above formula appropriately.

Using Proposition 3 we obtain an asymptotically periodic behavior of our non-
autonomous flows.

Theorem 4.1. Let the network Gt be strongly connected for every t ∈ R and let
the mapping t 7→ Bw(t) be absolutely continuous and 1-periodic. Then the flow
evolution family (5) converges uniformly to a periodic positive group in the sense of
Proposition 3.(iv). Its period τ can be computed as

τ = lcm {gcd{l | ej1 , . . . ejl form a cycle in Gt} | t ∈ R} ,

where gcd denotes the greatest common divisor.

Proof. By (1), the matrices Bw(t) are all column-stochastic. Since the graphs Gt are
all strongly connected, the matrices Bw(t) are all irreducible by Lemma 2.1. Hence
we can apply Proposition 3. For the expression for the period τ note that |σ (Bw(t))∩
Γ| equals the index of imprimitivity of the matrix Bw(t) (see [18, Definition III.1.1]),
which is the same as the greatest common divisor of all cycle lengths in the network
Gt, cf. [18, Theorem IV.3.3].

Remark 1. If we assume that the nonzero weights remain strictly positive in time,
i.e.

φ−ij 6= 0 =⇒ ωij(t) 6= 0 for all t ∈ R,
then the index of imprimitivity of Bw(t) does not change in time either, and the
period τ can be computed simply as

τ = gcd{l | ej1 , . . . ejl form a cycle in G}.

This means that in the case of non-disappearing edges in the network, the strictly
positive weights do not have any impact on the period and the asymptotic behavior
remains the same as in the autonomous case (see [14, Corollary 4.7]).
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Figure 1. The flow on this network is asymptotically periodic
with period 1.

4.1. Examples.

1. We consider the family of networks Gt depicted in Figure 1. The weights on
the edges e1, e2, e3, e6 are constant, the weights on the edges e4 and e5 vary
in time. Each edge has a nonzero flow of material on it at every time. The
corresponding adjacency matrix Bw(t) is

Bw(t) =



0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1

4 + 1
2 cos2(πt) 0 0 0

0 0 1
4 + 1

2 sin2(πt) 0 0 0
0 0 0 0 1 0

 .

The mapping t 7→ Bw(t) is absolutely continuous, so by Corollary 1, the
corresponding non-autonomous network flow problem (nF ) is well-posed. The
matrices Bw(t) are all column stochastic, 1-periodic, and, since the graphs Gt

are strongly connected for all t ∈ R, irreducible. We can therefore apply
Theorem 4.1. Note that we are in the case of Remark 1 since each edge
carries a nonzero flow of material at every time t ∈ R. For every t, the graph
Gt contains a cycle of length 3 and a cycle of length 4. Hence, the flow
evolution family converges uniformly to a periodic positive group with period
τ = gcd{3, 4} = 1 in the sense of Proposition 3.(iv), meaning that the flow on
this graph asymptotically behaves periodically with period τ = 1.

2. The networks in Figure 2 all belong to the family of networks Gt given by the
adjacency matrix Bw(t) equaling
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Figure 2. The three possible states of the family of networks Gt

in Example 2: Either, all edges of the network carry flow (Figure
(i)), or there is no flow on the edges belonging to the outer cycle
of length 4 (Figure (ii)) or to the inner cycle of length 4 (Figure
(iii)).

Note that the weights on edges e9 and e10 do not vary in time, but those
on the remaining edges do. This is indicated in Figure 2 (i). Hence, some
edges do not carry any flow for some t ∈ R: For t ∈ Z, the weights on the
edges e5, e6, e7, e8 are zero (Figure 2 (ii)), whereas for t ∈ 1

2Z \ {0}, there is
no flow on the edges e1, e2, e3, e4 (Figure 2 (iii)). Since e9, e10 form a cylce
of length 2, the greatest common divisor of all cycle lengths in the network
is equal to 2 for all times t ∈ R, and hence also the least common multiple
appearing in Theorem 4.1 is equal to 2.

Again, we obtain well-posedness of the corresponding flow problem (nF )
by Corollary 1 since the mapping t 7→ Bw(t) is continuously differentiable.
Note that the graphs Gt are strongly connected for all t ∈ R and fulfill all
assumptions required by Theorem 4.1, implying that the flow evolution family
converges uniformly to a periodic positive group with period τ = 2.
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5. Application to air traffic flow management. The following application of
our results is motivated by the (real world) regulation of air traffic, called Air Traffic
Flow Management. Its goal is to optimize air traffic flow, i.e., limiting the density of
aircraft in certain regions of airspace as well as operating efficient routes subject to
weather constraints. These tasks are currently prescribed by playbooks established
over time and based on controller experience. However, one of the aims consists in
providing a mathematical model of air traffic flow allowing to apply mathematical
control techniques.

5.1. Modelling air traffic flow. Different mathematical models for optimization
strategies have been elaborated. One approach is a Eulerian model advocated by
Menon et al., see [17], where the airspace is divided into line elements correspond-
ing to portions of airways on which the density of aircraft can be described as a
function of time and of the coordinate along the line. This approach focuses on the
conservation of aircraft on the line elements and uses partial differential equations
to describe the time evolution of the process. The equations used in this model
also appear naturally in highway traffic and were introduced by Lighthill-Whitham
[15] and Richards [23]. This Eulerian network model of air traffic flow has been
considered in several works, e.g. [17], [3, 4, 5], [27], [24], [28]. We also refer to the
monograph by M. Garavello and B. Piccoli [13] where networks of interconnected
roads are modeled and studied, and where the Lighthill-Whitham-Richards model
is considered on network structures (junctions).

We use a simplified linear Eulerian network approach. This fits into our scenario
since the traffic flow is considered as a transport process of aircraft along the edges
of a directed graph with boundary conditions in the vertices. In this context, the
vertices correspond to different destinations (or airports) or to bifurcation points
of routes in the sky, and the edges model the given connections between them (the
above mentioned line elements).

5.2. The allocation matrix. In the literature (e.g., [5], [28]), the transport pro-
cesses are usually studied only on an isolated junction of the network. An example
is given in Figure 3, showing a junction with two incoming edges e1, e2 (called links
in [28]) and three outgoing edges e3, e4, e5.

Figure 3. A junction with two incoming and three outgoing edges.

The relation between the incoming and outgoing air traffic flow at a junction is
prescribed by the so-called junction allocation matrix M(t) = (mij(t)) for 1 ≤ i ≤ p
and p+ 1 ≤ j ≤ p+ q, where 0 ≤ mij(t) ≤ 1 denotes the proportion of aircraft from
incoming link i going to the outgoing link j at time t, and

p+q∑
j=p+1

mij(t) = 1 (6)
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is required for all 1 ≤ i ≤ p and t ≥ 0 (see e.g. [28, Section 2.3] for this definition).
As an example, for the allocation matrix M(t0) of the junction in Figure 3 at

time t0, we choose

e3 e4 e5

↑ ↑ ↑

M(t0) =

(
1/2 1/3 1/6
0 1/4 3/4

)
← e1

← e2

This means that at time t0, half of the airplanes arriving from edge e1 continue
their way on edge e3, one third of them chooses e4 and the remaining ones travel
to edge e5, whereas none of the airplanes coming from edge e2 go in the direction
of e3, but one forth of them to e4 and the remaining three-fourths to e5. Note that
(6) holds.

5.3. Our setting and results. We now consider a strongly connected directed
graph G consisting of n vertices and m edges, and some air traffic flow on it, which,
according to the linear Eulerian model, can be considered as a transport process.
The boundary conditions of this process are given in the (transposed) network
allocation matrix which we now define on the whole network (not only on a single
junction) as

M(t) := (mkl(t)) for k, l ∈ {1, . . . ,m}, t ∈ R,
where 0 ≤ mkl(t) ≤ 1 denotes the proportion of aircrafts arriving from edge el
leaving into edge ek at time t. We imply that the flow only takes place on the edges
of the network G which is given by the (transposed) adjacency matrix of the line
graph B = (bkl)m×m and we set

mkl(t) ≡ 0 if bkl = 0.

We further require that
m∑

k=1

mkl(t) = 1 for all l ∈ {1, . . . ,m} and t ≥ 0. (7)

This assumption corresponds to Equation (1) (the index l now runs over the edges
of the graph) and makes the allocation matrix M(t) column stochastic.

Since every edge of the network only has one end point and one starting point,
the transpose MT (t) of every junction allocation matrix M(t) given in Section 5.2 is
a submatrix of the bigger matrix M(t). Hence our network allocation matrix M(t)
contains all the information stored in the separate junction allocation matrices and
(7) corresponds to the equations (6) in every junction.

We now model the transport process in the network as in Section 2.2 and obtain
the following air traffic flow problem.

(ATF )


∂
∂tuj (x, t) = ∂

∂xuj (x, t) , x ∈ (0, 1), t ≥ s,
uj (s, 0) = fj (s) , s ∈ (0, 1),

uj (1, t) =
∑m

k=1mjk(t)uk (0, t) , t ≥ 0,

for j = 1, . . . ,m. Observe that our non-autonomous boundary conditions together
with (7) imply the Kirchhoff law (3) in the vertices.

We now proceed as in Section 4. Problems (nF ) and (ATF ) have different
solutions since their boundary conditions differ. The conditions in (ATF ) contain
more information and are more demanding. We could look at the problem (ATF ) as
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a subproblem of (nF ) which can also be implemented by constructing a larger graph
(the precise implementation is done in [7, Section 7.3.2]). In this way we would
easily obtain well-posedness, however the formulae for the solutions and period
would relate to the artificially created larger network and it would be difficult to
relate it to the original problem. Therefore we rather repeat the steps taken for
(nF ) in Section 4, now for the problem (ATF ) instead. We will see that the main
difference is that the weighted adjacency matrix Bw(t) is replaced by the network
allocation matrix M(t). These matrices are different but share many important
properties (such as positivity, irreducibility, etc.).

We will assume that the entries of M(t) vary in an absolutely continuous and
periodic way. This assumption is natural if we think of periodically changing flight
schedules (day-night rhythms, daily or weekly periods), and without loss of gen-
erality we may assume that the period is 1. We also assume that the network Gt

remains strongly connected at all times t, even if some edges of G might not carry
any flow at certain times.

The state space of this system can be modeled by the Banach space X =
L1 ([0, 1],Cm) , and the transport process can then be described via the difference
operators

AM(t) : D (AM(t))→ X

defined by

AM(t)f := f ′ with domain D (AM(t)) :=
{
f ∈W 1,1 ([0, 1],Cm) | f(1) = M(t)f(0)

}
for t ∈ R. As in Proposition 4, we can see that the non-autonomous abstract Cauchy
problem {

u̇ (t) = AM(t)u(t), t ≥ s,
u(s) = fs ∈ X.

corresponds to the transport problem (ATF). Applying our results from Section 3,
we obtain the following well-posedness result together with a description of the
asymptotic shape of the solutions.

Theorem 5.1. Let t 7→ M(t) be an absolutely continuous 1-periodic mapping. For
every t ≥ 0 let the graphs Gt be strongly connected and the matrices M(t) column
stochastic. Then the non-autonomous transport problem (ATF ) is well-posed. Its
unique classical solution t 7→ u(t, ·) is given by the flow evolution family as

u(t, x) = (U(t, s)fs) (x) = Mk(t+ x)fs(x+ t− s− k), (8)

where fs is the initial distribution of aircraft flow, t ≥ s, x ∈ [0, 1], k ≤ x+ t− s <
k + 1, and k ∈ N0.

The flow evolution family converges uniformly to a periodic positive group in the
sense of Proposition 3.(iv) with period

τ = lcm {gcd{l | ej1 , . . . ejl form a cycle in Gt} | t ∈ R} .

Example 5.2. A small example is shown in Figure 4. In this network, one third
of the flow arriving from edge e1 is continuing its way into edge e3, the remaining
proportion of two thirds flows into the edge e4. The proportion of the flow arriving
from edge e2 and continuing into edges e3 and e4, respectively, varies in time. The
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Figure 4. A toy example to illustrate Theorem 5.1.

corresponding network allocation matrix is

M(t) =



0 0 0 0 1 0
0 0 0 0 0 1
1
3

1
4 + 1

2 cos2(πt) 0 0 0 0
2
3

1
4 + 1

2 sin2(πt) 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 .

Note that the allocation matrix contains more information on the flow than the
corresponding adjacency matrix Bw(t) used in Section 4.

According to Theorem 5.1, the air traffic flow problem (ATF ) on this network
is well-posed. The flow evolution family describing the solutions to the problem
is given by the powers of M(t) and the initial distribution of aircraft flow as in
Equation (8), and converges uniformly to a periodic positive group with period τ =
3.

Remark 2. All our results are obtained under the assumption on absolute con-
tinuity of the time-varying traffic distribution coefficients. We are aware of the
limitations this condition poses for the real-life applications. We believe one can
reformulate our results for the case of piecewise absolutely continuous or even only
measurable coefficients. This would however demand an appropriate formulation
and corresponding proofs of the abstract results on evolution families we use from
[1]. Therefore we leave this task for our future considerations.
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