Robot's finger and expansions in non-integer bases

  • Received: 01 July 2011 Revised: 01 December 2011
  • 70E60, 11A63.

  • We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.

    Citation: Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases[J]. Networks and Heterogeneous Media, 2012, 7(1): 71-111. doi: 10.3934/nhm.2012.7.71

    Related Papers:

    [1] Anna Chiara Lai, Paola Loreti . Robot's finger and expansions in non-integer bases. Networks and Heterogeneous Media, 2012, 7(1): 71-111. doi: 10.3934/nhm.2012.7.71
    [2] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [3] Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev . Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413
    [4] Jean-Pierre de la Croix, Magnus Egerstedt . Analyzing human-swarm interactions using control Lyapunov functions and optimal control. Networks and Heterogeneous Media, 2015, 10(3): 609-630. doi: 10.3934/nhm.2015.10.609
    [5] Anna Chiara Lai, Paola Loreti . Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10(2): 401-419. doi: 10.3934/nhm.2015.10.401
    [6] Yuntian Zhang, Xiaoliang Chen, Zexia Huang, Xianyong Li, Yajun Du . Managing consensus based on community classification in opinion dynamics. Networks and Heterogeneous Media, 2023, 18(2): 813-841. doi: 10.3934/nhm.2023035
    [7] Xiangdong Du, Martin Ostoja-Starzewski . On the scaling from statistical to representative volume element in thermoelasticity of random materials. Networks and Heterogeneous Media, 2006, 1(2): 259-274. doi: 10.3934/nhm.2006.1.259
    [8] Simone Göttlich, Oliver Kolb, Sebastian Kühn . Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9(2): 315-334. doi: 10.3934/nhm.2014.9.315
    [9] Leonid Berlyand, Giuseppe Cardone, Yuliya Gorb, Gregory Panasenko . Asymptotic analysis of an array of closely spaced absolutely conductive inclusions. Networks and Heterogeneous Media, 2006, 1(3): 353-377. doi: 10.3934/nhm.2006.1.353
    [10] Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
  • We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.


    [1] A. Bicchi, Robotic grasping and contact: A review, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348-353.
    [2] Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set, Mathematics of Control Signals and Systems, 14 (2001), 173-193. doi: 10.1007/PL00009881
    [3] P. Erd\Hos and V. Komornik, Developments in non-integer bases, Acta Math. Hungar., 79 (1998), 57-83. doi: 10.1023/A:1006557705401
    [4] K. J. Falconer, "Fractal Geometry," Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
    [5] W. J. Gilbert, Geometry of radix representations, in "The Geometric Vein," Springer, New York-Berlin, (1981), 129-139. doi: 10.1007/978-1-4612-5648-9_7
    [6] W. J. Gilbert, The fractal dimension of sets derived from complex bases, Canad. Math. Bull., 29 (1986), 495-500. doi: 10.4153/CMB-1986-078-1
    [7] W. J. Gilbert, Complex bases and fractal similarity, Ann. Sci. Math. Québec, 11 (1987), 65-77.
    [8] P. S. Heckbert, ed., "Graphics Gems IV," Academic Press, 1994.
    [9] J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots), Technical report, NASA Advanced Concepts Research Project, 1996.
    [10] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. doi: 10.1512/iumj.1981.30.30055
    [11] K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, in "Probability Theory and Applications," Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, (1992), 319-334.
    [12] A. C. Lai, "On Expansions in Non-Integer Base," Ph.D thesis, Sapienza Università di Roma and Université Paris Diderot, 2010.
    [13] W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416. doi: 10.1007/BF02020954
    [14] J. Pineda, A parallel algorithm for polygon rasterization, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17-20.
    [15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8 (1957), 477-493. doi: 10.1007/BF02020331
    [16] 2008.
  • This article has been cited by:

    1. Anna Chiara Lai, Paola Loreti, Pierluigi Vellucci, A Fibonacci control system with application to hyper-redundant manipulators, 2016, 28, 0932-4194, 10.1007/s00498-016-0167-4
    2. Anna Chiara Lai, Paola Loreti, Pierluigi Vellucci, 2016, A Continuous Fibonacci Model for Robotic Octopus Arm, 978-1-5090-4971-4, 99, 10.1109/EMS.2016.027
    3. Simone Cacace, Anna Chiara Lai, Paola Loreti, Modeling and Optimal Control of an Octopus Tentacle, 2020, 58, 0363-0129, 59, 10.1137/19M1238939
    4. Trieu H. Pham, Pubudu N. Pathirana, Pearse Fay, Robin Evans, Quantification of the Finger Functional Range via Explicit Descriptions of Reachable Subspaces, 2016, 65, 0018-9456, 1412, 10.1109/TIM.2016.2518360
    5. Trieu H. Pham, Pubudu N. Pathirana, 2016, Describing human finger flexibility via reachable subspaces, 978-1-5090-1801-7, 341, 10.1109/CCE.2016.7562659
    6. Pubudu N. Pathirana, Terry Caelli, 2014, Functional range of movement of the hand: Declination angles to reachable space, 978-1-4244-7929-0, 6230, 10.1109/EMBC.2014.6945052
    7. C. Baiocchi, V. Komornik, P. Loreti, Cantor type functions in non-integer bases, 2017, 153, 0236-5294, 83, 10.1007/s10474-017-0732-4
    8. Trieu H. Pham, Pubudu N. Pathirana, 2016, Quantifying the human finger reachable space, 978-1-4577-0220-4, 4589, 10.1109/EMBC.2016.7591749
    9. Anna Chiara Lai, Paola Loreti, Self-similar control systems and applications to zygodactyl bird's foot, 2015, 10, 1556-1801, 401, 10.3934/nhm.2015.10.401
    10. 2021, 9781119515104, 207, 10.1002/9781119515104.biblio
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3826) PDF downloads(78) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog