[1]
|
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
|
[2]
|
L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217-246.
|
[3]
|
D. G. Aronson, The porous medium equation, in "Nonlinear Diffusion Problems" (eds. A. Fasano and M. Primicerio), Lecture Notes in Math. 1224, Springer, Berlin, (1986), 1-46.
|
[4]
|
M. Bertsch and D. Hilhorst, The interface between regions where $u<0$ and $u>0$ in the porous medium equation, Appl. Anal., 41 (1991), 111-130.
|
[5]
|
J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.
|
[6]
|
A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.
|
[7]
|
J. Hulshof, Similarity solutions of the porous medium equation with sign changes, J. Math. Anal. Appl., 157 (1991), 75-111.
|
[8]
|
J. Hulshof, J. R. King and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes, Adv. Differential Equations, 6 (2001), 1115-1152.
|
[9]
|
J. Hulshof and J. L. Vázquez, The dipole solution for the porous medium equation in several space dimensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), 193-217.
|
[10]
|
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
|
[11]
|
S. Kamin and J. L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign, SIAM J. Math. Anal., 22 (1991), 34-45.
|
[12]
|
E. Mainini, A description of transport cost for signed measures, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (2011), 147-181.
|
[13]
|
F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory, Arch. Rational Mech. Anal., 141 (1998), 63-103. doi: 10.1007/s002050050073
|
[14]
|
F. Otto, Evolution of microstructure in unstable porous media flow: A relaxational approach, Comm. Pure Appl. Math., 52 (1999), 873-915. doi: 10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T
|
[15]
|
F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
|
[16]
|
C. J. van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation $u_t=(|u|^{m-1} u_x)_x$ with $ m > -1 $, IMA J. Appl. Math., 41 (1988), 147-163.
|
[17]
|
J. L. Vázquez, "The Porous Medium Equation," Mathematical Theory, Oxford Mathematical Monographs, Oxford, 2007.
|
[18]
|
J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space, Dedicated to Philippe Bénilan. J. Evol. Equ., 3 (2003), 67-118.
|
[19]
|
J. L. Vázquez, New self-similar solutions of the porous medium equation and the theory of solutions of changing sign, Nonlinear Anal., 15 (1990), 931-942.
|
[20]
|
C. Villani, "Optimal Transport, Old and New," Springer-Verlag, 2008.
|