Steklov problems in perforated domains with a coefficient of indefinite sign

  • Received: 01 September 2011 Revised: 01 January 2012
  • Primary: 35B27.

  • We consider homogenization of Steklov spectral problem for a divergence form elliptic operator in periodically perforated domain under the assumption that the spectral weight function changes sign. We show that the limit behaviour of the spectrum depends essentially on wether the average of the weight function over the boundary of holes is positive, or negative or equal to zero. In all these cases we construct the asymptotics of the eigenpairs.

    Citation: Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign[J]. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151

    Related Papers:

    [1] Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
    [2] Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
    [3] Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009
    [4] Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461
    [5] Mamadou Sango . Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361
    [6] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [7] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [8] Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739
    [9] Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755
    [10] Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543
  • We consider homogenization of Steklov spectral problem for a divergence form elliptic operator in periodically perforated domain under the assumption that the spectral weight function changes sign. We show that the limit behaviour of the spectrum depends essentially on wether the average of the weight function over the boundary of holes is positive, or negative or equal to zero. In all these cases we construct the asymptotics of the eigenpairs.


    [1] E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496. doi: 10.1016/0362-546X(92)90015-7
    [2] R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
    [3] G. Allaire and F. Malige, Analyse asymptotique spectrale d’un problème de diffusion neutronique, C. R. Acad. Sci. Paris, Série I, 324 (1997), 939-944.
    [4] G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. in PDE, 27 (2002), 705-725. doi: 10.1081/PDE-120002871
    [5] H. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.
    [6] T. Ya. Azizov and I. S. Iokhvidov, "Linear Operators in Spaces with an Indefinite Metric," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1989.
    [7] A. Belyaev, A. Pyatnitskiĭ and G. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik Math., 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576
    [8] V. Chiadò Piat and A. Piatnitski, $\Gamma$-convergence approach to variational problems in perforated domains with Fourier boundary conditions, ESAIM: COCV, 16 (2010), 148-175. doi: 10.1051/cocv:2008073
    [9] G. Chechkin, A. Piatnitski and A. Shamaev, "Homogenization. Methods and Applications," Translations of Mathematical Monographs, 234, American Mathematical Society, Providence, RI, 2007.
    [10] D. Cioranescu and P. Donato, On a Robin problem in perforated domains, in "Homogenization and Applications to Material Sciences" (Nice, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, (1995), 123-135.
    [11] D. Cioranescu and F. Murat, A strange term coming from nowhere, in "Topics in the Mathematical Modelling of Composite Materials," Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, (1997), 45-93.
    [12] D. Cioranescu, J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7
    [13] preprint, arXiv:1106.3904.
    [14] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
    [15] S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trans. Moscow Math. Soc., 2 (1984), 101-126.
    [16] J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.
    [17] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7
    [18] S. A. Nazarov, "Asymptotic Analysis of Thin Plates and Rods," (in Russian), Novosibirsk, 2002.
    [19] S. Nazarov, I. Pankratova and A. Piatnitski, Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function, Arch. Rational Mech. Anal., 200 (2011), 747-788. doi: 10.1007/s00205-010-0370-2
    [20] S. Nazarov and A. Piatnitski, Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign sensity, Journal of Mathematical Sciences, 169 (2010), 212-248.
    [21] O. Oleĭnik, A. Shamaev and G. Yosifian, "Mathematical Problems in Elasticity and Homogenization," Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992.
    [22] S. E. Pastukhova, On the error of averaging for the Steklov problem in a punctured domain, Differential Equations, 31 (1995), 975-986.
    [23] E. Pérez, On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 859-883. doi: 10.3934/dcdsb.2007.7.859
    [24] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271. doi: 10.1007/BF02838079
    [25] W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.
  • This article has been cited by:

    1. N. N. Abdullazade, G. A. Chechkin, Perturbation of the Steklov Problem on a Small Part of the Boundary, 2014, 196, 1072-3374, 441, 10.1007/s10958-014-1667-8
    2. Aleksandra G. Chechkina, Ciro D’Apice, Umberto De Maio, Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition, 2020, 376, 03770427, 112802, 10.1016/j.cam.2020.112802
    3. Andrea Cancedda, Spectral homogenization for a Robin–Neumann problem, 2017, 10, 1972-6724, 199, 10.1007/s40574-016-0075-z
    4. A G Chechkina, Homogenization of spectral problems with singular perturbation of the Steklov condition, 2017, 81, 1064-5632, 199, 10.1070/IM8286
    5. Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino, 2021, Chapter 9, 978-3-030-76258-2, 337, 10.1007/978-3-030-76259-9_9
    6. R. R. Gadyl’shin, A. L. Piatnitski, G. A. Chechkin, Spectral problem with Steklov condition on a thin perforated interface, 2016, 93, 1064-5624, 52, 10.1134/S1064562416010191
    7. Bruno Franchi, Silvia Lorenzani, From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains, 2016, 26, 0938-8974, 717, 10.1007/s00332-016-9288-7
    8. Alexandre Girouard, Antoine Henrot, Jean Lagacé, From Steklov to Neumann via homogenisation, 2021, 239, 0003-9527, 981, 10.1007/s00205-020-01588-2
    9. Massimo Lanza de Cristoforis, Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach, 2021, 121, 18758576, 335, 10.3233/ASY-201605
    10. D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary, 2021, 60, 0944-2669, 10.1007/s00526-020-01847-w
    11. Hermann Douanla, Homogenization of Steklov Spectral Problems with Indefinite Density Function in Perforated Domains, 2013, 123, 0167-8019, 261, 10.1007/s10440-012-9765-4
    12. Александра Григорьевна Чечкина, Aleksandra Grigor'evna Chechkina, Усреднение спектральных задач с сингулярным возмущением условия Стеклова, 2017, 81, 1607-0046, 203, 10.4213/im8286
    13. Serhii Gryshchuk, Massimo Lanza de Cristoforis, Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach, 2014, 37, 01704214, 1755, 10.1002/mma.2933
    14. Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model, 2019, 99, 00442267, e201800018, 10.1002/zamm.201800018
    15. Shuyu Ye, Qiang Ma, Qinglin Tang, Junzhi Cui, Zhihui Li, Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities, 2024, 98, 0885-7474, 10.1007/s10915-023-02437-6
    16. Taras A. Mel'nyk, Tiziana Durante, Spectral problems with perturbed Steklov conditions in thick junctions with branched structure, 2024, 0003-6811, 1, 10.1080/00036811.2024.2322644
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3855) PDF downloads(167) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog