Citation: Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign[J]. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
[1] | Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151 |
[2] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[3] | Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009 |
[4] | Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461 |
[5] | Mamadou Sango . Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361 |
[6] | Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010 |
[7] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
[8] | Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739 |
[9] | Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755 |
[10] | Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543 |
[1] |
E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496. doi: 10.1016/0362-546X(92)90015-7
![]() |
[2] | R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[3] | G. Allaire and F. Malige, Analyse asymptotique spectrale d’un problème de diffusion neutronique, C. R. Acad. Sci. Paris, Série I, 324 (1997), 939-944. |
[4] |
G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. in PDE, 27 (2002), 705-725. doi: 10.1081/PDE-120002871
![]() |
[5] | H. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[6] | T. Ya. Azizov and I. S. Iokhvidov, "Linear Operators in Spaces with an Indefinite Metric," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1989. |
[7] |
A. Belyaev, A. Pyatnitskiĭ and G. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik Math., 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576
![]() |
[8] |
V. Chiadò Piat and A. Piatnitski, $\Gamma$-convergence approach to variational problems in perforated domains with Fourier boundary conditions, ESAIM: COCV, 16 (2010), 148-175. doi: 10.1051/cocv:2008073
![]() |
[9] | G. Chechkin, A. Piatnitski and A. Shamaev, "Homogenization. Methods and Applications," Translations of Mathematical Monographs, 234, American Mathematical Society, Providence, RI, 2007. |
[10] | D. Cioranescu and P. Donato, On a Robin problem in perforated domains, in "Homogenization and Applications to Material Sciences" (Nice, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, (1995), 123-135. |
[11] | D. Cioranescu and F. Murat, A strange term coming from nowhere, in "Topics in the Mathematical Modelling of Composite Materials," Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, (1997), 45-93. |
[12] |
D. Cioranescu, J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7
![]() |
[13] | preprint, arXiv:1106.3904. |
[14] | D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[15] | S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trans. Moscow Math. Soc., 2 (1984), 101-126. |
[16] | J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968. |
[17] |
U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7
![]() |
[18] | S. A. Nazarov, "Asymptotic Analysis of Thin Plates and Rods," (in Russian), Novosibirsk, 2002. |
[19] |
S. Nazarov, I. Pankratova and A. Piatnitski, Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function, Arch. Rational Mech. Anal., 200 (2011), 747-788. doi: 10.1007/s00205-010-0370-2
![]() |
[20] | S. Nazarov and A. Piatnitski, Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign sensity, Journal of Mathematical Sciences, 169 (2010), 212-248. |
[21] | O. Oleĭnik, A. Shamaev and G. Yosifian, "Mathematical Problems in Elasticity and Homogenization," Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992. |
[22] | S. E. Pastukhova, On the error of averaging for the Steklov problem in a punctured domain, Differential Equations, 31 (1995), 975-986. |
[23] |
E. Pérez, On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 859-883. doi: 10.3934/dcdsb.2007.7.859
![]() |
[24] |
M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271. doi: 10.1007/BF02838079
![]() |
[25] | W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. |
1. | N. N. Abdullazade, G. A. Chechkin, Perturbation of the Steklov Problem on a Small Part of the Boundary, 2014, 196, 1072-3374, 441, 10.1007/s10958-014-1667-8 | |
2. | Aleksandra G. Chechkina, Ciro D’Apice, Umberto De Maio, Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition, 2020, 376, 03770427, 112802, 10.1016/j.cam.2020.112802 | |
3. | Andrea Cancedda, Spectral homogenization for a Robin–Neumann problem, 2017, 10, 1972-6724, 199, 10.1007/s40574-016-0075-z | |
4. | A G Chechkina, Homogenization of spectral problems with singular perturbation of the Steklov condition, 2017, 81, 1064-5632, 199, 10.1070/IM8286 | |
5. | Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino, 2021, Chapter 9, 978-3-030-76258-2, 337, 10.1007/978-3-030-76259-9_9 | |
6. | R. R. Gadyl’shin, A. L. Piatnitski, G. A. Chechkin, Spectral problem with Steklov condition on a thin perforated interface, 2016, 93, 1064-5624, 52, 10.1134/S1064562416010191 | |
7. | Bruno Franchi, Silvia Lorenzani, From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains, 2016, 26, 0938-8974, 717, 10.1007/s00332-016-9288-7 | |
8. | Alexandre Girouard, Antoine Henrot, Jean Lagacé, From Steklov to Neumann via homogenisation, 2021, 239, 0003-9527, 981, 10.1007/s00205-020-01588-2 | |
9. | Massimo Lanza de Cristoforis, Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach, 2021, 121, 18758576, 335, 10.3233/ASY-201605 | |
10. | D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary, 2021, 60, 0944-2669, 10.1007/s00526-020-01847-w | |
11. | Hermann Douanla, Homogenization of Steklov Spectral Problems with Indefinite Density Function in Perforated Domains, 2013, 123, 0167-8019, 261, 10.1007/s10440-012-9765-4 | |
12. | Александра Григорьевна Чечкина, Aleksandra Grigor'evna Chechkina, Усреднение спектральных задач с сингулярным возмущением условия Стеклова, 2017, 81, 1607-0046, 203, 10.4213/im8286 | |
13. | Serhii Gryshchuk, Massimo Lanza de Cristoforis, Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach, 2014, 37, 01704214, 1755, 10.1002/mma.2933 | |
14. | Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model, 2019, 99, 00442267, e201800018, 10.1002/zamm.201800018 | |
15. | Shuyu Ye, Qiang Ma, Qinglin Tang, Junzhi Cui, Zhihui Li, Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities, 2024, 98, 0885-7474, 10.1007/s10915-023-02437-6 | |
16. | Taras A. Mel'nyk, Tiziana Durante, Spectral problems with perturbed Steklov conditions in thick junctions with branched structure, 2024, 0003-6811, 1, 10.1080/00036811.2024.2322644 |