Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall

  • Received: 01 April 2008
  • Primary: 76M45; Secondary: 74F10.

  • In this paper we continue the study of a fluid-structure interaction problem with the non periodic case. We consider the non stationary flow of a viscous fluid in a thin rectangle with an elastic membrane as the upper part of the boundary. The physical problem which corresponds to non homogeneous boundary conditions is stated. By using a boundary layer method, an asymptotic solution is proposed. The properties of the boundary layer functions are established and an error estimate is obtained.

    Citation: Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall[J]. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651

    Related Papers:

    [1] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [2] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
    [3] Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397
    [4] S. E. Pastukhova . Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577
    [5] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [6] Michael Eden, Michael Böhm . Homogenization of a poro-elasticity model coupled with diffusive transport and a first order reaction for concrete. Networks and Heterogeneous Media, 2014, 9(4): 599-615. doi: 10.3934/nhm.2014.9.599
    [7] Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
    [8] Gung-Min Gie, Makram Hamouda, Roger Temam . Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7(4): 741-766. doi: 10.3934/nhm.2012.7.741
    [9] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [10] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
  • In this paper we continue the study of a fluid-structure interaction problem with the non periodic case. We consider the non stationary flow of a viscous fluid in a thin rectangle with an elastic membrane as the upper part of the boundary. The physical problem which corresponds to non homogeneous boundary conditions is stated. By using a boundary layer method, an asymptotic solution is proposed. The properties of the boundary layer functions are established and an error estimate is obtained.


  • This article has been cited by:

    1. Grigory Panasenko, Ruxandra Stavre, Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel, 2010, 5, 1556-181X, 783, 10.3934/nhm.2010.5.783
    2. Ruxandra Stavre, A boundary control problem for the blood flow in venous insufficiency. The general case, 2016, 29, 14681218, 98, 10.1016/j.nonrwa.2015.11.003
    3. G. P. Panasenko, R. Stavre, Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow, 2014, 24, 0218-2025, 1781, 10.1142/S0218202514500079
    4. Grigory Panasenko, Konstantin Pileckas, Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. I. The case without boundary-layer-in-time, 2015, 122, 0362546X, 125, 10.1016/j.na.2015.03.008
    5. Irina Malakhova-Ziablova, Grigory Panasenko, Ruxandra Stavre, Asymptotic analysis of a thin rigid stratified elastic plate – viscous fluid interaction problem, 2016, 95, 0003-6811, 1467, 10.1080/00036811.2015.1132311
    6. Grigory P. Panasenko, Ruxandra Stavre, 2010, Chapter 13, 978-1-4419-1342-5, 275, 10.1007/978-1-4419-1343-2_13
    7. R. Fares, G. P. Panasenko, R. Stavre, A Viscous Fluid Flow through a Thin Channel with Mixed Rigid-Elastic Boundary: Variational and Asymptotic Analysis, 2012, 2012, 1085-3375, 1, 10.1155/2012/152743
    8. G.P. Panasenko, R. Stavre, Asymptotic analysis of the Stokes flow in a thin cylindrical elastic tube, 2012, 91, 0003-6811, 1999, 10.1080/00036811.2011.584187
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3578) PDF downloads(83) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog