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Abstract. In this paper we continue the study of a fluid-structure interaction
problem with the non periodic case. We consider the non stationary flow of a
viscous fluid in a thin rectangle with an elastic membrane as the upper part of
the boundary. The physical problem which corresponds to non homogeneous
boundary conditions is stated. By using a boundary layer method, an asymp-
totic solution is proposed. The properties of the boundary layer functions are
established and an error estimate is obtained.

1. Introduction. Many physical phenomena involve a fluid interacting with a
moving or deformable structure. This kind of problems finds practical use in many
areas of engineering and pure science. Some areas of applications are: biomechanics,
hydroelasticity, aeroelasticity, etc.

In the last years, there was an increasing interest in the study of such problems:
[3], [4], [8], [11], [12], [2] are only a few examples of works dealing with the fluid-
structure interaction.

The purpose of this paper is to continue the asymptotic analysis of the interaction
between a viscous fluid and an elastic membrane in the case of non homogeneous
boundary conditions. We consider, as in [13], the case of small enough deformations
of the elastic structure, inducing negligible deformations of the fluid domain. This
problem is a simplified model for blood motion through an artery.

Recently, we published some results concerning the flow through the bloodstream.
In [5], [6], [7] we considered a more complicated model for the fluid motion, but the
flow domain was taken with rigid boundaries.

An asymptotic approach of a viscous quasi-static flow through a narrow elastic
tube was performed in [1]. An error estimate between the exact solution and the
first term of the asymptotic solution is obtained when the displacement of the elastic
wall is described by Navier equation.

We consider a non steady state viscous flow in a thin channel with a visco-elastic
wall. The fluid motion is simulated by the Stokes equations, the wall behaviour is
described by the Sophie Germain fourth order in space non-steady state equation
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for the transversal displacements of the elastic wall (the plate model), while the
longitudinal wall displacements are disregarded. The fluid-structure interaction
is simulated by the equality of the fluid velocity at the boundary and the time
derivative of the wall displacement (the longitudinal velocity is taken equal to zero).
In a previous paper, [13], we studied the periodic case. We extend here the results
obtained in [13] for the non-periodic problem.

The problem contains two small parameters: one of them is the ratio ε of the
thickness of the channel to its length; the second, δ, is the ratio of the linear density
to the stiffness of the wall. For various ratios of these two small parameters, an
asymptotic expansion of a periodic solution is constructed. Parameter δ is taken as
some power of ε, namely, δ = εγ , γ ≥ 3.

The outline of this paper is as follows: in Section 2 we describe the physical
problem. In order to approximate the solution of the considered problem with more
regular functions, we propose an asymptotic expansion. The main difference be-
tween the present paper and [13] is the following: in [13] the asymptotic solution was
introduced to approximate a periodic flow in a semi infinite rectangle. We proposed
an asymptotic expansion with the terms verifying the same boundary conditions
as the solution of the initial problem. The aim of this paper is to approximate
the solution of the fluid-structure interaction problem in a finite rectangle. Conse-
quently, the traces of the asymptotic solution on the lateral sides of the boundary
may be different from those of the solution for the initial problem. To overcome
this difficulty, we introduce the boundary layer correctors which allow us to es-
timate the error between the asymptotic solution and the macroscopic one. The
next section deals with the study of the boundary layer problems. The boundary
layer problem for the velocity/pressure is not a classical one; hence, the results of
[9] can not be applied in this case. For obtaining the exponential decay at infinity
for the boundary layers, we propose a method based on the construction of several
functions. In the last section we establish the error between the exact solution and
the asymptotic solution of order K.

2. The physical problem. We consider a small parameter ε, ε =
1

q
, q ∈ N

∗ and

we define the thin domain

Dε = {(x1, x2) ∈ R
2 : 0 < x1 < 1, −ε

2
< x2 <

ε

2
}.

Let Γε be the elastic part of the boundary of Dε, given by:

Γε = {(x1,
ε

2
) : 0 < x1 < 1}.

The other part of the boundary is rigid.
We suppose that the incompressible, viscous fluid fills the domain Dε and inter-

acts with the elastic structure Γε. The interaction between the fluid and the elastic
boundary produces the displacement dd(x1, t) of this boundary in Ox2 direction.
We neglect the longitudinal displacement. We study this problem for t ∈ [0, T ], with
T an arbitrary positive constant and we assume that the membrane is not very elas-
tic so that the displacement of the boundary is small enough. Consequently, at each
time t, we can consider with a good approximation the fluid flow equations in the
initial configuration. For the case when the equations for the fluid are set in the
deformed configuration we can refer, for instance, to [11] for the stationary case and
to [2] for the non stationary one; in these papers the existence and the uniqueness
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of the solution were studied.

Let f be the exterior force applied to the fluid, g e2 the exterior force applied
on the elastic boundary and

(

Tf n
)

2
the surface force exerted by the fluid on the

structure, with Tf the stress tensor and n the outer unit normal on the boundary
of Dε.

The non stationary problem described above, with non homogeneous boundary
conditions for the velocity is modelised by the following coupled system:



























































































































ρf
∂u

∂t
− µ ∆u + ∇p = f in Dε × (0, T ),

div u = 0 in Dε × (0, T ),

u = 0 on (∂Dε ∩ {x2 = −ε
2
}) × (0, T ),

u = ε2ψε on (∂Dε ∩ {x1 = i}) × (0, T ), i ∈ {0, 1},

u1 = 0 and u2 =
∂d

∂t
on Γε × (0, T ),

u(x, 0) = 0 in Dε,

ρh
∂2d

∂t2
+
h3E

12

∂4d

∂x4
1

+ ν̄
∂4

∂x4
1

(∂d

∂t

)

= g(x1, t) +
(

Tfn
)

2
on Γε × (0, T ),

d(0, t) = d(1, t) =
∂d

∂x1
(0, t)

∂d

∂x1
(1, t) = 0 in (0, T ),

d(x1, 0) =
∂d

∂t
(x1, 0) = 0 in (0, 1),

(1)

where ρf , ρ, µ, ν̄, E represent positive given constants in connection with the
properties of the materials. The positive constant h is the thickness of the elastic
membrane. We consider that the elastic boundary is clamped. The non homoge-
neous boundary conditions for the velocity are given by the function ψε which is
defined as follows :

ψε(x, t) = ψ(ξ, t),

with ξ = x/ε and ψ is 1-periodic in ξ1 and satisfies the problem










div ψ = 0 in (0, 1) × (−1/2, 1/2)× (0, T ),

ψ = 0 on {ξ2 = ±1/2} × (0, T ),
ψ(ξ, 0) = 0.

The unknowns of the system (1) are: the velocity of the fluid, u, the pressure of the
fluid, p, and the displacement of the elastic membrane, d. The fluid flow is described

by the non stationary Stokes equations. A “viscous” type term, ν̄
∂4

∂x4
1

(∂d

∂t

)

, was

added to the usual forth-order equation for the normal displacement. This addi-
tional term will ensure that the velocity of the structure is smooth enough. The

coefficient
h3E

12
will play an important role for our problem. Usually, the Young’s

modulus, E, has a very big value (E is of order 106Pa) and this value becomes
more important if the elastic medium is more rigid. On the other hand, we as-
sume that the characteristic longitudinal space scale for vessels is of order of cm
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and the time scale is of order of seconds. Let us use the SI system of units. This
leads us to the necessity of scaling of every derivative in x1 by the factor 102, i.
e. the fourth derivative will contain the additional factor 108. If h is of order 10−3

m or 10−2 m, then the coefficient ρh can be taken in the further analysis equal to
one. The coefficient h3E/12 in equation (1)7 will be replaced (after scaling in x1)
by a great coefficient δ−1 with the value of δ of order from 10−7 to 10−4. If the
ratio of the thickness and the length of the vessel ε is of order 10−2, then δ is of
order from ε2 to ε4. We assume that the “viscous” term is much smaller than the
term with coefficient δ−1 considering that the new coefficient ν, obtained after scal-

ing in x1, (ν108 ν̄) is of order of one. The coefficient of the term
∂u

∂t
in (1)1 is not

too important, so for the sake of simplicity we shall take it in the sequel equal to one.

The action of the viscous fluid on the elastic membrane is represented by the
stress tensor Tf = Tf (u, p) which is defined by

Tf(u, p) = pI − µ
(

∇u + (∇u)t
)

.

On the boundary Γε n = e2; hence

(

Tfn)2 = p− 2µ
∂u2

∂x2
on Γε × (0, T ).

If we formally consider div u = 0 on Γε × (0, T ), from (1)51 it follows that :

∂u2

∂x2
= 0.

Hence, the surface force exerted by the fluid on the elastic boundary can be defined
by:

(

Tfn)2 = p. (2)

Due to the periodicity of the function ψ, the compatibility condition for the
coupled system which describes the physical problem is the same as in [13], i. e.

0 =

∫

∂Dε

u(x, t) · n dγx =

∫

Γε

u2(x1,
ε

2
, t) dx1 =

d

dt

(

∫ 1

0

d(x1, t)dx1

)

.

It follows that

∫ 1

0

d(x1, t)dx1 = constant for all t ∈ (0, T ). Using next the initial

condition for d, we obtain the constant equal to zero.

Hence, the compatibility condition for the above coupled system becomes:
∫ 1

0

d(x1, t)dx1 = 0 for all t ∈ (0, T ). (3)

This condition states that the global area of the flow domain is preserved.

We consider the following regularity for the data: f ∈ L2(0, T ; (L2(Dε))
2 ),

g ∈ L2((0, 1)× (0, T )) and ψ ∈ H1(0, T ; (H2((0, 1)× (−1/2, 1/2)))2) with the prop-
erties stated above.

For obtaining the variational formulation of (1) and (3) we introduce the following
spaces:







V ε = {v ∈ (H1(Dε))
2 : divv = 0, v = 0 on ∂Dε\Γε, v1 = 0 on Γε},

B0 = {b ∈ H2
0 (0, 1) :

∫ 1

0

b(x1) dx1 = 0}
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If we replace the system (1) with a homogeneous one by changing the function
u with v = u− ε2ψε, then the variational formulation of the homogeneous system
is given by:



































































Find (v, d) ∈ L2(0, T ;V ε) ×H1(0, T ;B0),
with (v′, d′) ∈ L2(0, T ; (V ε)′) ×H1(0, T ; (B0)

′),
which satisfies a. e. in (0, T ) :

d

dt

∫

Dε

v ·ϕ+ µ

∫

Dε

∇v : ∇ϕ+
d

dt

∫ 1

0

∂d

∂t
b+

1

δ

∫ 1

0

∂2d

∂x2
1

∂2b

∂x2
1

+ν

∫ 1

0

∂3d

∂x2
1∂t

∂2b

∂x2
1

∫

Dε

f̃ · ϕ+

∫ 1

0

gb, ∀ϕ ∈ V ε, b ∈ B0, ϕ2 = b on Γε

v2 =
∂d

∂t
on Γε,

v(0) = 0, d(x1, 0) =
∂d

∂t
(x1, 0) = 0.

The results concerning the existence, the uniqueness and the regularity of the so-
lution and some a priori estimates can be found in [13]. Since we shall need the a
priori estimates for obtaining the error between the exact solution and the asymp-
totic one we give without proof the following result:

Proposition 2.1. Let (ui, pi, di) be the solution of the problem (1) corresponding
to the data fi, gi, i = 1, 2. Then the following estimates hold:



























































‖u1 − u2‖L∞(0,T ;(L2(Dε))2) ≤ C(T )E(f1, f2, g1, g2),

‖∇(u1 − u2)‖L2(0,T ;(L2(Dε))2) ≤ C(T, µ)E(f1, f2, g1, g2),
∥

∥

∥

∂(d1 − d2)

∂t

∥

∥

∥

L∞(0,T ;L2(0,1))
≤ C(T )E(f1, f2, g1, g2),

∥

∥

∥

∂2(d1 − d2)

∂x2
1

∥

∥

∥

L∞(0,T ;L2(0,1))
≤

√
δC(T )E(f1, f2, g1, g2)

∥

∥

∥

∂3(d1 − d2)

∂x2
1∂t

∥

∥

∥

L2((0,1)×(0,T ))
≤ C(T, ν)E(f1, f2, g1, g2),

(4)

where E(f1, f2, g1, g2) = ‖f1 − f2‖L2(0,T ;(L2(Dε))2) + ‖g1 − g2‖L2((0,1)×(0,T ))

3. Asymptotic approach. In the sequel, we introduce the asymptotic expansions
for the problem described in the previous section. We consider more regular data
than in Section 2. We suppose that



























ψ = ψ1(ξ2, t)e1, ψ1 ∈ C∞([−1/2, 1/2]× [0, T ]),

f = f1(x1, t) e1, f1, g ∈ C∞([0, 1] × [0, T ]),

∃ t∗ < T such that f1(x1, t) = g(x1, t) = ψ1(ξ2, t) = 0

∀ (x1, ξ2, t) ∈ (0, 1) × (− 1
2 ,

1
2 ) × (0, t∗).

(5)

We shall approximate the functions u, p, d which verify the system (1). In the
sequel we take δ = εγ , with γ ∈ N

∗, γ ≥ 3.

In this case, we consider a more complicated asymptotic solution than in the
periodic case, since it is necessary to introduce the boundary layer correctors.
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We define an asymptotic solution by:































û(K)(x1, x2, t) = u(K)(x1,
x2

ε
, t) + u

(K) 0
BL

(x

ε
, t

)

+ u
(K) 1
BL

(x

ε
− 1

ε
e1, t

)

,

p̂(K)(x1, x2, t) = p(K)(x1,
x2

ε
, t) + p

(K) 0
BL

(x

ε
, t

)

+ p
(K) 1
BL

(x

ε
− 1

ε
e1, t

)

,

d̂(K)(x1, t) = d(K)(x1, t) + d
(K) 0
BL

(x1

ε
, t

)

+ d
(K) 1
BL

(x1 − 1

ε
, t

)

.

(6)

The expressions of u(K), p(K), d(K) are the same as in the periodic case, i. e.















































































u
(K)
1 (x1,

x2

ε
, t) =

K
∑

j=0

εj+2 u1,j

(

x1,
x2

ε
, t),

u
(K)
2 (x1,

x2

ε
, t) =

K
∑

j=0

εj+3 u2,j

(

x1,
x2

ε
, t),

p(K)(x1,
x2

ε
, t) =

K
∑

j=0

εj+1 pj

(

x1,
x2

ε
, t) +

K
∑

j=0

εj qj
(

x1, t),

d(K)(x1, t) =

K
∑

j=0

εj+γ dj

(

x1, t).

(7)

Since the functions given by (7)1,2,4 do not satisfy the same boundary conditions
as u, d on the lateral sides of the boundary, we introduce the boundary layer
correctors. They correspond to the left end for i = 0 and to the right end for i = 1
and their expressions are given by:























































u
(K) i
BL

(x

ε
, t

)

=

K
∑

j=0

εj+2 u
(i)
j

(x

ε
, t

)

,

p
(K) i
BL

(x

ε
, t

)

=
K

∑

j=0

εj+1 p
(i)
j

(x

ε
, t

)

,

d
(K) i
BL

(x1

ε
, t

)

K
∑

j=0

εj+γ d
(i)
j

(x1

ε
, t

)

.

(8)

Introducing the asymptotic expansions into (1) and into (3), identifying the co-

efficients of the powers of ε and denoting ξ2 =
x2

ε
we are leaded to consider the
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following problem:














































































































































































































−µ ∂2u1,j

∂ξ22
+
∂pj−1

∂x1
− µ

∂2u1,j−2

∂x2
1

+
∂u1,j−2

∂t
+
∂qj
∂x1

= f1δj0,

−µ ∂2u2,j−1

∂ξ22
+
∂pj

∂ξ2
− µ

∂2u2,j−3

∂x2
1

+
∂u2,j−3

∂t
= 0,

∂u1,j

∂x1
+
∂u2,j

∂ξ2
= 0,

u1,j

(

x1,±
1

2
, t

)

= 0,

u2,j

(

x1,−
1

2
, t

)

= 0,

u2,j

(

x1,
1

2
, t

)∂dj−γ+3

∂t
,

∂4dj

∂x4
1

+ ν
∂5dj−γ

∂x4
1∂t

+
∂2dj−γ

∂t2
= g δj0 + qj + pj−1/ξ2=1/2,

dj(0, t) = −d(0)
j (0, t),

dj(1, t) = −d(1)
j (0, t),

∂dj

∂x1
(0, t) = −

∂d
(0)
j+1

∂ξ1
(0, t),

∂dj

∂x1
(1, t) −

∂d
(1)
j+1

∂ξ1
(0, t),

∫ 1

0

dj(x1, t)dx1 = −
∫ ∞

0

d
(0)
j−1(ξ1, t)dξ1 −

∫ 0

−∞

d
(1)
j−1(ξ1, t)dξ1.

(9)

We associate to the problem (9)1−6 the following compatibility condition:

−
∫ 1/2

−1/2

u1,j(0, ξ2, t)dξ2 +

∫ 1/2

−1/2

u1,j(1, ξ2, t)dξ2,+

∫ 1

0

∂dj−γ+3

∂t
(x1, t)dx1 = 0. (10)

For obtaining the problems for the boundary layers corresponding to the left side
we introduce the domain Π+ = (0, ∞) × (−1/2, 1/2). The problem:















































































−µ∆ξu
(0)
j + ∇ξp

(0)
j −

∂u
(0)
j−2

∂t
in Π+ × (0, T ),

divξ u
(0)
j = 0 in Π+ × (0, T ),

u
(0)
j (ξ1,−

1

2
, t) = 0,

u
(0)
j (ξ1,

1

2
, t) =

∂d
(0)
j−γ+2

∂t
(ξ1, t)e2,

u
(0)
j (0, ξ2, t) = −u1,j(0, ξ2, t)e1 − u2,j−1(0, ξ2, t)e2 + δj0ψ1(ξ2, t)e1,

u
(0)
j → 0, p

(0)
j → 0 uniformely, when ξ1 → ∞,

(11)
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with the compatibility condition
∫ ∞

0

∂d
(0)
j−γ+2

∂t
(ξ1, t)dξ1 +

∫ 1/2

−1/2

u1,j(0, ξ2, t)dξ2 − δj0

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2 = 0 (12)

will give the boundary layer correctors for the velocity and for the pressure corre-
sponding to the left end.

The boundary layer corrector for the displacement, corresponding to the left side,
is obtained as a solution to the following problem:























∂4d
(0)
j

∂ξ41
= −

∂2d
(0)
j−γ−4

∂t2
− ν

∂5d
(0)
j−γ

∂ξ41∂t
+ p

(0)
j−5/ξ2=1/2 in (0,∞) × (0, T ),

∂ad
(0)
j

∂ξa
1

→ 0 uniformely, when ξ1 → ∞, ∀ a ∈ {0, 1, 2, 3}.

(13)

In a similar way we introduce the boundary layer correctors corresponding to
the right side. The boundary layers for the velocity and pressure are defined on
Π− × (0, T ) with Π− = (−∞, 0) × (−1/2, 1/2) and the boundary layer for the
displacement is defined on (−∞, 0) × (0, T ).

Remark 3.1. For γ > 3 all the problems (9), (11) and (13) are stationary, while
for γ = 3 only problems (11) and (13) are stationary, the time variable appearing
in these cases as a parameter. However, all the unknowns must satisfy the homoge-
neous conditions for t = 0. These conditions can be obtained due to the hypothesis
(5)3.

The last part of this section is devoted to an analysis of the problems (9), (11),
(13). We shall present step by step the order of solving the previous problems for
different values of γ and we shall analyse the leading terms.

For this purpose we introduce the functions:

N1(ξ2) =
1

2
(ξ22 − 1

4
),

which satisfies N ′′
1 = 1, N1

(

± 1

2

)

= 0 and

N2(ξ2) =

∫ ξ2

−1/2

N1(τ) dτ ;

with N2

(1

2

)

=

∫ 1/2

−1/2

N1(τ)dτ = − 1

12
.

We shall use the following notations:

D−1 : F 7→
∫ ξ2

−1/2

F (x1, τ, t) dτ,

D−2 : F 7→
∫ ξ2

−1/2

∫ θ

−1/2

F (x1, τ, t) dτ dθ− (ξ2 +
1

2
)

∫ 1/2

−1/2

∫ θ

−1/2

F (x1, τ, t) dτ dθ .

a) The case γ > 3
The steps of solving the previous problems are:
• We determine, up to two functions of t, u1,j, u2,j , pj , qj from (9)1−6.
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Proposition 3.1. The unknowns u1,j , u2,j, pj , qj are given, up to two functions
of t, by the following relations:



























































































u1,j =
1

µ

(

D−2
(∂pj−1

∂x1
− µ

∂2u1,j−2

∂x2
1

+
∂u1,j−2

∂t

)

+
( ∂qj
∂x1

− f1δj0

)

N1(ξ2)
)

,

pj = D−1
(

µ
(∂2u2,j−1

∂ξ22
+
∂2u2,j−3

∂x2
1

)

− ∂u2,j−3

∂t

)

,

u2,j = −D−1
( 1

µ

(

D−2
(∂2pj−1

∂x2
1

− µ
∂3u1,j−2

∂x3
1

+
∂2u1,j−2

∂x1∂t

)))

− 1

µ

(∂2qj
∂x2

1

− ∂f1
∂x1

δj0

)

N2(ξ2),

− 1

µ

∫ 1/2

−1/2

D−2
(∂2pj−1

∂x2
1

− µ
∂3u1,j−2

∂x3
1

+
∂2u1,j−2

∂x1∂t

)

dξ2

− 1

12µ

(∂f1
∂x1

δj0 −
∂2qj
∂x2

1

)

=
∂dj−γ+3

∂t
.

(14)

Proof. Integrating twice (9)1 with respect to ξ2 and using the boundary conditions
(9)4 we get (14)1. This relation will give the unknown u1,j after determining qj .
The other functions contained by this relation are either known from previous com-
putations or equal to zero. We integrate next the incompressibility condition (9)3
with respect to ξ2 with the boundary condition (9)5 and we obtain (14)3. The pres-
sure approximations are given by (9)2 since all the functions which appear in this
relation, except pj , are already known. The integration of (9)2 in ξ2 yields that the
functions pj are unique up to an additive function depending on x1, t. In (14)2 we
took this function equal to zero since we consider (in the expansion (7)3) that any
function depending only on x1, t is contained in qj . Finally, the equation (14)4 is
obtained introducing the expression of u2,j into the boundary condition (9)6. The
unknown of (14)4 is qj , since j− γ+ 3 < j. The integration of (14)4 with respect to
x1 introduces two unknown functions of t. At the end of this proof we have pj , u2,j

uniquely determined, u1,j given up to one function of t and qj known up to two
functions of t.

For j = 0 the system (14) becomes:















































u1,0 =
1

µ

( ∂q0
∂x1

− f1

)

N1(ξ2),

p0 = 0

u2,0 = − 1

µ

(∂2q0
∂x2

1

− ∂f1
∂x1

)

N2(ξ2),

∂2q0
∂x2

1

− ∂f1
∂x1

= 0.

(15)

It follows that u2,0(x1, ξ2, t) = 0.
The integration of (15)4 yields:

q0(x1, t) = q0(0, t) +

∫ x1

0

f1(s, t)ds+
( ∂q0
∂x1

(0, t) − f1(0, t)
)

x1. (16)
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The expression of u1,0 is given by:

u1,0(x1, ξ2, t) =
1

µ

( ∂q0
∂x1

(0, t) − f1(0, t)
)

N1(ξ2). (17)

• We determine the function of t contained by the expression of u1,j (
∂qj
∂x1

(0, t))

from the compatibility condition (12).

We get from (12) written for j = 0 (since 2 − γ < 0):

∫ 1/2

−1/2

u1,0(0, ξ2, t)dξ2

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2.

Using next (17) it follows that

∂q0
∂x1

(0, t) = −12µ

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2 + f1(0, t)

and hence

u1,0(x2, ξ2, t) = −12
(

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2

)

N1(ξ2).

Remark 3.2. The compatibility condition for the boundary layers correctors cor-

responding to the right end gives the same expression for
∂q0
∂x1

(0, t) due to (9)12 and

to (10).

• We solve (13) and the corresponding problem for the right end for j and for
j+1. The right hand side of (13)1 is known, both for j and for j+ 1 from previous
computations.

Remark 3.3. d
(i)
j = 0, i = 0, 1 for j < 5 since for these values of j the right hand

side of (13)1 is equal to zero.

• We solve (11) and the corresponding problem for the right end. Since j−γ+2 <
j, all the right hand sides of (11) are known from previous computations.

The next section is devoted to the study of the boundary layer problems.
• We solve (9)7−12 which gives the function dj , and the last unknown function

of t, contained by qj , qj(0, t). For j = 0 (9)7−12 becomes:














































































∂4d0

∂x4
1

= g + q0,

d0(0, t) = 0,

d0(1, t) = 0,

∂d0

∂x1
(0, t) = 0,

∂d0

∂x1
(1, t) = 0,

∫ 1

0

d0(x1, t)dx1 = 0.

(18)



ASYMPTOTICS OF A NON-PERIODIC FLOW 661

We integrate (18)1 four times with respect to x1 which introduces four new functions
of t. For these functions and for q0(0, t) we have exactly five conditions, (18)2−6.

b) The case γ = 3
In this case, the steps of solving the problems are:
• We express, from (9)1−5, uj , pj depending on qj . For j = 0 the expressions of

u0 and p0 with respect to q0 are given by (15)1−3.
• We solve (13) and the corresponding problem for the right end for j and for

j + 1.
• We solve (11) and the corresponding problem for the right end.
• We solve the problem satisfied by dj .

Theorem 3.1. The approximations of the displacement, dj, are obtained as solu-
tions of the following parabolic problems of the sixth order in the space variable:







































































































































































































































∂dj

∂t
− 1

12µ

∂6dj

∂x6
1

= − 1

12µ

∂f1
∂x1

δj0 +A2,j−1(x1, 1/2, t)

− 1

12µ

∂2g

∂x2
1

δj0 +
1

12µ

∂4dj−3

∂x2
1∂t

2
+

ν

12µ

∂7dj−3

∂x6
1∂t

− 1

12µ

∂2pj−1

∂x2
1

/ξ2=1/2,

dj(0, t) = −d(0)
j (0, t),

dj(1, t) = −d(1)
j (0, t),

∂dj

∂x1
(0, t) = −

∂d
(0)
j+1

∂ξ1
(0, t),

∂dj

∂x1
(1, t) = −

∂d
(1)
j+1

∂ξ1
(0, t),

∂5dj

∂x5
1

(0, t)
( ∂g

∂x1
(0, t) + f1(0, t)

)

δj0 −
∂3dj−3

∂x1∂t2
(0, t) − ν

∂6dj−3

∂x5
1∂t

(0, t)

+
∂pj−1

∂x1
(0, 1/2, t) + 12µ

∫ ∞

0

∂d
(0)
j−1

∂t
(ξ1, t)dξ1

+12µ

∫ 1/2

−1/2

A1,j−1(0, ξ2, t)dξ2 − 12µδj0

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2,

∂5dj

∂x5
1

(1, t)
( ∂g

∂x1
(1, t) + f1(1, t)

)

δj0 −
∂3dj−3

∂x1∂t2
(1, t) − ν

∂6dj−3

∂x5
1∂t

(1, t)

+
∂pj−1

∂x1
(1, 1/2, t)− 12µ

∫ ∞

0

∂d
(1)
j−1

∂t
(ξ1, t)dξ1 − 12µ

∫ 1/2

−1/2

A1,j−1(1, ξ2, t)dξ2

−12µ

∫ 1

0

A2,j−1(x1, 1/2, t)dx1 + 12µδj0

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2,

dj(x1, 0) = 0,

(19)

where A1,j−1 and A2,j−1 are known functions, depending on previous approxima-
tions.
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Proof. From (9)7 we get:

∂5dj

∂x5
1

∂g

∂x1
δj0 −

∂3dj−3

∂x1∂t2
− ν

∂6dj−3

∂x5
1∂t

+
∂pj−1

∂x1
/ξ2=1/2 +

∂qj
∂x1

(20)

On the other hand, (14)1 can be written as

u1,j(x1, ξ2, t) = A1,j−1(x1, ξ2, t) +
1

µ

( ∂qj
∂x1

− f1δj0

)

N1(ξ2). (21)

We introduce u1,j(0, ξ2, t) given by (21) into the compatibility condition (12) and we

obtain
∂qj
∂x1

(0, t) which leads, together with (20), to the boundary condition (19)6.

The boundary condition for x1 = 1 can be obtained in a similar way.

The first approximation d0 is the unique solution of the following system:






































































∂d0

∂t
− 1

12µ

∂6d0

∂x6
1

= − 1

12µ

( ∂f1
∂x1

+
∂2g

∂x2
1

)

,

d0(0, t) = d0(1, t) =
∂d0

∂x1
(0, t)

∂d0

∂x1
(1, t) = 0,

∂5d0

∂x5
1

(0, t)
∂g

∂x1
(0, t) + f1(0, t) − 12µ

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2,

∂5d0

∂x5
1

(1, t)
∂g

∂x1
(1, t) + f1(1, t) + 12µ

∫ 1/2

−1/2

ψ1(ξ2, t)dξ2,

d0(x1, 0) = 0.

(22)

• We determine qj from (9)7 and then uj and pj from (14)1−3.

Remark 3.4. The asymptotic velocity in the transversal direction is greater than
for γ > 3 since, for γ = 3, u2,0 given by (15)3 is not equal to zero.

4. Boundary layer problems. In the sequel we study the problems for the
boundary layers corresponding to the left side, (11) and (13). The next theorem
gives the exponentially decay to zero of the boundary layers at infinity.

Theorem 4.1. Let (u
(0)
j , p

(0)
j ) be the solution of (11) and d

(0)
j the solution of (13).

Then ∀j ∈ N there exist cj = cj(t), dj = dj(t), σj = σj(t), cj , dj , σj > 0 such
that:



























‖∇u
(0)
j ‖L2(Π+∩{ξ1>R}))4 ≤ cj(t) exp(−σj(t)R),

‖∇p(0)
j ‖L2(Π+∩{ξ1>R}))2 ≤ cj(t) exp(−σj(t)R), ∀ R > 0,

∣

∣

∣

∂md
(0)
j

∂ξm
1

∣

∣

∣
≤ cj(t) exp(−σj(t) ξ1), ∀ m ∈ N, ξ1 > 1.

(23)

Moreover, the property p
(0)
j → 0 when ξ1 → ∞ yields:

|p(0)
j (ξ1, ξ2, t)| ≤ dj(t) exp(−σj(t) ξ1), ∀ ξ1 > 1, ξ2 ∈ (−1/2, 1/2). (24)

Proof. The existence and uniqueness of u
(0)
j and the existence of p

(0)
j are obtained

in a classical way. The uniqueness of p
(0)
j is a consequence of (11)6. Moreover, (11)6

ensures enough regularity for u
(0)
j and p

(0)
j so that the left hand side of (23) makes

sense. We shall prove the estimates (23) recursively with respect to j. For j = 0
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(11) represents the classical problem of [9]. Hence, (23)1,2 are obtained by using
the technique of [9].

(13) for j=0 yields d
(0)
0 = 0.

We suppose that the estimates (23) are satisfied for 0, 1, ..., j − 1 and we prove
them for j.

We notice that (11)1 and (11)4 for a general value of j have a non homogeneous
right hand side. For this reason, the technique of [9] cannot be applied any more.

We define a new function

v
(0)
j (ξ1, ξ2, t) = u

(0)
j (ξ1, ξ2, t) − (ξ2 + 1/2)

∂d
(0)
j+2−γ

∂t
(ξ1, t)e2. (25)

Denoting






























f̃j−1(ξ1, ξ2, t) = −
∂u

(0)
j−2

∂t
(ξ1, ξ2, t) + µ(ξ2 +

1

2
)
∂3d

(0)
j+2−γ

∂ξ21∂t
(ξ1, t)e2,

ϕj−1(ξ2, t) = ψ1(ξ2, t)δj0e1 − u1,j(0, ξ2, t)e1 − u2,j−1(0, ξ2, t)e2

−(ξ2 +
1

2
)
∂d

(0)
j+2−γ

∂t
(0, t)e2,

(26)

we obtain for (v
(0)
j , p

(0)
j ) the following problem:























































−µ∆v
(0)
j + ∇p(0)

j = f̃j−1 in Π+ × (0, T ),

divv
(0)
j −

∂d
(0)
j+2−γ

∂t
in Π+ × (0, T ),

v
(0)
j (ξ1,±

1

2
, t) = 0,

v
(0)
j (0, ξ2, t) = ϕj−1(ξ2, t)

v
(0)
j → 0, p

(0)
j → 0 uniformely, when ξ1 → ∞.

(27)

For the sake of simplicity, in the sequel we will not write the dependence on t.

For any R > 0 we define Π+
R = Π+ ∩ {ξ1 > R}. Multiplying (27)1 by v

(0)
j and

integrating on Π+
R we get

µ

∫

Π+
R

|∇v
(0)
j |2dξ +

µ

2

∫ 1/2

−1/2

∂(v
(0)
j )2

∂ξ1
(R, ξ2)dξ2 −

∫ 1/2

−1/2

p
(0)
j (R, ξ2)(v

(0)
j )1(R, ξ2)dξ2

=

∫

Π+
R

f̃j−1 · v(0)
j dξ1dξ2 −

∫

Π+
R

p
(0)
j

∂d
(0)
j+2−γ

∂t
dξ1dξ2.

(28)
We majorate next each term of the right hand side of (28).

For the first term we have obviously, after using the Poincaré inequality and the
recurence hypothesis

∫

Π+
R

f̃j−1 · v(0)
j dξ1dξ2 ≤ µ

2

∫

Π+
R

|∇v
(0)
j |2dξ1dξ2 + α1exp(−λ1R).
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For the second one, taking into account the regularity of p
(0)
j at ∞ and again the

recurence hypothesis, it follows that

−
∫

Π+
R

p
(0)
j

∂d
(0)
j+2−γ

∂t
dξ ≤

(

∫

Π+
R

(p
(0)
j )2

∣

∣

∣

∂d
(0)
j+2−γ

∂t

∣

∣

∣
dξ

)1/2(
∫

Π+
R

∣

∣

∣

∂d
(0)
j+2−γ

∂t

∣

∣

∣
dξ

)1/2

≤ α2

(

∫

Π+

(p
(0)
j )2

∣

∣

∣

∂d
(0)
j+2−γ

∂t

∣

∣

∣
dξ

)1/2

exp(−λ2 R) ≤ α3exp(−λ2 R).

Denoting by y(R) =

∫

Π+
R

|∇v
(0)
j |2, with y′(R) = −

∫ 1/2

−1/2

|∇v
(0)
j (R, ξ2)|2dξ2 and

introducing the previous computations into (28) we obtain:

µ

2
y(R)+

µ

2

∫ 1/2

−1/2

∂(v
(0)
j )2

∂ξ1
(R, ξ2)dξ2−

∫ 1/2

−1/2

p
(0)
j (v

(0)
j )1(R, ξ2)dξ2 ≤ α4exp(−λ3R). (29)

Integrating (29) from s to ∞ with respect to R and using the Poincaré inequality
for the second term of the left hand side we get:

µ

2

∫ ∞

s

y(R)dR+α5y
′(s) ≤

∫ ∞

s

∫ 1/2

−1/2

p
(0)
j (v

(0)
j )1(R, ξ2)dξ2dR+α6exp(−λ3 s). (30)

It remains to estimate the first term of the right hand side of the above inequality.
For this purpose, we define for any l ∈ N, Ds,l = (s+ l, s+ l + 1) × (−1/2, 1/2).

The compatibility condition for the system (27) written in Π+
R × (0, T ) is

∫ 1/2

−1/2

(v
(0)
j )1(R, ξ2)dξ2

∫ ∞

R

∂d
(0)
j+2−γ

∂t
(ξ1)dξ1. (31)

Integrating (31) from s+ l to s+ l+ 1 and defining the new function

ζ(R, ξ2) = (v
(0)
j )1(R, ξ2) −

∫ ∞

R

∂d
(0)
j+2−γ

∂t
(ξ1)dξ1 (32)

it follows that:
∫

Ds,l

ζ(R, ξ2)dRdξ2 = 0, (33)

and the first term of the right hand side of (30) becomes

I =
∑

l≥0

∫

Ds,l

p
(0)
j ζ(R, ξ2)dRdξ2

+
∑

l≥0

∫

Ds,l

(

p
(0)
j (R, ξ2)

∫ ∞

R

∂d
(0)
j+2−γ

∂t
(ξ1)dξ1

)

dRdξ2. (34)

For the first term of (34) we consider the problem:














ws,l ∈ (H1
0 (Ds,l))

2,

divws,lζ in Ds,l,

‖ws,l‖(H1(Ds,l))2 ≤ c0‖ζ‖L2(Ds,l),

(35)

where c0 is the constant which corresponds to the square (0, 1) × (−1/2, 1/2).
The previous problem has a solution, due to the compatibility condition (33).
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In the sequel we use the new problem (35) and (27)1 for writting the first sum
of (34) as follows:

∑

l≥0

∫

Ds,l

p
(0)
j (R, ξ2)ζ(R, ξ2)dRdξ2 −

∑

l≥0

∫

Ds,l

∇p(0)
j (R, ξ2) · ws,l(R, ξ2)dRdξ2

= µ
∑

l≥0

∫

Ds,l

∇v
(0)
j (R, ξ2) · ∇ws,l(R, ξ2)dRdξ2 −

∑

l≥0

∫

Ds,l

f̃j−1(R, ξ2) · ws,l(R, ξ2)dRdξ2

≤ µy(s) + α1exp(−λ1 s) + α7

∫

Π+
s

ζ2(R, ξ2)dRdξ2

≤ µy(s) + α1exp(−λ1 s) + α8

∫

Π+
s

(

(v
(0)
j )21(R, ξ2)

+
(

∫ ∞

R

∂d
(0)
j+2−γ

∂t (ξ1)dξ1

)2)

dRdξ2

≤ α9y(s) + α10exp(−λ4 s).

The computations for the second sum of (34) are the following:

∑

l≥0

∫

Ds,l

p
(0)
j (R, ξ2)

∫ ∞

R

∂d
(0)
j+2−γ

∂t
(ξ1)dξ1

∫

Π+
s

p
(0)
j (R, ξ2)

∫ ∞

R

∂d
(0)
j+2−γ

∂t
(ξ1)dξ1

≤
(

∫

Π+
s

(p
(0)
j )2(R, ξ2)

∫ ∞

R

∣

∣

∣

∂d
(0)
j+2−γ

∂t
(ξ1)

∣

∣

∣
dξ1

)1/2(
∫

Π+
s

∫ ∞

R

∣

∣

∣

∂d
(0)
j+2−γ

∂t
(ξ1)

∣

∣

∣
dξ1

)1/2

≤ α11exp(−λ5 s).

With the previous estimates (30) becomes:

y′(s) + a

∫ ∞

s

y(R)dR ≤ by(s) + bj−1exp(−2αj−1 s). (36)

We define the new function z(s) = y(s)exp(−b s) and we multiply (36) by exp(−b s).
It follows that:

z′(s) + a exp(−b s)
∫ ∞

s

z(R) exp(bR)dR ≤ bj−1exp(−(b+ 2αj−1)s). (37)

We define, for any δ > 0, F (s) = z(s)+δ exp(−b s)
∫ ∞

s

z(R) exp(bR)dR.We obtain

F ′(s)+δF (s) ≤ (δ2−δ b−a)exp(−b s)
∫ ∞

s

z(R)exp(bR)dR+bj−1exp(−(b+2αj−1) s).

Multiplying the previous inequality by exp(δ s), integrating it from 0 to θ, denoting

G(θ)

∫ θ

0

(

exp((δ − b) s)

∫ ∞

s

z(R)exp(bR)dR
)

ds and using F (θ) > z(θ)∀ θ>0 we

are leaded to

y(θ) ≤
(

F (0) +
bj−1

2αj−1 + b− δ

)

exp((b − δ)θ) + (δ2 − δ b− a)

G(θ)exp((b − δ)θ) − bj−1

2αj−1 + b− δ
exp(−2αj−1θ).

(38)
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For any δ satisfying the inequalities δ > b, 2αj−1 + b − δ > 0 and δ2 − δ b − a < 0
we get from (38)

‖∇v
(0)
j (t)‖2

L2(Π+
θ ))4

≤ c̃2j(t) exp(−2σ̃j(t) θ), (39)

with c̃2j = F (0)+
bj−1

2αj−1 + b− δ
and σ̃j =

δ − b

2
. (23)1 is now an obvious consequence

of (39) and of the recurence hypothesis. We obtain then from (23)1, in a classical
way the estimate (23)2. Then, with the same technique as in [9], we get from (23)2

|∇p(0)
j (ξ, t)| ≤ cj(t) exp(−σj(t) ξ1) ∀ ξ1 > 1. (40)

For any α > 1 and ξ1 ∈ (1, α) we have

p
(0)
j (α, ξ2, t) − p

(0)
j (ξ1, ξ2, t)

∫ α

ξ1

∂p
(0)
j

∂τ
(τ, ξ2, t)dτ.

Making α→ ∞ and using (11)6 it follows that

−p(0)
j (ξ1, ξ2, t) =

∫ ∞

ξ1

∂p
(0)
j

∂τ
(τ, ξ2, t)dτ.

Hence |p(0)
j (ξ, t)| ≤

∫ ∞

ξ1

|∇p(0)
j (τ, ξ2, t)dτ ≤ cj(t)

σj(t)
exp(−σj(t)ξ1) which represents

the inequality (24).
Finally, (23)3 is obtained as a consequence of the recurence hypothesis and the

proof is achieved.

Remark 4.1. The functions cj , dj , σj which appear in the estimates (23) depend
on time.

Since we need an exponentially decay to zero of the boundary layers at infinity
independent on t, we shall prove the following result:

Proposition 4.1. For any j ∈ N, there exist two positive constants mj < Mj so
that mj < cj(t) < Mj , mj < dj(t) < Mj , mj < σj(t) < Mj, ∀t ∈ [0, T ].

Proof. We shall prove this property recursively with respect to j.
For j = 0, as we previously said, (11) represents the classical problem of [9], with

t appearing as a parameter; the problem (11) becomes:














































−µ∆ξu
(0)
0 + ∇ξp

(0)
0 = 0

divξ u
(0)
0 = 0 in Π+ × (0, T ),

u
(0)
0 (ξ1,−

1

2
, t) = 0

u
(0)
0 (ξ1,

1

2
, t) = 0

u
(0)
0 (0, ξ2, t) = −u1,0(0, ξ2, t)e1 + ψ1(ξ2, t)e1,

u
(0)
0 → 0, p

(0)
0 → 0 uniformely, when ξ1 → ∞,

(41)

We multiply (41) by u
(0)
0 , we integrate on Π+

R and we denote y(R) =
∫

Π+
R
|∇u

(0)
0 |2.

It follows

µy(R) +
µ

2

∫ 1/2

−1/2

∂(u
(0)
0 )2

∂ξ1
(R, ξ2)dξ2 −

∫ 1/2

−1/2

p
(0)
0 (R, ξ2)(u

(0)
0 )1 = 0 (42)

Integrating (42) from s to ∞ we obtain
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µ

∫ ∞

s

y(R)dR−µ
2

∫ ∞

s

∫ 1/2

−1/2

∂(u
(0)
0 )2

∂R
(R, ξ2)+

∫ ∞

s

∫ 1/2

−1/2

p
(0)
0 (u

(0)
0 )1(R, ξ2). (43)

The first term of the right hand side (T1) becomes with the condition to ∞

T1 =
µ

2

∫ 1/2

−1/2

(u
(0)
0 )2(s, ξ2)dξ2

and using the Poincare inequality it follows

T1 ≤ p0
µ

2

∫ 1/2

−1/2

(∇u(0)
0 )2(s, ξ2)dξ2 = −p0

µ

2
y′(s)

with p0 a constant corresponding to Poincare inequality (hence independent on t).
Hence (43) becomes

µ

∫ ∞

s

y(R)dR+ p0
µ

2
y′(s) ≤

∑

l≥0

∫

Ds,l

p
(0)
0 (u

(0)
0 )1dRdξ2 (44)

We consider the problem:














ws,l ∈ (H1
0 (Ds,l))

2,

divws,l(u
(0)
0 )1 in Ds,l,

‖ws,l‖(H1(Ds,l))2 ≤ p1‖(u(0)
0 )1‖L2(Ds,l),

(45)

where p1 is independent on t.
With the same computations as those of Theorem 4.1 we get from (45)

∑

l≥0

∫

Ds,l

p
(0)
0 (R, ξ2)(u

(0)
0 )1(R, ξ2)dRdξ2 ≤ µp1y(s) (46)

From (44) and (46) we obtain

y′(s) +
2

p0

∫ ∞

s

y(R)dR ≤ 2p1y(s)

We define (see [9], p. 315)

σ0 =
1

2
(

√

(2p1)2 + 4 · 2

p0
− 2p1), k =

1

σ0

√

(2p1)2 + 4 · 2

p0

and

c0 = ky(0).

It follows for j = 0 σ0 independent on t; c0 depends on t due to y(0) =
∫

Π+

|∇u(0)
0 |2.

Since u
(0)
0 depends on t continuously ((41)5) the same property holds for c0.

We suppose that the result is true for 0, 1, ..., j − 1 and we prove it for j.
Due to the recurence hypothesis, to the regularity of the solutions and to the

definition of the functions cj , dj , σj (which depend continuously on the functions
given by the previous steps of the recurence) the proof of the proposition is
achieved.
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5. Error estimates. In the last section we establish the error between the exact
solution and the asymptotic one. Due to the boundary layer functions, the estimates
obtained in this case are not as good as those for the periodic case, given in [13].

In the sequel we obtain for the general asymptotic solution (û(K), p̂(K), d̂(K))
given by (6) a problem of the same type as (1).

For any γ ≥ 3 we introduce the following notations

FK(x1, x2, t)
(

εK+1∂u1,K−1

∂t
+ εK+2 ∂u1,K

∂t

)

(x1,
x2

ε
, t) e1

+
(

εK+1 ∂u2,K−2

∂t
+ εK+2∂u2,K−1

∂t
+ εK+3 ∂u2,K

∂t

)

(x1,
x2

ε
, t) e2

−µ
(

εK+1∂
2u1,K−1

∂x2
1

+ εK+2 ∂
2u1,K

∂x2
1

)

(x1,
x2

ε
, t) e1

−µ
(

εK+1∂
2u2,K−2

∂x2
1

+ εK+2 ∂
2u2,K−1

∂x2
1

+ εK+3 ∂
2u2,K

∂x2
1

)

(x1,
x2

ε
, t) e2

−µεK+1 ∂
2u2,K

∂ξ22
(x1,

x2

ε
, t) e2 + εK+1 ∂pK

∂x1
(x1,

x2

ε
, t) e1+

(

εK+1
∂u

(0)
K−1

∂t
+εK+2∂u

(0)
K

∂t

)

(
x

ε
, t) +

(

εK+1
∂u

(1)
K−1

∂t
+εK+2∂u

(1)
K

∂t

)

(
x− e1

ε
, t)

(47)

AK(x1, t) = −
(

εK+4∂dK+4−γ

∂t
+ · · · + εK+γ ∂dK

∂t

)

(x1, t)−

(

εK+3
∂d

(0)
K+3−γ

∂t
+ · · · + εK+γ ∂d

(0)
K

∂t

)

(
x1

ε
, t)

−
(

εK+3
∂d

(1)
K+3−γ

∂t
+ · · · + εK+γ ∂d

(1)
K

∂t

)

(
x1−1

ε
, t),

(48)

r
(0)
K (x2, t) = εK+3u2,K(0,

x2

ε
, t)e2 +

K
∑

j=0

εj+2u
(1)
j (−1

ε
,
x2

ε
, t), (49)

r
(1)
K (x2, t) = εK+3u2,K(1,

x2

ε
, t)e2 +

K
∑

j=0

εj+2u
(0)
j (

1

ε
,
x2

ε
, t), (50)

GK(x1, t) =
(

εK+1 ∂
2dK+1−γ

∂t2
+ · · · + εK+γ ∂

2dK

∂t2

)

(x1, t)

+ν
(

εK+1 ∂
5dK+1−γ

∂x4
1∂t

+ · · · + εK+γ ∂
5dK

∂x4
1∂t

)

(x1, t)

−εK+1pK(x1,
1

2
, t) +

(

εK−3
∂2d

(0)
K−3−γ

∂t2
+ · · · + εK+γ ∂

2d
(0)
K

∂t2

)

(
x1

ε
, t)

+ν
(

εK−3
∂5d

(0)
K+1−γ

∂ξ41∂t
+ · · · + εK+γ−4∂

5d
(0)
K

∂ξ41∂t

)

(
x1

ε
, t)

−(εK−3p
(0)
K−4 + · · · + εK+1p

(0)
K )(

x1

ε
,
1

2
, t)

(51)
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+
(

εK−3
∂2d

(1)
K−3−γ

∂t2
+ · · · + εK+γ ∂

2d
(1)
K

∂t2

)

(
x1 − 1

ε
, t)

+ ν
(

εK−3
∂5d

(1)
K+1−γ

∂ξ41∂t
+ · · · + εK+γ−4∂

5d
(1)
K

∂ξ41∂t

)

(
x1 − 1

ε
, t)

− (εK−3p
(1)
K−4 + · · · + εK+1p

(1)
K )(

x1 − 1

ε
,
1

2
, t),

R
(0)
K (t) =

K
∑

j=0

εj+γd
(1)
j (−1

ε
, t), (52)

R
(1)
K (t) =

K
∑

j=0

εj+γd
(0)
j (

1

ε
, t), (53)

R
′ (0)
K (t) = εK+γ ∂dK

∂x1
(0, t) +

K
∑

j=0

εj+γ−1
∂d

(1)
j

∂ξ1
(−1

ε
, t), (54)

R
′ (1)
K (t) = εK+γ ∂dK

∂x1
(1, t) +

K
∑

j=0

εj+γ−1
∂d

(0)
j

∂ξ1
(
1

ε
, t). (55)

The problem satisfied by the asymptotic solution of order K is the following:


















































































































































∂û(K)

∂t
− µ ∆û(K) + ∇p̂(K) = f1e1 + FK in Dε × (0, T ),

div û(K) = 0 in Dε × (0, T ),

û(K)(x1,−
ε

2
, t) = 0 in (0, 1) × (0, T ),

û(K)(x1,
ε

2
, t)

∂d̂(K)

∂t
(x1, t)e2 +AK(x1, t)e2 in (0, 1) × (0, T ),

û(K)(i, x2, t) = ε2ψε
1(x2, t)e1 + r

(i)
K in

(

− ε

2
,
ε

2

)

× (0, T ), i ∈ {0, 1},

û(K)(x, 0) = 0 ∀ x ∈ Dε,

∂2d̂(K)

∂t2
+

1

εγ

∂4d̂(K)

∂x4
1

+ ν
∂5d̂(K)

∂x4
1∂t

= g +GK + p̂(K)/x2=ε/2 on Γε × (0, T ),

d̂(K)(i, t) = R
(i)
K (t) in (0, T ), i ∈ {0, 1},

∂d̂(K)

∂x1
(i, t)R

′ (i)
K (t) in (0, T ) i ∈ {0, 1},

d̂(K)(x1, 0)
∂d̂(K)

∂t
(x1, 0) = 0 ∀ x1 ∈ (0, 1),

(56)

We notice that the boundary conditions for û(K) and d̂(K) on x1 = 0, 1 and on
x2 = ε/2 are different from those for u and d, respectively. In the sequel we define

new functions Û(K) and D̂(K) which satisfy the same boundary conditions as u and
d, respectively, on x1 = 0, 1 and on x2 = ε/2.
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5.1. Construction of D̂(K). We consider a function d̃(K) : [0, 1] × [0, T ] 7→ R,

d̃(K) = aK
4 (t)x4

1 + aK
3 (t)x3

1 + aK
2 (t)x2

1 + aK
1 (t)x1 + aK

0 (t), with d̃(K)(0, t) = R
(0)
K (t),

d̃(K)(1, t) = R
(1)
K (t), ∂d̃(K)

∂x1
(0, t) = R

′ (0)
K (t), ∂d̃(K)

∂x1
(1, t) = R

′ (1)
K (t) and

∫ 1

0

d̃(K)(x1, t)dx1 =

∫ 1

0

d̂(K)(x1, t)dx1.

It is easy to prove that there exists at least one function d̃(K) with the above
properties. We define

D̂(K) = d̂(K) − d̃(K), (57)

which satisfies the same boundary conditions as d on x1 = 0, 1.

5.2. Construction of Û(K). Let U
(K)
ε : D̄ε × [0, T ] 7→ R

2 a solution of the follow-
ing problem:























































U
(K)
ε (t) ∈ (H1(Dε))

2,

div U
(K)
ε (t) = 0 in Dε,

U(K)
ε (x1,−

ε

2
, t) = 0, in (0, 1) × (0, T ),

U(K)
ε (x1,

ε

2
, t)

∂d̃(K)

∂t
(x1, t)e2 +AK(x1, t)e2, in (0, 1) × (0, T ),

U(K)
ε (i, x2, t) = r

(i)
K , in

(−ε
2
,
ε

2

)

× (0, T ), i ∈ {0, 1}.

(58)

We can prove that

Proposition 5.1. The problem (58) has at least a solution, with the property

‖U(K)
ε (t)‖H1(Dε))2 = O(εK+3/2). (59)

Proof. The existence of a solution of (58) is a consequence of the choice of d̃(K). We

define η(K)
ε : D× (0, T ) 7→ R

2, where D = (0, 1)× (−1/2, 1/2), by η(K)
ε (x1, y2, t) =

(U (K)
ε )1(x1, x2, t)e1 +

1

ε
(U (K)

ε )2(x1, x2, t)e2, with (y1, y2) = (x1,
x2

ε
).

Obvious computations lead to the following problem for η
(K)
ε (t):











































divyη
(K)
ε (t) = 0 in D,

η(K)
ε (y1,−

1

2
, t) = 0,

η(K)
ε (y1,

1

2
, t)

1

ε

(∂d̃(K)

∂t
(x1, t) +AK(x1, t)

)

e2,

η(K)
ε (i, y2, t)(r

(i)
K )1(y2, t)e1 +

1

ε
(r

(i)
K )2(y2, t)e2, i ∈ {0, 1}.

As in [10] we can prove that there exists a function η
(K)
ε (t) ∈ (H1(D))2 so that

‖η(K)
ε (t)‖(H1(D))2 ≤ C(D)‖η(K)

ε (t)‖(H1/2(∂D))2 .
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Using the properties of the boundary layer correctors it follows that

‖η(K)
ε (t)‖(H1(D))2 = O(εK+2). (60)

Standard computations give ‖U(K)
ε (t)‖(H1(Dε))2 ≤ 1

ε1/2
‖η(K)

ε (t)‖(H1(D))2 and com-

bining these two inequalities the proof is complete.

The function

Û(K) = û(K) − U(K)
ε , (61)

satisfies the same boundary conditions as u on x1 = 0, 1 and on x2 = ε/2. The

problem for the new functions Û(K), p̂(K), D̂(K) is an obvious consequence of (56),
(57) and (58):







































































































































































∂Û(K)

∂t
− µ ∆Û(K) + ∇p̂(K) = f1e1 + FK − ∂U

(K)
ε

∂t
+ µ ∆U(K)

ε ,

div Û(K) = 0 in Dε × (0, T ),

Û(K)(x1,−
ε

2
, t) = 0 in (0, 1) × (0, T ),

Û(K)(x1,
ε

2
, t)

∂D̂(K)

∂t
(x1, t)e2 in (0, 1) × (0, T ),

Û(K)(i, x2, t) = ε2ψε
1(x2, t)e1, i ∈ {0, 1},

Û(K)(x, 0) = 0 ∀ x ∈ Dε,

∂2D̂(K)

∂t2
+

1

εγ

∂4D̂(K)

∂x4
1

+ ν
∂5D̂(K)

∂x4
1∂t

= g +GK + p̂(K)

−∂
2d̃(K)

∂t2
− 1

εγ

∂4d̃(K)

∂x4
1

− ν
∂5d̃(K)

∂x4
1∂t

on Γε × (0, T ),

D̂(K)(0, t) = D̂(K)(1, t) = 0, in (0, T ),

∂D̂(K)

∂x1
(0, t)

∂D̂(K)

∂x1
(1, t) = 0, in (0, T ),

D̂(K)(x1, 0)
∂D̂(K)

∂t
(x1, 0) = 0 ∀ x1 ∈ (0, 1).

(62)

The next theorem, which represents the main result of this section, will give the
error between the exact solution of problem (1) and the asymptotic solution of order
K, given by (6).

Theorem 5.1. Let (û(K), p̂(K), d̂(K)) be the asymptotic solution given by (6) and
(u, p, d) the exact solution of the physical problem. Then the following estimates
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hold:



































































































‖u− û(K)‖L∞(0,T ;(L2(Dε))2)

{

O(ε3/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}) for K ≥ 4

‖∇(u − û(K))‖L2(0,T ;(L2(Dε))4)

{

O(ε3/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}) for K ≥ 4

∥

∥

∥

∂

∂t
(d− d̂(K))

∥

∥

∥

L∞(0,T ;(L2(0,1))

{

O(ε3/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}) for K ≥ 4

∥

∥

∥

∂3

∂x2
1∂t

(d− d̂(K))
∥

∥

∥

L2((0,1)×(0,T ))

{

O(ε3/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}) for K ≥ 4

∥

∥

∥

∂2

∂x2
1

(d− d̂(K))
∥

∥

∥

L∞(0,T ;(L2(0,1))

{

O(ε3/2+γ/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}+γ/2) for K ≥ 4

‖∇(p− p̂(K))‖L2(0,T ;(H−1(Dε))2)

{

O(ε5/2−γ/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−3/2,K+5−γ}−γ/2) for K ≥ 4

(63)

Proof. We establish the estimate (63)2. From (61) and (59) it follows that

‖∇(u − û(K))‖L2(0,T ;(L2(Dε))4) ≤ ‖∇(u − Û(K))‖L2(0,T ;(L2(Dε))4) +O(εK+3/2).

An estimate for the first term of the right hand side of the previous inequality

is given by (4)2 if we compute ‖FK − ∂U
(K)
ε

∂t
+ µ ∆ U(K)

ε ‖L2(0,T ;(L2(Dε))2) and

‖GK − ∂2d̃(K)

∂t2
− 1

εγ

∂4d̃(K)

∂x4
1

− ν
∂5d̃(K)

∂x4
1∂t

‖L2((0,1)×(0,T )).

Taking into account the definitions of FK , GK , d̃
(K),U

(K)
ε and (59) it follows that

the order of error is given by min{‖GK‖L2((0,1)×(0,T )),
1

εγ

∥

∥

∥

∂4d̃(K)

∂x4
1

∥

∥

∥

L2((0,1)×(0,T ))
}.

We estimate first the previous norm for K ∈ {0, 1, 2, 3}. For this purpose

we compute

∫ T

0

∫ 1

0

(

p
(0)
0

(x1

ε
,
1

2
, t

))2

dx1dt = ε

∫ T

0

∫ 1/ε

0

(

p
(0)
0

(

ξ1,
1

2
, t

))2

dξ1dt =

ε
(

∫ T

0

∫ 1

0

(

p
(0)
0

(

ξ1,
1

2
, t

))2

dξ1dt+

∫ T

0

∫ 1/ε

1

(

p
(0)
0

(

ξ1,
1

2
, t

))2

dξ1dt
)

.

Taking into account the estimate (24) we get
(

∫ T

0

∫ 1

0

(

p
(0)
0

(x1

ε
,
1

2
, t

))2

dx1dt
)1/2

= O(ε1/2); hence ‖GK‖L2((0,1)×(0,T )) = O(ε3/2).

Similar computations give, for K ≥ 4 ‖GK‖L2((0,1)×(0,T )) = O(εK−5/2).

From the definition of the boundary layer functions we get d̃(K)=0 forK≤ 3.

Moreover, ‖∂4d̃(K)

∂x4
1

‖L2((0,1)×(0,T )) = O(εmin{K+4,K+γ}) for K ≥ 4; hence the esti-

mate (63)2 was established.
The estimates (63)1,3,4,5 are proved with the same technique.
The proof is achieved if we obtain the last estimate, corresponding to the pressure.

For this purpose, we introduce the notation (UK , DK , PK)(ÛK , D̂K , p̂K)−(u, d, p),
we write the problem corresponding to (UK , DK , PK) and we multiply the Stokes
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equation for (UK , PK) by
∂UK

∂t
integrating the result on Dε and the Sophie-

Germain equation for DK by
∂2DK

∂t2
integrating it on (0,1). Adding these two

computations, we obtain, as in [13], the estimate
∥

∥

∥

∂UK

∂t

∥

∥

∥

L2(0,T ;(L2(Dε))2)

{

O(ε3/2−γ/2) for K ∈ {0, 1, 2, 3},
O(εmin{K−5/2,K+4−γ}−γ/2) for K ≥ 4,

which yields the desired estimate for the pressure. For more details concerning the
estimate for the pressure we refer to [13].
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