Modeling cell movement in anisotropic and heterogeneous network tissues

  • Received: 01 December 2006 Revised: 01 March 2007
  • 92C17.

  • Cell motion and interaction with the extracellular matrix is studied deriving a kinetic model and considering its diffusive limit. The model takes into account the chemotactic and haptotactic effects, and obtains friction as a result of the interactions between cells and between cells and the fibrous environment. The evolution depends on the fibre distribution, as cells preferentially move along the fibre direction and tend to cleave and remodel the extracellular matrix when their direction of motion is not aligned with the fibre direction. Simulations are performed to describe the behavior of an ensemble of cells under the action of a chemotactic field and in the presence of heterogeneous and anisotropic fibre networks.

    Citation: A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues[J]. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333

    Related Papers:

    [1] A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333
    [2] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [3] V. Lanza, D. Ambrosi, L. Preziosi . Exogenous control of vascular network formation in vitro: a mathematical model. Networks and Heterogeneous Media, 2006, 1(4): 621-637. doi: 10.3934/nhm.2006.1.621
    [4] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [5] Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43
    [6] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [7] Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65
    [8] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [9] Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181
    [10] Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007
  • Cell motion and interaction with the extracellular matrix is studied deriving a kinetic model and considering its diffusive limit. The model takes into account the chemotactic and haptotactic effects, and obtains friction as a result of the interactions between cells and between cells and the fibrous environment. The evolution depends on the fibre distribution, as cells preferentially move along the fibre direction and tend to cleave and remodel the extracellular matrix when their direction of motion is not aligned with the fibre direction. Simulations are performed to describe the behavior of an ensemble of cells under the action of a chemotactic field and in the presence of heterogeneous and anisotropic fibre networks.


  • This article has been cited by:

    1. Robyn Shuttleworth, Dumitru Trucu, 2018, Chapter 1, 978-3-319-96841-4, 1, 10.1007/978-3-319-96842-1_1
    2. Robyn Shuttleworth, Dumitru Trucu, Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion, 2020, 82, 0092-8240, 10.1007/s11538-020-00732-z
    3. R. J. Dyson, J. E. F. Green, J. P. Whiteley, H. M. Byrne, An investigation of the influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture, 2016, 72, 0303-6812, 1775, 10.1007/s00285-015-0927-7
    4. Ignacio Ramis-Conde, Mark A J Chaplain, Alexander R A Anderson, Dirk Drasdo, Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis, 2009, 6, 1478-3975, 016008, 10.1088/1478-3975/6/1/016008
    5. Daniela K. Schlüter, Ignacio Ramis-Conde, Mark A.J. Chaplain, Computational Modeling of Single-Cell Migration: The Leading Role of Extracellular Matrix Fibers, 2012, 103, 00063495, 1141, 10.1016/j.bpj.2012.07.048
    6. Anita Häcker, A mathematical model for mesenchymal and chemosensitive cell dynamics, 2012, 64, 0303-6812, 361, 10.1007/s00285-011-0415-7
    7. Anna Zhigun, Christina Surulescu, A Novel Derivation of Rigorous Macroscopic Limits from a Micro-Meso Description of Signal-Triggered Cell Migration in Fibrous Environments, 2022, 82, 0036-1399, 142, 10.1137/20M1365442
    8. Pawan Kumar, Christina Surulescu, A Flux-Limited Model for Glioma Patterning with Hypoxia-Induced Angiogenesis, 2020, 12, 2073-8994, 1870, 10.3390/sym12111870
    9. K. J. Painter, Modelling cell migration strategies in the extracellular matrix, 2009, 58, 0303-6812, 10.1007/s00285-008-0217-8
    10. Zhi-An Wang, Thomas Hillen, Michael Li, Mesenchymal Motion Models in One Dimension, 2008, 69, 0036-1399, 375, 10.1137/080714178
    11. Nadia Loy, Luigi Preziosi, Stability of a non-local kinetic model for cell migration with density-dependent speed, 2021, 38, 1477-8599, 83, 10.1093/imammb/dqaa013
    12. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    13. Ariel A. Szklanny, Lior Debbi, Uri Merdler, Dylan Neale, Ayse Muñiz, Ben Kaplan, Shaowei Guo, Joerg Lahann, Shulamit Levenberg, High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels, 2020, 30, 1616-301X, 1901335, 10.1002/adfm.201901335
    14. Nadia Loy, Luigi Preziosi, Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, 2020, 80, 0303-6812, 373, 10.1007/s00285-019-01411-x
    15. JAN KELKEL, CHRISTINA SURULESCU, A MULTISCALE APPROACH TO CELL MIGRATION IN TISSUE NETWORKS, 2012, 22, 0218-2025, 1150017, 10.1142/S0218202511500175
    16. Gülnihal Meral, Christina Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, 2013, 408, 0022247X, 597, 10.1016/j.jmaa.2013.06.017
    17. A. Stéphanou, S. Le Floc’h, A. Chauvière, A. Stephanou, V. Volpert, A Hybrid Model to Test the Importance of Mechanical Cues Driving Cell Migration in Angiogenesis, 2015, 10, 0973-5348, 142, 10.1051/mmnp/201510107
    18. Robyn Shuttleworth, Dumitru Trucu, Multiscale dynamics of a heterotypic cancer cell population within a fibrous extracellular matrix, 2020, 486, 00225193, 110040, 10.1016/j.jtbi.2019.110040
    19. Thomas Hillen, Kevin J. Painter, 2013, Chapter 7, 978-3-642-35496-0, 177, 10.1007/978-3-642-35497-7_7
    20. Ryan Thiessen, Thomas Hillen, Anisotropic Network Patterns in Kinetic and Diffusive Chemotaxis Models, 2021, 9, 2227-7390, 1561, 10.3390/math9131561
    21. Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu, Glioma follow white matter tracts: a multiscale DTI-based model, 2015, 71, 0303-6812, 551, 10.1007/s00285-014-0822-7
    22. C. Giverso, A. Grillo, L. Preziosi, Influence of nucleus deformability on cell entry into cylindrical structures, 2014, 13, 1617-7959, 481, 10.1007/s10237-013-0510-3
    23. G. Ariel, A. Ayali, A. Be’er, D. Knebel, 2022, Chapter 1, 978-3-030-93301-2, 1, 10.1007/978-3-030-93302-9_1
    24. Marcello Delitala, Tommaso Lorenzi, Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells, 2017, 14, 1551-0018, 79, 10.3934/mbe.2017006
    25. Claude Verdier, Jocelyn Etienne, Alain Duperray, Luigi Preziosi, Review: Rheological properties of biological materials, 2009, 10, 16310705, 790, 10.1016/j.crhy.2009.10.003
    26. Robert Strehl, Andriy Sokolov, Dmitri Kuzmin, Dirk Horstmann, Stefan Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, 2013, 239, 03770427, 290, 10.1016/j.cam.2012.09.041
    27. Nadia Loy, Luigi Preziosi, Modelling physical limits of migration by a kinetic model with non-local sensing, 2020, 80, 0303-6812, 1759, 10.1007/s00285-020-01479-w
    28. Jack A Tuszynski, Philip Winter, Diana White, Chih-Yuan Tseng, Kamlesh K Sahu, Francesco Gentile, Ivana Spasevska, Sara Ibrahim Omar, Niloofar Nayebi, Cassandra DM Churchill, Mariusz Klobukowski, Rabab M Abou El-Magd, Mathematical and computational modeling in biology at multiple scales, 2014, 11, 1742-4682, 10.1186/1742-4682-11-52
    29. Gregor Corbin, Axel Klar, Christina Surulescu, Christian Engwer, Michael Wenske, Juanjo Nieto, Juan Soler, Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis, 2021, 31, 0218-2025, 177, 10.1142/S0218202521500056
    30. Christian Märkl, Gülnihal Meral, Christina Surulescu, Mathematical Analysis and Numerical Simulations for a System Modeling Acid-Mediated Tumor Cell Invasion, 2013, 2013, 2314-498X, 1, 10.1155/2013/878051
    31. Martina Conte, Luca Gerardo-Giorda, Maria Groppi, Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model, 2020, 486, 00225193, 110088, 10.1016/j.jtbi.2019.110088
    32. Anne Dietrich, Niklas Kolbe, Nikolaos Sfakianakis, Christina Surulescu, Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs, 2022, 20, 1540-3459, 685, 10.1137/21M1412104
    33. Matteo Bruno Lodi, Alessandro Fanti, Andrea Vargiu, Maurizio Bozzi, Giuseppe Mazzarella, A Multiphysics Model for Bone Repair Using Magnetic Scaffolds for Targeted Drug Delivery, 2021, 6, 2379-8815, 201, 10.1109/JMMCT.2021.3134786
    34. Rasa Giniūnaitė, Ruth E. Baker, Paul M. Kulesa, Philip K. Maini, Modelling collective cell migration: neural crest as a model paradigm, 2020, 80, 0303-6812, 481, 10.1007/s00285-019-01436-2
    35. Thomas Lorenz, Christina Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, 2014, 24, 0218-2025, 2383, 10.1142/S0218202514500249
    36. On some models for cancer cell migration through tissue networks, 2011, 8, 1551-0018, 575, 10.3934/mbe.2011.8.575
    37. S.N. Antontsev, A.A. Papin , M.A. Tokareva, E.I. Leonova, E.A. Gridushko , Modeling of Tumor Occurrence and Growth - I, 2020, 1561-9451, 70, 10.14258/izvasu(2020)4-11
    38. Martina Conte, Nadia Loy, Multi-Cue Kinetic Model with Non-Local Sensing for Cell Migration on a Fiber Network with Chemotaxis, 2022, 84, 0092-8240, 10.1007/s11538-021-00978-1
    39. D. Peurichard, Macroscopic Model for Cross-Linked Fibers with Alignment Interactions: Existence Theory and Numerical Simulations, 2016, 14, 1540-3459, 1175, 10.1137/15M1026729
    40. Viktoria Blavatska, Tatiana Savina, Alexander Nepomnyashchy, On the shape of invading population in anisotropic environments, 2020, 15, 0973-5348, 4, 10.1051/mmnp/2019046
    41. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    42. Marco Scianna, Roeland M.H. Merks, Luigi Preziosi, Enzo Medico, Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor, 2009, 260, 00225193, 151, 10.1016/j.jtbi.2009.05.017
    43. Chiara Giverso, Alfio Grillo, Giuseppe Saccomandi, Foreword to the Special Issue in honour of Prof. Luigi Preziosi “Nonlinear mechanics: The driving force of modern applied and industrial mathematics”, 2022, 145, 00207462, 104090, 10.1016/j.ijnonlinmec.2022.104090
    44. K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: The use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion, 2013, 323, 00225193, 25, 10.1016/j.jtbi.2013.01.014
    45. Nadia Loy, Mattia Zanella, Structure preserving schemes for Fokker–Planck equations with nonconstant diffusion matrices, 2021, 188, 03784754, 342, 10.1016/j.matcom.2021.04.018
    46. Robyn Shuttleworth, Dumitru Trucu, Multiscale Modelling of Fibres Dynamics and Cell Adhesion within Moving Boundary Cancer Invasion, 2019, 81, 0092-8240, 2176, 10.1007/s11538-019-00598-w
    47. Giorgia Migliaccio, Rosalia Ferraro, Zhihui Wang, Vittorio Cristini, Prashant Dogra, Sergio Caserta, Exploring Cell Migration Mechanisms in Cancer: From Wound Healing Assays to Cellular Automata Models, 2023, 15, 2072-6694, 5284, 10.3390/cancers15215284
    48. Nadia Loy, Benoît Perthame, A Hamilton–Jacobi approach to nonlocal kinetic equations, 2024, 37, 0951-7715, 105019, 10.1088/1361-6544/ad75dd
    49. Martina Conte, Nadia Loy, A Non-Local Kinetic Model for Cell Migration: A Study of the Interplay Between Contact Guidance and Steric Hindrance, 2024, 84, 0036-1399, S429, 10.1137/22M1506389
    50. Marco Scianna, Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics, 2024, 370, 00255564, 109168, 10.1016/j.mbs.2024.109168
    51. Anna Zhigun, Mabel Lizzy Rajendran, Modelling non-local cell-cell adhesion: a multiscale approach, 2024, 88, 0303-6812, 10.1007/s00285-024-02079-8
    52. Maria Eckardt, Christina Surulescu, On a mathematical model for cancer invasion with repellent pH-taxis and nonlocal intraspecific interaction, 2024, 75, 0044-2275, 10.1007/s00033-024-02189-9
    53. Christina Surulescu, Stressed tumors and their maths, 2023, 47, 15710645, 126, 10.1016/j.plrev.2023.10.003
    54. John Metzcar, Ben S. Duggan, Brandon Fischer, Matthew Murphy, Randy Heiland, Paul Macklin, A Simple Framework for Agent-Based Modeling with Extracellular Matrix, 2025, 87, 0092-8240, 10.1007/s11538-024-01408-8
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5018) PDF downloads(147) Cited by(54)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog