On the variational theory of traffic flow: well-posedness, duality and applications

  • Received: 01 July 2006 Revised: 01 September 2006
  • Primary: 49L25, 90B20; Secondary: 70H20, 70H30.

  • This paper describes some simplifications allowed by the variational theory of traffic flow(VT). It presents general conditions guaranteeing that the solution of a VT problem with bottlenecks exists, is unique and makes physical sense; i.e., that the problem is well-posed. The requirements for well-posedness are mild and met by practical applications. They are consistent with narrower results available for kinematic wave or Hamilton-Jacobi theories. The paper also describes some duality ideas relevant to these theories. Duality and VT are used to establish the equivalence of eight traffic models. Finally, the paper discusses how its ideas can be used to model networks of multi-lane traffic streams.

    Citation: Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications[J]. Networks and Heterogeneous Media, 2006, 1(4): 601-619. doi: 10.3934/nhm.2006.1.601

    Related Papers:

    [1] Carlos F. Daganzo . On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1(4): 601-619. doi: 10.3934/nhm.2006.1.601
    [2] Simone Göttlich, Ute Ziegler, Michael Herty . Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8(3): 685-705. doi: 10.3934/nhm.2013.8.685
    [3] Anya Désilles . Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Networks and Heterogeneous Media, 2013, 8(3): 707-726. doi: 10.3934/nhm.2013.8.707
    [4] Maria Laura Delle Monache, Paola Goatin . Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12(2): 245-258. doi: 10.3934/nhm.2017010
    [5] Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843
    [6] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [7] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [8] Tong Li, Nitesh Mathur . Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 581-600. doi: 10.3934/nhm.2023025
    [9] Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255
    [10] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
  • This paper describes some simplifications allowed by the variational theory of traffic flow(VT). It presents general conditions guaranteeing that the solution of a VT problem with bottlenecks exists, is unique and makes physical sense; i.e., that the problem is well-posed. The requirements for well-posedness are mild and met by practical applications. They are consistent with narrower results available for kinematic wave or Hamilton-Jacobi theories. The paper also describes some duality ideas relevant to these theories. Duality and VT are used to establish the equivalence of eight traffic models. Finally, the paper discusses how its ideas can be used to model networks of multi-lane traffic streams.


  • This article has been cited by:

    1. Koki SATSUKAWA, Kentaro WADA, A NOTE ON THE SOLUTION ALGORITHM OF NASH EQUILIBRIUM IN DYNAMIC TRAFFIC ASSIGNMENT FOR SINGLE DESTINATION NETWORKS, 2017, 73, 2185-6540, 103, 10.2208/jscejipm.73.103
    2. Wen-Long Jin, Unifiable multi-commodity kinematic wave model, 2017, 23, 23521465, 137, 10.1016/j.trpro.2017.05.009
    3. JinLing Ye, 2020, Chapter 107, 978-981-15-5958-7, 877, 10.1007/978-981-15-5959-4_107
    4. Yiguang Xuan, Juan Argote, Carlos F. Daganzo, Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis, 2011, 45, 01912615, 1831, 10.1016/j.trb.2011.07.009
    5. Alexandre M. Bayen, Christian Claudel, Patrick Saint-Pierre, 2007, Computation of solutions to the Moskowitz Hamilton-Jacobi-Bellman equation under viability constraints, 978-1-4244-1497-0, 4737, 10.1109/CDC.2007.4434060
    6. Carlos F. Daganzo, Victor L. Knoop, Traffic flow on pedestrianized streets, 2016, 86, 01912615, 211, 10.1016/j.trb.2015.12.017
    7. Toru Seo, Yutaka Kawasaki, Takahiko Kusakabe, Yasuo Asakura, Fundamental diagram estimation by using trajectories of probe vehicles, 2019, 122, 01912615, 40, 10.1016/j.trb.2019.02.005
    8. Kentaro WADA, RECENT ADVANCES IN THEORY OF DYNAMIC TRAFFIC EQUILIBRIUM ASSIGNMENTS, 2021, 76, 2185-6540, I_21, 10.2208/jscejipm.76.5_I_21
    9. Nadir Farhi, Piecewise linear car-following modeling, 2012, 25, 0968090X, 100, 10.1016/j.trc.2012.05.005
    10. Yosuke KAWASAKI, Yusuke HARA, Masao KUWAHARA, CONSTRUCTION OF TRAFFIC STATE ESTIMATION METHOD OF THE TWO-DIMENSIONAL NETWORK BY STATE-SPACE MODEL CONSIDERING ROUTE CHOICE, 2017, 73, 2185-6540, I_949, 10.2208/jscejipm.73.I_949
    11. Liudmila Tumash, Carlos Canudas-de-Wit, Maria Laura Delle Monache, Boundary Control Design for Traffic With Nonlinear Dynamics, 2022, 67, 0018-9286, 1301, 10.1109/TAC.2021.3069394
    12. Md. Rakibul Islam, Md. Hadiuzzaman, Saurav Barua, Tahmida Hossain Shimu, Alternative approach for vehicle trajectory reconstruction under spatiotemporal side friction using lopsided network, 2019, 13, 1751-9578, 356, 10.1049/iet-its.2018.5195
    13. Wen-Long Jin, Continuous formulations and analytical properties of the link transmission model, 2015, 74, 01912615, 88, 10.1016/j.trb.2014.12.006
    14. Peng Hao, Xuegang Ban, Long queue estimation for signalized intersections using mobile data, 2015, 82, 01912615, 54, 10.1016/j.trb.2015.10.002
    15. G. Costeseque, J.P. Lebacque, Intersection Modeling using a Convergent Scheme based on Hamilton-Jacobi Equation, 2012, 54, 18770428, 736, 10.1016/j.sbspro.2012.09.791
    16. Simone Göttlich, Ute Ziegler, Michael Herty, Numerical discretization of Hamilton--Jacobi equations on networks, 2013, 8, 1556-181X, 685, 10.3934/nhm.2013.8.685
    17. D. Ngoduy, N.H. Hoang, H.L. Vu, D. Watling, Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks, 2016, 92, 01912615, 148, 10.1016/j.trb.2015.11.011
    18. Yosuke KAWASAKI, Shogo UMEDA, Masao KUWAHARA, Daiki KUMAKURA, Takeshi OHATA, Atsushi TANAKA, Kota MINAMI, Yusuke SUZUKI, CONSTRUCTION OF ESTIMATION METHOD OF TRAFFIC FLOW RATE AT TRAFFIC ACCIDENT BY STATE SPACE MODEL, 2021, 76, 2185-6540, I_1297, 10.2208/jscejipm.76.5_I_1297
    19. Liudmila Tumash, Carlos Canudas-de-Wit, Maria Laura Delle Monache, Multi-directional continuous traffic model for large-scale urban networks, 2022, 158, 01912615, 374, 10.1016/j.trb.2022.02.011
    20. Jean-Patrick Lebacque, Megan M. Khoshyaran, A variational formulation for higher order macroscopic traffic flow models of the GSOM family, 2013, 57, 01912615, 245, 10.1016/j.trb.2013.07.005
    21. Jia Li, H.M. Zhang, The variational formulation of a non-equilibrium traffic flow model: Theory and implications, 2013, 57, 01912615, 314, 10.1016/j.trb.2013.06.005
    22. Maik Boltes, Jun Zhang, Antoine Tordeux, Andreas Schadschneider, Armin Seyfried, 2018, Chapter 706-1, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_706-1
    23. Tamás G. Molnár, Devesh Upadhyay, Michael Hopka, Michiel Van Nieuwstadt, Gábor Orosz, Delayed Lagrangian continuum models for on-board traffic prediction, 2021, 123, 0968090X, 102991, 10.1016/j.trc.2021.102991
    24. Edward S. Canepa, Christian G. Claudel, 2013, A framework for privacy and security analysis of probe-based traffic information systems, 9781450319614, 25, 10.1145/2461446.2461451
    25. Honghai Zhang, Yan Xu, Lei Yang, Hao Liu, Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area, 2014, 2014, 1026-0226, 1, 10.1155/2014/741654
    26. Simone Göttlich, Michael Herty, Ute Ziegler, Modeling and optimizing traffic light settings in road networks, 2015, 55, 03050548, 36, 10.1016/j.cor.2014.10.001
    27. Jia Li, H.M. Zhang, Modeling space–time inhomogeneities with the kinematic wave theory, 2013, 54, 01912615, 113, 10.1016/j.trb.2013.03.005
    28. E. S. Canepa, C. G. Claudel, 2013, Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming, 978-1-4673-5288-8, 327, 10.1109/ICCNC.2013.6504104
    29. Andy H.F. Chow, Shuai Li, W.Y. Szeto, David Z.W. Wang, Modelling urban traffic dynamics based upon the variational formulation of kinematic waves, 2015, 3, 2168-0566, 169, 10.1080/21680566.2015.1005559
    30. Wen-Long Jin, Qi-Jian Gan, Jean-Patrick Lebacque, A kinematic wave theory of capacity drop, 2015, 81, 01912615, 316, 10.1016/j.trb.2015.07.020
    31. Shanwen Qiu, Mohannad Abdelaziz, Fadl Abdellatif, Christian G. Claudel, Exact and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model with bounded acceleration for a class of fundamental diagrams, 2013, 55, 01912615, 282, 10.1016/j.trb.2013.07.002
    32. Anya Désilles, Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters, 2013, 8, 1556-181X, 707, 10.3934/nhm.2013.8.707
    33. Christian G. Claudel, Matthieu Nahoum, Alexandre M. Bayen, 2009, Minimal error certificates for detection of faulty sensors using convex optimization, 978-1-4244-5870-7, 1177, 10.1109/ALLERTON.2009.5394554
    34. Carlos F. Daganzo, Lewis J. Lehe, Juan Argote-Cabanero, Adaptive offsets for signalized streets, 2017, 23, 23521465, 612, 10.1016/j.trpro.2017.05.034
    35. Toru Seo, Alexandre M. Bayen, Takahiko Kusakabe, Yasuo Asakura, Traffic state estimation on highway: A comprehensive survey, 2017, 43, 13675788, 128, 10.1016/j.arcontrol.2017.03.005
    36. Kentaro WADA, Toru SEO, Wataru NAKANISHI, Koki SATSUKAWA, Masami YANAGIHARA, RECENT ADVANCES IN KINEMATIC WAVE THEORY OF TRAFFIC FLOWS: VARIATIONAL FORMULATION AND NETWORK EXTENSION, 2017, 73, 2185-6540, I_1139, 10.2208/jscejipm.73.I_1139
    37. W. Y. Szeto, 2013, Chapter 7, 978-1-4614-6242-2, 163, 10.1007/978-1-4614-6243-9_7
    38. Michele D. Simoni, Christian G. Claudel, A Fast Lax–Hopf Algorithm to Solve the Lighthill–Whitham–Richards Traffic Flow Model on Networks, 2020, 54, 0041-1655, 1516, 10.1287/trsc.2019.0951
    39. Babak Mehran, Masao Kuwahara, Farhana Naznin, Implementing Kinematic Wave Theory to Reconstruct Vehicle Trajectories from Fixed and Probe Sensor Data, 2011, 17, 18770428, 247, 10.1016/j.sbspro.2011.04.517
    40. Yang Shao, Michael W. Levin, Stephen D. Boyles, Christian G. Claudel, Semianalytical Solutions to the Lighthill–Whitham–Richards Equation With Time-Switched Triangular Diagrams: Application to Variable Speed Limit Traffic Control, 2022, 19, 1545-5955, 473, 10.1109/TASE.2020.3039836
    41. Yanning Li, Edward Canepa, Christian Claudel, Efficient robust control of first order scalar conservation laws using semi-analytical solutions, 2014, 7, 1937-1179, 525, 10.3934/dcdss.2014.7.525
    42. Jorge A. Laval, Ludovic Leclercq, The Hamilton–Jacobi partial differential equation and the three representations of traffic flow, 2013, 52, 01912615, 17, 10.1016/j.trb.2013.02.008
    43. Suyash C. Vishnoi, Christian G. Claudel, Variable Speed Limit and Ramp Metering Control of Highway Networks Using Lax-Hopf Method: A Mixed Integer Linear Programming Approach, 2022, 23, 1524-9050, 7441, 10.1109/TITS.2021.3069971
    44. S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057
    45. Jia Li, H.M. Zhang, The Variational Formulation of a Non-equilibrium Traffic Flow Model: Theory and Implications, 2013, 80, 18770428, 327, 10.1016/j.sbspro.2013.05.019
    46. Ke Han, Benedetto Piccoli, Terry L. Friesz, Continuity of the path delay operator for dynamic network loading with spillback, 2016, 92, 01912615, 211, 10.1016/j.trb.2015.09.009
    47. Ludovic Leclercq, Jorge A. Laval, 2009, Chapter 13, 978-3-540-77073-2, 151, 10.1007/978-3-540-77074-9_13
    48. Nadia Moshahedi, Lina Kattan, A macroscopic dynamic network loading model using variational theory in a connected and autonomous vehicle environment, 2022, 145, 0968090X, 103911, 10.1016/j.trc.2022.103911
    49. Carlos F. Daganzo, Singularities in kinematic wave theory: Solution properties, extended methods and duality revisited, 2014, 69, 01912615, 50, 10.1016/j.trb.2014.07.002
    50. Babak Mehran, Masao Kuwahara, Farhana Naznin, Implementing kinematic wave theory to reconstruct vehicle trajectories from fixed and probe sensor data, 2012, 20, 0968090X, 144, 10.1016/j.trc.2011.05.006
    51. Guillaume Costeseque, Jean-Patrick Lebacque, Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations, 2014, 7, 1937-1179, 411, 10.3934/dcdss.2014.7.411
    52. Yosuke Kawasaki, Yusuke Hara, Takuma Mitani, Masao Kuwahara, Real-Time Simulation of Dynamic Traffic Flow with Traffic Data Assimilation Approach, 2016, 11, 1883-8030, 246, 10.20965/jdr.2016.p0246
    53. Zhen Yan, Hongyu Yang, Fan Li, Yi Lin, A Deep Learning Approach for Short-Term Airport Traffic Flow Prediction, 2021, 9, 2226-4310, 11, 10.3390/aerospace9010011
    54. Christian G. Claudel, Alexandre M. Bayen, Lax–Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton–Jacobi Equation. Part I: Theory, 2010, 55, 0018-9286, 1142, 10.1109/TAC.2010.2041976
    55. Yanning Li, Christian G. Claudel, Benedetto Piccoli, Daniel B. Work, A Convex Formulation of Traffic Dynamics on Transportation Networks, 2017, 77, 0036-1399, 1493, 10.1137/16M1074795
    56. Ke Han, Tao Yao, Chaozhe Jiang, Terry L. Friesz, Lagrangian-based Hydrodynamic Model for Traffic Data Fusion on Freeways, 2017, 17, 1566-113X, 1071, 10.1007/s11067-017-9380-z
    57. Edward S. Canepa, Christian G. Claudel, Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations, 2017, 104, 01912615, 686, 10.1016/j.trb.2017.05.016
    58. Terry L. Friesz, Ke Han, Pedro A. Neto, Amir Meimand, Tao Yao, Dynamic user equilibrium based on a hydrodynamic model, 2013, 47, 01912615, 102, 10.1016/j.trb.2012.10.001
    59. Christian G. Claudel, Alexandre M. Bayen, Convex Formulations of Data Assimilation Problems for a Class of Hamilton–Jacobi Equations, 2011, 49, 0363-0129, 383, 10.1137/090778754
    60. Christian G. Claudel, Alexandre M. Bayen, 2008, Guaranteed bounds for traffic flow parameters estimation using mixed Lagrangian-Eulerian sensing, 978-1-4244-2925-7, 636, 10.1109/ALLERTON.2008.4797618
    61. Edward S. Canepa, Christian G. Claudel, 2012, Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using Mixed Integer Programming, 978-1-4673-3063-3, 832, 10.1109/ITSC.2012.6338639
    62. Guillaume Costeseque, Jean-Patrick Lebacque, A variational formulation for higher order macroscopic traffic flow models: Numerical investigation, 2014, 70, 01912615, 112, 10.1016/j.trb.2014.08.012
    63. Femke Kessels, 2019, Chapter 5, 978-3-319-78694-0, 83, 10.1007/978-3-319-78695-7_5
    64. Yosuke KAWASAKI, Shogo UMEDA, Masao KUWAHARA, Daiki KUMAKURA, Takeshi OHATA, Atsushi TANAKA, Mao YOSHIKAWA, Yusuke SUZUKI, ESTIMATION AND ACCURACY VERIFICATION OF TRAFFIC STATE BY FUSION OF PROBE TRAJECTORY DATA AND VEHICLE DETECTOR ON METROPOLITAN EXPRESSWAY, 2022, 77, 2185-6540, I_521, 10.2208/jscejipm.77.5_I_521
    65. Carlos F. Daganzo, Nikolas Geroliminis, An analytical approximation for the macroscopic fundamental diagram of urban traffic, 2008, 42, 01912615, 771, 10.1016/j.trb.2008.06.008
    66. Michele D. Simoni, Christian G. Claudel, A semi-analytic approach to model signal plans in urban corridors and its application in metaheuristic optimization, 2019, 7, 2168-0566, 185, 10.1080/21680566.2017.1370397
    67. Pierre-Emmanuel Mazaré, Ahmad H. Dehwah, Christian G. Claudel, Alexandre M. Bayen, Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model, 2011, 45, 01912615, 1727, 10.1016/j.trb.2011.07.004
    68. Femke van Wageningen-Kessels, Bas van't Hof, Serge P. Hoogendoorn, Hans van Lint, Kees Vuik, Anisotropy in generic multi-class traffic flow models, 2013, 9, 2324-9935, 451, 10.1080/18128602.2011.596289
    69. Carlos F. Daganzo, Lewis J. Lehe, Traffic flow on signalized streets, 2016, 90, 01912615, 56, 10.1016/j.trb.2016.03.010
    70. Simone Göttlich, Ute Ziegler, Traffic light control: A case study, 2014, 7, 1937-1179, 483, 10.3934/dcdss.2014.7.483
    71. Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel, Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming, 2013, 8, 1556-181X, 783, 10.3934/nhm.2013.8.783
    72. Ke Han, Gabriel Eve, Terry L. Friesz, Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation, 2019, 19, 1566-113X, 869, 10.1007/s11067-018-9433-y
    73. Edward S. Canepa, Christian G. Claudel, A dual model/artificial neural network framework for privacy analysis in traffic monitoring systems, 2019, 105, 0968090X, 126, 10.1016/j.trc.2019.05.031
    74. Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir, A non-local macroscopic model for traffic flow, 2021, 55, 0764-583X, 689, 10.1051/m2an/2021006
    75. Toru SEO, Takahiko KUSAKABE, Yasuo ASAKURA, ESTIMATION OF TRAFFIC STATE USING PROBE VEHICLES THAT EQUIPPED WITH SPACING MEASUREMENT DEVICES, 2013, 69, 2185-6540, I_809, 10.2208/jscejipm.69.I_809
    76. Jia Li, H.M. Zhang, WITHDRAWN: The variational formulation of a non-equilibrium traffic flow model: Theory and implications, 2013, 01912615, 10.1016/j.trb.2013.06.010
    77. Christian G. Claudel, Alexandre M. Bayen, 2008, Chapter 8, 978-3-540-78928-4, 101, 10.1007/978-3-540-78929-1_8
    78. Yosuke KAWASAKI, Yusuke HARA, Masao KUWAHARA, CONSTRUCTION OF ESTIMATION METHOD OF INFLOW/OUTFLOW VEHICLE NUMBER IN THE INTERVAL BY STATE-SPACE MODEL AND PROBE TRAJECTORY, 2016, 72, 2185-6540, I_1123, 10.2208/jscejipm.72.I_1123
    79. J.P. Lebacque, M.M. Khoshyaran, A Variational Formulation for Higher Order Macroscopic Traffic Flow Models of the GSOM Family, 2013, 80, 18770428, 370, 10.1016/j.sbspro.2013.05.021
    80. Wen-Long Jin, Unifiable multi-commodity kinematic wave model, 2018, 117, 01912615, 639, 10.1016/j.trb.2017.08.013
    81. Wen-Long Jin, On the equivalence between continuum and car-following models of traffic flow, 2016, 93, 01912615, 543, 10.1016/j.trb.2016.08.007
    82. Christian G. Claudel, Alexandre M. Bayen, Lax–Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, 2010, 55, 0018-9286, 1158, 10.1109/TAC.2010.2045439
    83. W.Y. Szeto, Y. Jiang, A. Sumalee, A Cell-Based Model for Multi-class Doubly Stochastic Dynamic Traffic Assignment, 2011, 26, 10939687, 595, 10.1111/j.1467-8667.2011.00717.x
    84. Ke Han, Benedetto Piccoli, W.Y. Szeto, Continuous-time link-based kinematic wave model: formulation, solution existence, and well-posedness, 2016, 4, 2168-0566, 187, 10.1080/21680566.2015.1064793
    85. W.L. Jin, L. Chen, Elbridge Gerry Puckett, 2009, Chapter 30, 978-1-4419-0819-3, 603, 10.1007/978-1-4419-0820-9_30
    86. Maik Boltes, Jun Zhang, Antoine Tordeux, Andreas Schadschneider, Armin Seyfried, 2019, Chapter 706, 978-1-4939-8762-7, 671, 10.1007/978-1-4939-8763-4_706
    87. Yanning Li, Edward Canepa, Christian Claudel, Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks, 2014, 1, 2325-5870, 28, 10.1109/TCNS.2014.2304152
    88. Terry L. Friesz, Ke Han, 2022, Chapter 2, 978-3-031-25562-5, 33, 10.1007/978-3-031-25564-9_2
    89. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107
    90. Terry L. Friesz, Ke Han, 2022, Chapter 1, 978-3-031-25562-5, 1, 10.1007/978-3-031-25564-9_1
    91. Rong Fei, Lu Yang, Xinhong Hei, Bo Hu, Aimin Li, A car-following model based on the optimized velocity and its security analysis, 2023, 5, 2631-4428, 10.1093/tse/tdac077
    92. Pushkin Kachroo, Shaurya Agarwal, Kaan Ozbay, Macroscopic Fundamental Diagram: Alternative Theoretical Analysis and Implications for Traffic Control, 2024, 2687-7813, 1, 10.1109/OJITS.2024.3514536
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7680) PDF downloads(114) Cited by(92)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog