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Abstract. This paper describes some simplifications allowed by the varia-
tional theory of traffic flow(VT). It presents general conditions guaranteeing
that the solution of a VT problem with bottlenecks exists, is unique and makes
physical sense; i.e., that the problem is well-posed. The requirements for well-
posedness are mild and met by practical applications. They are consistent with
narrower results available for kinematic wave or Hamilton-Jacobi theories. The
paper also describes some duality ideas relevant to these theories. Duality and
VT are used to establish the equivalence of eight traffic models. Finally, the
paper discusses how its ideas can be used to model networks of multi-lane
traffic streams.

1. Introduction. Consider an infinite one-directional road on which vehicles can-
not pass and move in the direction of increasing distance, x. If at some location x
= 0 we assign consecutive integers to the vehicles we observe as time increases from
-∞ to +∞ then the space-time trajectories of all the vehicles are completely defined
by the integer contours of a surface. The idea of such a surface was proposed in [29]
and further elaborated in [26]. The surface is characterized by a continuous function
with contour levels n, N(t, x) = n. The floor bnc is the number of the last vehicle
to have advanced beyond x by time t. Since passing is not allowed the ordering
of the vehicles is preserved everywhere. Therefore we can assume without loss of
generality that N(t, x) is non-decreasing in t for every x. Moreover, since vehicles
move in the direction of increasing x, we can also assume that N is non-increasing
in x for every t.

The simplest model of traffic flow further assumes that N is differentiable almost
everywhere (except possibly along some curves that would form ridges in the surface
defined by N) and that the first partial derivatives of N are related by a function;
i.e.:

∂N/∂t = Q(−∂N/∂x, t, x). (1)
This is a Hamilton-Jacobi (HJ) equation with Q as the Hamiltonian. Note that
∂N/∂t (abbreviated q) is the flow and −∂N/∂x (abbreviated k) is the density, and
that meaningful solutions require flow and density to be non-negative.
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The function Q is called the “fundamental diagram” (FD) by traffic engineers.
We assume in rough agreement with experiments that Q is piecewise differentiable
and concave in its first argument and returns non-negative values (for every t and x)
if the first argument is in an interval [0, κ(t, x)] such that Q(0, t, x) = Q(κ, t, x) = 0,
with κ(t, x) < ∞. The parameter κ is called the “jam density.” The maximum of
Q, qmax, is called the “capacity”; see Fig. 1(a).

Figure 1. Basic concepts of Variational Theory: (a) fundamental
diagram; and (b) cost function.

Note that if (1) is differentiated with respect to x and expressed in terms of den-
sity it reduces to the conservation law: ∂k/∂t + (∂Q/∂k)(∂k/∂x) = −∂Q/∂x. This
is the classical kinematic wave (KW) formulation of [22, 35]. A simplified solution
of some KW problems in terms of the Moskowitz function was later proposed in
Newell’s seminal trilogy [32]. Newell’s results have been recently formalized and
extended in [11, 12, 14]. These references propose a variational theory (VT) able
to capture bottlenecks of all types.

1.1. Variational theory. Variational theory also assumes that (1) holds where
N is differentiable and that Q is concave, but treats the problem as a capacity-
constrained optimization problem. An intuitive explanation is as follows. We know
that the flow at any point in space-time is bounded from above by qmax, the capacity.
A similar capacity constraint should also hold if the road is viewed from a rigid frame
of reference that moves with speed x′. In this case the capacity relative to the frame
(the “relative capacity”) is the maximum rate at which traffic can pass an observer
attached to the frame. Since an observer that moves with speed x′ next to a traffic
stream with density k and flow q is passed by traffic at a rate q − kx′, the FD for
the moving frame is Q(k, t, x)− kx′ and its relative capacity is:

R(x′, t, x) = sup
k
{Q (k, t, x)− kx′} . (2)

Figure 1(a) shows these relations geometrically; note that the relative capacity R is
the intercept of the tangent to curve Q with slope x′. Figure 1(b) shows the relative
capacity function (also called the “cost function” in variational theory) with x′ as
the argument. Note that −R is the Legendre-Fenchel transform of Q, and that as
a result, as shown by Fig. 1(b), R is convex and strictly decreasing in the range
of “valid” slopes where Q is non-negative; i.e., for x′ ≡ w(k, t, x) ≡ ∂Q/∂k ∈
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[w(κ, t, x), w(0, t, x)]. The quantity w(0, t, x) is called the “free-flow speed” and will
be denoted u(t, x). Note as well that R ≥ 0, and R(u) = 0 since curve Q touches
the origin. Thus, in traffic flow the Legendre-Fenchel transform has an intuitive
physical interpretation, which makes its application fairly intuitive as we shall now
see.

Clearly, an observer traveling with a valid speed, i.e., with x′(t) ∈ [w(κ), u], along
a “valid” space-time path P from point D to point P cannot see a change in vehicle
number greater than the integral with respect to time of its relative capacities; i.e.,
an upper bound to change is:

∆(P) =

tP∫

tD

R (x′, t, x) dt, (3)

where tD and tP are the times associated with the path endpoints. Therefore, an
upper bound to the vehicle number NP observed at a point P can be written by
considering the set P of all valid observer paths to P from the points of a boundary
D where the vehicle numbers are known. In other words, if D(P) ∈ D is the
beginning of a valid path P, and ND(P) is the known vehicle number at D(P), then
it must be true that NP must satisfy:

NP ≤ inf{ND(P) + ∆(P) | P ∈ P}. (4)
Equation (4) is the capacity constraint mentioned at the outset.

In variational theory the solution domain S is the set of points P such that
all infinitely long valid paths ending at P intersect the boundary. For example,
the solution domain for the initial value problem (IVP) is the half plane, t > 0.
Variational theory assumes that capacity constraint (4) is binding; i.e., that the
actual value of NP for P ∈ S is the largest possible allowed by (4):

NP = inf{ND(P) + ∆(P) | P ∈ P}. (5)
This is a calculus of variations problem. It is well known, see e.g., [2, 3], that
under some regularity conditions (5) characterizes both the viscosity solution of
the HJ-IVP and also the entropy solution of the KW-IVP. (If Q is not concave (4)
continues to be true but (5) may not match the HJ and the KW solutions because
other constraints come into play.) A key advantage of VT over the HJ and KW
theories is its natural framework for expressing the relatively complicated problems
arising in traffic flow applications (including bottlenecks and finite roads), and the
convenient way in which the “well-posedness” of such problems can be assessed; see
below.

2. Simplifications.

2.1. Homogeneous problems with point bottlenecks: solution existence
and uniqueness. In traffic flow theory it is often necessary to consider “point
bottlenecks”. These are usually slower vehicles or fixed obstructions that reduce
the maximum rate at which traffic can flow past them. A point bottleneck is
defined by its space-time trajectory xB(t), assumed to be a valid path, and by its
relative capacity (maximum passing rate) rB(t). In HJ theory, the relative capacity
restriction is the following upper bound on the total derivative of N along the
bottleneck trajectory: dN(t, xB(t))/dt ≤ rB(t). This type of constraint seems not
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to have received much attention in the mathematics literature. The constraint is
even more complicated when expressed in terms of KW theory. But the complication
disappears in VT.

In VT a bottleneck reduces the original relative capacity of the road along the
bottleneck trajectory. This is recognized by using rB(t) instead of R as the integrand
in (3) for the portion of any path that overlaps xB(t). Nothing else needs to be
changed: (4) and (5) continue to apply. Hence, in VT, point bottlenecks are just
shortcuts through space-time, which preserve the shortest-path character of the
problem without increasing its complexity. Hence, a solution with bottlenecks is as
easy to find as one without bottlenecks. The question is whether the solution with
bottlenecks is continuous and varies with t and with x at allowable rates.

We assume that the boundary data satisfy the following Lipschitz conditions in
D, and look for solutions that satisfy them in D ∪ S:

[N(t, x1)−N(t, x2)]/[x2 − x1] ∈ [0, κ] if x1 < x2, (6)

[N(t2, x)−N(t1, x)]/[t2 − t1] ∈ [0, qmax] if t1 < t2. (7)
A solution satisfying (6-7) in D ∪ S is obviously continuous; thus, vehicles have
continuous trajectories. Furthermore, if (6-7) hold, vehicles can neither reverse
direction nor overtake an object moving with free flow speed u; i.e. their average
speed is always bounded in a physically meaningful way.∗ Therefore, solutions
satisfying (6-7) will be called “valid”. A VT problem whose solution is valid will be
said to be “well-posed”.

We examine below whether these conditions are satisfied for “homogeneous high-
way problems”; i.e, problems in which Q and R are time-independent and space-
independent. Therefore, they will be expressed from now on as functions of one
argument, Q(k) and R(x′), respectively; the parameters κ, qmax, etc. become con-
stants. It will be useful to keep in mind that for homogeneous highway prob-
lems without bottlenecks straight lines turn out to be optimum paths and the
RHS of (3) reduces to R(vDP )(tP − tD), where vDP is the slope of segment DP:
vDP = (xP − xD)/(tP − tD); see [12]. In this special case, thus, the calculus of
variations problem (5) reduces to an ordinary minimization for the point on the
boundary (D ∈ D) that produces the minimum cost. This is the well-known Lax
integral formula for conservation laws [17]. We can now state the following.

Theorem 1. A VT-IVP with any number of piecewise differentiable bottlenecks
“B” is well-posed if the initial data satisfy (6) and the bottlenecks satisfy: rB(t) ≥ 0
and dxB(t)/dt ≥ 0.

Proof. see Appendix A (Lemmas 5 and 6).

Lemmas 5a and 6 of Appendix A (summarized as Theorem 2, below) prove a similar
result for the finite highway problem (FHP) with bottlenecks. The highway extends
from x = 0 to x = xo > 0. Given are the vehicle numbers along the boundary:
N(0, x) for 0 ≤ x ≤ xo, and N(t, 0) and N(t, xo) for t ≥ 0. We look for the
least costs N(t, x) in the solution domain: S= {(t, x) | t > 0 and 0 < x < xo}.

∗This should be clear: (i) direction reversals cannot occur because otherwise N could take the
same value with increasing t and decreasing x, which is incompatible with (6-7); and (ii) vehicles
cannot overtake an observer traveling with free-flow speed u everywhere because this would imply
that N increases along the observer’s path, which is incompatible with the requirement R(u) = 0.
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Because the boundary at x = 0 and x = xo can be reached by valid paths from the
boundary, we add the necessary consistency condition for well-posedness stipulated
in [14] for problems with complex boundaries: namely, that the least cost of reaching
a boundary point with a valid path from the boundary starting at an earlier time,
n(t, 0) or n(t, xo), be no less than the cost specified for that point. For the FHP
this necessary condition is: N(t, xb) ≤ n(t, xb) for t > 0, where xb = 0 or xo.

Theorem 2. An FHP with bottlenecks is well posed if: (i) the N(t, xb) are non-
decreasing in t, and N(0, x) satisfies (6); (ii) the bottlenecks satisfy rB(t) ≥ 0,
dxB(t)/dt ≥ 0 and xB(t) ≥ 0; and (iii) the consistency condition is met: N(t, xb) ≤
n(t, xb) for t > 0.

In applications, Theorem 2 can be expressed in terms of a competition between
“upstream demand” and “available downstream capacity”. Let U(t) be a real func-
tion giving the cumulative upstream demand at x = 0 over time; i.e., the desired
entrances. We assume that U(t) is non-decreasing and U(0) = N(0, 0). Recall that
n(t, 0) is the infimum of the costs of reaching point (t, 0) from the boundary with
valid paths in the solution domain starting at an earlier time; i.e., starting from
Dt = {(t′, x) | (t′, x) ∈ D ; t′ < t} and ending at E(P) = (t, 0). Because the
starting points are at x ≥ 0 we call this infimum the available downstream capacity
and introduce the superscript D to emphasize the idea; i.e.: nD(t, 0) ≡ n(t, 0) =
inf{ND(P) + ∆(P) | P ∈ Dt; E(P) = (t, 0)}.

Likewise, let C(t) be a real function giving an upper bound on the cumulative
number of exits at xo; an available downstream capacity at xo. We assume that
C(t) is non-decreasing and C(0) = N(0, xo). We also define the upstream demand
at x = xo, nU (t, xo) ≡ n(t, xo), as the infimum of the costs of reaching point (t, xo)
from the boundary with valid paths in the solution domain starting from Dt; i.e.,
nU (t, xo) = inf{ND(P) + ∆(P) | P ∈ Dt; E(P) = (t, xo)}. Then, Lemma 7 of
Appendix A establishes the following:

Theorem 3. An FHP with bottlenecks is well posed if: (i) the initial data N(0, x)
satisfy (6); (ii) the bottlenecks satisfy rB(t) ≥ 0, dxB(t)/dt ≥ 0 and xB(t) ≥ 0; and
(iii) the upstream and downstream data are given by N(t, 0) = min{U(t), nD(t, 0)}
and N(t, xo) = min{C(t), nU (t, xo)}, where U(t) and C(t) are non-decreasing func-
tions such that U(0) = N(0, 0) and C(0) = N(0, xo).

The functions U(t) and C(t) can be chosen in any way. For example, if there is a
highway with bottlenecks and different Q and R for x < 0, we can define U(t) for the
downstream problem as the demand at x = 0 arising from the upstream problem,
nU (t, 0); and choose C(t) for the upstream problem as the available capacity arising
from the downstream problem at x = 0, nD(t, 0). To stitch together the two
solutions we simply stipulate N(t, 0) = min{nU (t, 0), nD(t, 0)} for both problems.
This is a natural and obviously well-posed way to treat inhomogeneous highways.

The Theorems are consistent with existing results of KW and HJ theories for
problems without bottlenecks in, both, unbounded [34, 6] and bounded [4, 1] do-
mains. The results also generalize the demand vs. capacity framework of the cell-
transmission model (CTM) for networks [9] and the related results for single links
in [7, 8, 20]. The demand-capacity framework allows one to construct well-posed
network models such as the CTM, even if there are point bottlenecks; see Sec. 5.

The results can also be applied to time-dependent problems. Well-posedness can
be checked in this case by slicing the solution space into successive time-independent
problems and verifying that each time-independent slice satisfies the conditions of
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one of the above theorems. Unfortunately, well-posedness cannot always be tested a
priori (before solving the problem) as in the time-independent case because for the
initial data of a slice to be valid (and the theorems to hold) the solution obtained
at the end of the previous slice must satisfy (6) with the jam density κ specified a
priori for the current slice.

2.2. Linear cost functions. In this subsection Q is triangular in k. Now, the
problem simplifies even more because the cost function (3) is linear [12]. If we use
u ≡ w(0) and −w ≡ w(κ) for the slopes of the rising and dropping branches of Q
(in traffic flow lingo w is called the “backward wave speed”), then (2) becomes:

R(x′) = (1− x′/u)qmax for x′ ∈ [−w, u]. (8)
Note that R(x′) decreases. We shall abbreviate its maximum by the symbol r:
r = R(−w) = (1 + w/u)qmax,. This parameter (the maximum relative capacity)
will be useful later. Experiments show that r is about 15% greater than qmax.

This case is so simple because when R is linear the path cost (3) is just a linear
function of the path’s duration and distance; i.e., if P goes from D to P:

∆(P) = qmax(tP − tD)− (qmax/u)(xP − xD). (9)
Hence, if as is often the case in traffic flow the boundary data (i.e., the coordinates
tD and xD and the values ND for all points D∈D) are given as piecewise linear
functions of a parameter, tD = t(α), xD = x(α) and ND = N(α), then (5) becomes:

NP = inf
α
{qmax[tP − t(α)]− (qmax/u)[xP − x(α)] + N(α)}, (10)

which is just the minimization of a piecewise linear function. Obviously, we can
find its minimum by inspecting the corners of the objective function.

The solution can also be found with network algorithms; see e.g., [12]. These
methods are advantageous when the solution is sought at many points in the solution
domain. The networks in question are digraphs with nodes L embedded in space-
time, with directed arcs LL’. Arcs are defined only for node pairs that can be
connected by a valid path. We call these “valid node pairs.” Each arc is assigned
a cost, cLL′ , equal to that of an optimum continuum path between its end nodes;
e.g., as given by (9) when Q is triangular. Of interest are networks whose shortest
“walks” (network paths) between all valid node pairs are shortest continuum paths.
These networks are said to be “sufficient” because by solving the shortest path
problem on the network one solves the continuum problem exactly for all its valid
node pairs. This is useful because if one puts nodes of a sufficient network on
the corners of a piecewise linear boundary, then the network solution identifies the
exact N at every node. The solution can then be found with the usual dynamic
programming recursion:

cL′ = min
L∈F (L′)

{cL + cLL′} , (11)

where F (L′) is the set of “from” nodes of L′.
Sparse sufficient networks with as few as two links per node can be constructed

for problems with linear R; thus (11) can be computed fast. We will use in this paper
sufficient networks of the “lopsided” type defined in [12].† A lopsided network (see

†Lopsided networks are sufficient for problems without bottlenecks and can be easily modified
to retain sufficiency if there are bottlenecks; see [27].
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Fig. 2) is a network with the following properties: (i) its nodes are on a rectangular
lattice with space separation δ and time step ε, (ii) the set of links pointing to any
node is translationally symmetric, (iii) this set contains two links with slopes u and
−w, and (iv) no link spans a distance greater than δ. Note: since the nodes are
on a rectangular lattice, δ/u and δ/(−w) must be integer multiples of ε, assuming
u, w 6= 0. These networks will help us compare different ways of finding N . But
before this is done we introduce some duality ideas, which will allow us to double
the number of models covered under the same umbrella.

Figure 2: A lopsided network.

3. Duality. In this section Q(k) is concave – not necessarily triangular. We shall
show that associated with every HJ-VT problem satisfying a mild monotonicity
condition there is a dual problem obtained by interchanging the n and x variables,
and that the dual problem is also an HJ-VT problem that can be solved with the
same methods. The primal and dual solutions describe the same Moskowitz surface.
The results apply to problems where N(t, x) strictly decreases with x for every t in
the relevant solution domain. Lemma 5b of Appendix A shows that an IVP with
strictly decreasing N(0, x) satisfies this condition if it has no bottlenecks; and also
if there are bottlenecks but the solution is only sought upstream of them.‡ The
monotonicity requirement on N(0, x) is innocuous in practice because if there is at
least 1 vehicle on the road at t = 0 then there is a strictly decreasing N(0, x) that
describes the vehice positions.

Since N is continuous and declines with x, the relation N(t, x) = n defines an
implicit function for x in terms of t and n, x = X(t, n). This function gives the
position of vehicle n at time t. It is also continuous and declines with n. Both
functions describe the same Moskowitz surface. The two functions are connected
by the functional relation:

X(t,N(t, x)) = x, (12)
which merely expresses that the position at time t of the vehicle that was at x at
time t must be x. Conversely, we can also write:

N(t,X(t, n)) = n, (13)

‡Solutions upstream of bottlenecks can be used to describe the behavior of car platoons fol-
lowing slow vehicles, e.g., in multi-lane traffic models with lane changes [18]; see section 5.
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since the vehicle number found at time t at the position of vehicle n at time t is
n. Note that (13) is obtained from (12), and vice versa, by interchanging (x,X)
with (n, N). Since the (primal) results of Secs 1 and 2 were derived with N as
the unknown, this symmetry suggests that similar (dual) results could be derived
with X as the unknown after swapping the variables and functions for position and
vehicle number.

Differentiation of (12) with respect to t and x yields the following relation among
the partial derivatives of the primal and dual functions:

∂N/∂x = 1/(∂X/∂n) < 0, and (14)

∂N/∂t = −(∂X/∂t)/(∂X/∂n) ≥ 0. (15)

The same expressions with (x,X) and (n,N) interchanged are obtained if one dif-
ferentiates (13). The quantity v = ∂X/∂t is the vehicle speed, and the quantity
s = −∂X/∂n the reciprocal of density; i.e., the continuum version of vehicular
spacing. If we now insert (14) and (15) into (1) we find:

∂X/∂t = V (−∂X/∂n), (16)

where V is related to Q by the following transformation:§

V (s) = Q(1/s)/s, where s = −∂X/∂n. (17)

Equation (16), like (1), is a HJ equation. Note as well that the transformation
(12-13) is a reflection, which preserves stability; thus, if we take a stable (viscosity)
solution of (1) and transform it with (12-13) the result is a stable solution of (16).
The reverse is also true. Thus, for any given set of boundary conditions [tD = t(α),
xD = x(α) and ND = N(α)] the stable solutions of (16) and (1) describe the same
Moskowitz surface. It can be found by solving either a primal problem (1) or a dual
problem (16).¶ Furthermore, since V , like Q, is concave in the relevant range of its
argument, s ∈ [1/κ,∞), VT can be used with the dual problem too.

The dual cost function Rd is given by (2) with V substituted for Q. We find that
Rd is the inverse of R, with the roles of speed x′ and passing rate n′ reversed, and
that it still is convex and decreasing in the relevant range of passing rates. In the
triangular case the dual cost function is the inverse of (8), and is still linear:

Rd(n′) = (1− n′/qmax)u, for n′ ∈ [0, r]. (18)

Therefore, the sufficient lopsided networks that one can use with (11) now have
slopes equal to the cost rates of the primal (0 and r) and cost rates equal to the
slopes of the primal (u and −w, respectively). Variational theory in its primal and
dual forms is used in the next section to examine the connection between eight
different traffic models.

§Note that the transformation Q → V is an involution, which should not be surprising since
the swap of x and n is a reflection.

¶Note too that one can define by differentiating (16) with respect to n a conservation law, ∂s/∂t
+ (∂V (s)/∂s) ∂s/∂n = 0, which is the dual of ∂k/∂t + (∂Q(k)/∂k)∂k/∂x = 0. The analyses and
methods relevant to the primal conservation law also apply to the dual.
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4. Application: eight traffic models. In this section the highway is homoge-
neous and the FD is triangular. We classify traffic models into 4 categories dis-
tinguished by the number of variables that are treated discretely: 0-models treat
all variables continuously, as in the discussion up to this point; 1-models treat the
non-time independent variable (x or n) discretely; 2-models treat both independent
variables (t and x; or t and n) discretely; and 3-models treat all variables (t, x and
n) discretely. Here we present a primal and dual VT model of each type (eight
models in total) and see how they relate to existing ones.

0-models: These are fluid models. Our primal 0-model is (3 and 5). We have
already seen that it has the following dual 0-model, where P is a dual path n(t)
from (tD, nD) to (tP , nP ):

XP = sup{∆(P) + XD(P)}, (19)

where XD(P) is the vehicle position at the beginning of path P and ∆(P) =
tP∫
tD

Rd (n′) dt = u(tP −tD)−(u/qmax)(NP −ND). Note the similarity of this formula

for ∆(P) and (9).

1-models: These are queuing and car-following models. An example of a pri-
mal 1-model is Newell’s queuing formula [32] which gives the cumulative curve at
some point of a highway N(t, xM ) from the vehicle number curves observed at its
upstream and downstream ends: NU (t) and ND(t). The formula is:

N(t, xM ) = min{NU (t− (xM − xU )/u),

ND(t− (xD − xM )/w) + (xD − xM )r}. (20)

The reader can verify that (20) is the result of applying (10) to our boundary data.‖

We now apply (19) to a “lead vehicle problem”. This is a dual problem with
boundary conditions: X(t, 0) = x0(t) for t ≥ 0 and X(0, n) = xn(0) for n ≥ 0. As-
sume that xn(0) is linear in n (vehicles are uniformly spaced) and that dx0(t)/dt ≤
u. Then, an optimum path to reach point (t, n) for some integer n must begin at
one of the two extreme points of the relevant part of the boundary for point (t, n):
either point (0, n) or point (t− n/r, 0). The result is:

X(t, n) = min{xn(0) + ut, x0(t− n/r)− nw/r},

which is the trajectory of vehicle n. Note that w/r ≡ 1/κ is the “jam spacing”,
which we shall denote sj . The parameter 1/r (comparable with 1 second in practical
applications) has the interpretation of a reaction time and will be denoted by τ . In
practice we are usually interested in the values of X for all integer n. A recursive
expression is obtained by setting n = 1 in the above and applying the same recipe
to all consecutive vehicle pairs. The result is the car-following law in [33]:

X(t, n) ≡ xn(t) = min{xn(0) + ut, xn−1(t− τ)− sj}. (21)

‖Since NU and ND cannot increase at a rate that exceeds qmax, an optimum path to point “P”
must emanate from a point on the (upstream or downstream) boundary with the highest possible
t. Only two such points generate valid paths. They correspond to the two arguments of (20).
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2-models: These are numerical analysis schemes for fluid models. For the primal
we use (11) with a lopsided network with two links per node. We choose δ = uε.
Therefore, the links with slope u (and zero cost) span one time step. The links
with slope −w (and cost rate r) span θ = u/w time steps. Hence their cost is
c = rθε = rδ/w. Note: since θ must be integer we are assuming that u/w is an
integer — this ratio is comparable with 6 in practice. If we now use sub-indices l
and m to identify the time and distance steps, i.e., so that Nlm ≡ N(lε,mδ), (11)
becomes:

Nlm = min{Nl−1,m−1, Nl−θ,m+1 + c}. (22)

Equation (22) expresses the ACT (asynchronous cell transmission) model for cells
of size δ. Appendix B derives the ACT formula — equation (B3) — and explains
its connection to conventional numerical schemes for conservation laws.∗∗

A dual 2-model is obtained by applying (11) to a lopsided network on the (t, n)
plane as described above with arc slopes (0, r) and arc cost rates (u,−w). We
choose the step for variable n to be 1 and the time step, ε = 1/r = τ . This
achieves a rectangular lattice, since εr = 1. The link costs become as a result: uτ
and −wτ = −sj . Therefore, with the convention: Xlm ≡ X(lτ, m), recursion (11)
reduces to:

Xlm = min{Xl−1,m + uτ, Xl−1,m−1 − sj}. (23)

This is the CF(L) model in [15], which merely expresses (21) on a lattice.

3-models: Examples of 3-models are cellular automata (CA) models, where cars
are assumed to jump on a lattice. Most CA models are described in dual space, but
as we now show primal models can also be derived. Simply, use δ = sj ≡ w/r in
(22), which yields c = 1, and therefore:

Nlm = min{Nl−1,m−1, Nl−θ,m+1 + 1}. (24)

This expression returns an integer if the input vehicle numbers are integer. There-
fore it is a CA model. The expression indicates that the vehicle count at a point
in space is the smaller of either the upstream count in the prior time step, or the
downstream count θ time steps earlier plus 1. That is, a vehicle jumps from m− 1
to m if and only if the previous vehicle jumped from m to m + 1 at least θ time
steps ago. This is the CA(M) rule in [15].

Consider now the dual formula (23) and express it in dimensionless distance,
Z = X/sj . It becomes:

Zlm = min{Zl−1,m + uτ/sj , Zl−1,m−1 − 1}
= min{Zl−1,m + θ, Zl−1,m−1 − 1}. (25)

We see that if vehicles are initially on the lattice (the Z’s are integer) and if θ is
an integer, then (25) keeps vehicles on the lattice; i.e., it is a CA model. Equation
(25) is the unbounded acceleration special case of the model model in [31], called
the CA(L) model in [15].

∗∗The middle term of (B3) turns out to be redundant for the homogeneous highway problem.
But if we had used a lopsided network with one horizontal link of cost εqmax, (22) would have
included the middle term of (B3).
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This concludes our review. Duality and variational theory provided a framework
that clearly established the equivalence of eight traffic models. The best model for
any given application depends on the form of the data and the requirements of the
output.

5. Composition into networks and discussion. Primal analysis looks for the
flow of vehicles from the perspective of the road; and dual analysis for the “flow
of road” from the perspective of the vehicles.†† Fixed bottlenecks such as merges
and lane-drops are understood by scientists in primal space, from the perspective
of the road, since this is the form in which data are available. Moving bottlenecks;
e.g., those caused by slow-moving obstructions are understood from the perspec-
tive of the moving bottleneck, since data from this perspective is available. The
ideas in this paper allow us to combine the effects of fixed and moving bottlenecks
consistently in whatever framework is most useful (primal or dual) for practical
application. Multi-lane traffic streams and networks are application domains of
particular interest.

Multi-lane streams: A vehicle that has changed lanes from a slow to a faster lane
but has not yet fully accelerated acts on that lane as a moving bottleneck with a zero
passing rate. Conversely, a lane changer to a slower stream creates a momentary
bottleneck on the source lane. Our ability to treat moving bottlenecks suggests
that multi-lane traffic streams can be modeled as hybrid systems of (continuous)
single-lane VT streams linked by (discrete) lane changes. This is mathematically
trivial if the trajectories of the moving bottlenecks are given, but in practice they
are unknown and have to be generated endogenously as the problem is solved.

Reference [18] proposes generating these trajectories with a probabilistic demand
model that initiates the lane changes and a constrained acceleration/deceleration
model that creates their discrete paths. Although well-posedness conditions for
hybrid problems with endogenous linkages have not been rigorously established,
the approach in [18] seems to be workable in practice. Tests in [18, 19] showed
that the approach was surprisingly accurate predicting the performance of lane
drops, merges and moving bottlenecks. A variant of this method has been found to
reproduce HOV lane phenomena [28].

Networks: Although composition of links that follow fluid models is in general
complicated, the competition paradigm between capacity and demand discussed in
section 2 simplifies matters for KW-VT links. This paradigm was exploited in the
composition rules for merges and diverges of the CTM [9], and its implementation

††A possible interpretation of dual VT and its constraints is as follows. Imagine uniformly
spaced parked (dual) vehicles by the side of the road. Then, dual VT describes the flow of these
vehicles from the perspective of a flexible frame of reference attached to the moving (primal)
vehicles; i.e., where (dual) distance increases by a unit with each (primal) moving vehicle. From
this frame of reference, the (dual) flow is the rate at which dual vehicles (i.e., units of primal
distance) flow past fixed positions in the dual frame (i.e., moving-primal vehicles). Thus, dual
flow = primal speed. Conversely, the rate at which a dual vehicle overcomes dual distance (i.e.,
moving vehicles) is both the dual speed and the primal flow. And the number of parked vehicles
between two consecutive moving vehicles is both the dual density and, the primal spacing. Thus,
dual-VT can also be interpreted in terms of flows and densities, and its constraints described in
terms of relative capacities, but all from the perspective of the flexible frame of reference. Thus,
the dual relative capacity is the maximum flow of parked vehicles that can be seen by an observer
jumping from primal vehicle to primal vehicle with a fixed jump frequency.
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in [23]. Later, [8, 5] extended the rules to networks with more general (unimodal)
FD’s, and [21] showed their connection with the Godunov numerical method.

The CTM composition rules have been used to describe the time-dependent be-
havior of traffic circles and ring roads [10], shedding light on the so-called “gridlock
effect”, and to investigate network control strategies [24, 25, 36]. (An animation of
the gridlock effect can be found in http://www.its.berkeley.edu/volvocenter/gridlock/ ).
Unfortunately the CTM rules and those of other fluid models use exogenous param-
eters such as “priority constants” for merges, which depend on the geometry of an
intersection but cannot be estimated without observing traffic. Thus, conventional
fluid models cannot always predict the effect of changes in intersection design.

Multi-lane hybrid models allow us to side-step this problem and increase realism.
For example, as demonstrated in [19], we can treat the two links leading to a merge
(or the two emanating from a diverge) as a single link with as many lanes as the
two links combined, provided that lane changes are banned across the two legs
upstream of the merge (or downstream of the diverge). The third leg of the junction
can then be modeled as a continuation of this link, and the turning movements as
localized lane-changes. No extra parameters have to be introduced. This approach
to composition can also be used with more complex junctions, allowing us to create
realistic (multi-lane) networks without introducing intersection-specific parameters.
Further facilitating the task, the results of section 4 demonstrate that the continuous
module of any such hybrid model can take eight different equivalent forms. The
choice is one of programming convenience.‡‡

Unfortunately, although the hybrid approach is promising in theory, it has prac-
tical limitations. The composition rules for intersections involving multiple exit
legs, such as diverges, require knowing the destinations of the vehicles making up
the stream. The distribution of destinations strongly affects both, the discharge
rates of diverge bottlenecks, as demonstrated by the natural experiments in [30],
and the performance of intersections controlled by traffic signals. Thus, it can-
not be ignored. Unfortunately, as a network grow in size, the number of possible
destinations grows proportionately with the number of links, and it becomes more
difficult to get the input data required by the model. Thus, the practical limit to
composition is not theoretical (we could model relatively well almost anything if
we knew where vehicles were going) but informational. The results in this paper
can be of use for the design of small/medium networks such as small freeways and
sets of complex interchanges, but other approaches should be sought for very large
networks; reference [16] proposes some ideas.
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ifornia, Berkeley), Prof. Jorge Laval (Georgia Institute of Technology) and Dr.
Ludovic Leclercq (INRETS) are gratefully acknowledged. Research supported by
the U. C. Berkeley Center for Future Urban Transport (a Volvo Foundations inter-
national center of excellence.)

Appendix A: proofs.

Definition 1. Valid path: a continuous piecewise differentiable function, x(t), such
that:

‡‡Reference [18] used both the ACT and CA(L) methods (with similar results);
Reference [28] used a variant of the CF(L) model; and the gridlock animation in
http://www.its.berkeley.edu/volvocenter/gridlock/ uses the CA(M) method.



VARIATIONAL THEORY OF TRAFFIC FLOW 613

(x(t2)− x(t1))/(t2 − t1) ∈ [−w, u] if t1 < t2.

Definition 2. Cost function with bottlenecks, for (t, x) ∈ S :

RB(x′, t, x) = min{rB(t), R(x′)}, if x = xB(t), x′ = x′B(t) for some B.
= R(x′), otherwise.

Definition 3. Auxiliary cost function:

RA(x′) = max{0,−x′r/w} = max{0,−x′κ}.
Definition 4. Auxiliary path costs, ∆A(P): Costs obtained with the auxiliary cost
function.

Lemma 1. RA(x′) ≤ R(x′) for x′ ≥ −w.

Proof. The lemma holds for x′ ≥ 0 since in this case RA(x′) = 0 ≤ R(x′). For
x′ < 0, we have: RA(x′) = −x′r/w = −x′R(−w)/w = −x′ sup

k
{Q (k) + kw} /w =

−x′ sup
k
{Q (k) /w + k}. And since 0 < −x′ ≤ w, we can also write:

−x′ sup
k
{Q (k) /w + k} ≤ −x′ sup

k
{Q (k) /(−x′) + k} =

= sup
k
{Q (k)− x′k} = R(x′).

We assume for the rest of this appendix that x′B(t) ≥ 0 and rB(t) ≥ 0.

Lemma 2. 0 ≤ RA(x′) ≤ RB(x′, t, x).

Proof. In view of Lemma 1, we only need to prove Lemma 2 for the first case
of Definition 2; i.e., it suffices to show that RA(x′) ≤ RB(x′, t, x) = rB(t) when
x = xB(t), x′ = x′B(t) ≥ 0, and 0 ≤ rB(t) < R(x′). This is obviously true since for
x′ ≥ 0, RA(x′) = 0 and RB(x′, t, x) ≥ 0.

Lemma 3. If valid path P goes from point D to point P, then ∆(P) ≥ κ(xD−xP )}.
Proof. It suffices to show that ∆(P) ≥ ∆A(P) ≥ max{0, κ(xD − xP )}. The first
inequality follows from Lemma 2, since RB is the cost used to calculate ∆(P) and
RA is the cost used to calculate ∆A(P). The second inequality holds because max{0,
κ(xD − xP )} is the auxiliary cost of the linear path from D to P, which is the least
possible because RA(x′) is time- and space-independent.

Definition 5. ε-opt path, Pε
P , for ε ≥ 0: a valid path from the boundary to P ∈ S

such that:

ND(P) + ∆(Pε
P ) ≤ NP + ε.

Note: If P ∈ S the argument of (5) is bounded and the feasible set P is not empty.
Thus, the infimum (5) exists, and there must be an ε-opt path for any ε > 0, no
matter how small. If there are no bottlenecks, a straight line with ε = 0 (i.e.,
optimal) always exists.

Lemma 4. If C is a point of an ε-opt path, Pε
P , and Pε

CP ⊂ Pε
P is the sub-path

from C to P, then

NC + ∆(Pε
CP ) ≤ NP + ε.
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Proof. Let P′ be the beginning point of the ε-opt path. The path capacity constraint
ensures that NC ≤ NP ′ +∆(Pε

P ′C). If we now add ∆(Pε
CP ) to both sides, the result

is: NC + ∆(Pε
CP ) ≤ NP ′ + ∆(Pε

P ′C) + ∆(Pε
CP ) = NP ′ + ∆(Pε

P ) ≤ NP + ε. The last
inequality holds because Pε

P is ε-opt.

Lemma 5. If the conditions of Theorem 1 in the text hold for an IVP with bottle-
necks, then its solution satisfies (6) in D ∪ S.

Proof. Condition (6) is obviously satisfied for t = 0. Thus, we only have to establish
it for two arbitrary points A and B with coordinates tA = tB = t > 0 and xB > xA.
We first prove that NB ≤ NA. To do this we assume that this is not true, i.e., that
there is an ε > 0 such that NB > NA + ε, and look for a contradiction.

Consider the path, UB , which reaches B with x′ = u from a source B′ ∈D .
(Because its speed is maximum, we call UB a “maximal path”.) Consider as well an
ε-opt path from the boundary to A, Pε

A , which emanates from a point A′ ∈D . If the
paths do not intersect (i.e., xB′ > xA′) then NB′ ≤ NA′ , as per (6) which applies
on the boundary, and we can write: NB ≤ NB′ ≤ NA′ ≤ NA−∆(Pε

A)+ ε ≤ NA + ε.
(The first equality holds because the maximal path imposes a capacity constraint
with zero cost, the third because our path is ε-opt, and the fourth because ∆(P∗A)
is non-negative.) But NB ≤ NA + ε contradicts our hypothesis. Thus, NB ≤ NA

if the paths do not intersect. If the paths intersect, there is a common point C.
Clearly, NB ≤ NC since C is on a maximal path to B, which has zero cost; moreover,
NC ≤ NA − ∆(Pε

CA) + ε ≤ NA + ε, since Lemma 4 holds for the sub-path Pε
CA

from C to A, and cost rates are non-negative. Thus, NB ≤ NC ≤ NA + ε, which is
a contradiction. Hence, NB ≤ NA if the paths do not intersect. Since paths must
either intersect or not intersect, we conclude that NB ≤ NA.

To finish the proof we now show that NA ≤ NB +κ(xB−xA). Again, we assume
that this is not true, i.e., that there is an ε > 0 such that NA > NB +κ(xB−xA)+ε,
and find a contradiction.

Consider the minimal path, WA, which reaches A from the boundary with mini-
mal speed (x′ = −w) from a source A′′ ∈D , and consider as well an ε-opt path from
the boundary to B, Pε

B , which emanates from a point B′′ ∈ D . If the paths do not
intersect, xB′′ > xA′′ , and we can write: NA ≤ NA′′+κ(xA′′−xA) ≤ NB′′+κ(xB′′−
xA′′) + κ(xA′′ − xA) = NB′′ + κ(xB′′ − xA) ≤ NB −∆(Pε

B) + κ(xB′′ − xA) + ε ≤
NB−κ(xB′′−xB)+κ(xB′′−xA)+ε = NB+κ(xB−xA)+ε. (The first inequality holds
because κ(xA′′−xA) is the cost of the minimal path from A′′, which cannot overlap
with any bottlenecks; the second one because NA′′ ≤ NB′′+κ(xB′′−xA′′) as per (6),
which applies on the boundary; the first equality is algebraic; the third inequality
because Pε

B is an ε-opt path emanating from B′′; the fourth because of Lemma 3;
and the last equality is algebraic.) Thus, NA ≤ NB +κ(xB−xA)+ ε if the paths do
not intersect — a contradiction. If the paths intersect, then there is a common point
C and a sub-path, Pε

CB , of the ε-opt path that extends from C to B. And we see
using similar logic that: NA ≤ NC +κ(xC−xA) ≤ NB−∆(Pε

CB)+κ(xC−xA)+ε ≤
NB −κ(xC −xB)+κ(xC −xA)+ ε = NB +κ(xB −xA)+ ε. (The second inequality
is based on Lemma 4.) Thus, the contradiction NA ≤ NB + κ(xB − xA) + ε also
arises if the paths intersect. We must conclude that NA ≤ NB + κ(xB − xA).

Lemma 5a. If the conditions of Theorem 2 in the text hold for an FHP with
bottlenecks, then its solution satisfies (6) in D ∪ S.
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Proof. The proof of Lemma 5 can be repeated with only two changes. Note that
point A can be on the boundary line x = 0 and point B on the boundary line x = xo.

First change: for the proof that NB ≤ NA when the maximal and optimal paths
UB and Pε

A do not intersect we need to recognize that one or both paths may
emanate from the boundary line x = 0, and that point A itself may be on this line.
If A is on this line then the necessary condition for well-posedness implies A′ = A
and NA′ ≤ NA + ε. This inequality also holds if A is not on the boundary (see
Lemma 5); thus it applies to all A. Furthermore, it is still true from condition (i)
of Theorem 2 that NB′ ≤ NA′ , even if one or both paths emanate from the line
x = 0. Thus, we can still write NB ≤ NB′ ≤ NA′ ≤ NA + ε, and find the same
contradiction.

Second change: for the proof that NA ≤ NB + κ(xB − xA) when the minimal
and optimal paths WA and Pε

B do not intersect, we need to recognize that one
or both paths may emanate from the line x = xo and that point B itself may
be on this line. We still assume that there is an ε > 0 such that NA > NB +
κ(xB − xA) + ε, and look for a contradiction. If B is not on the boundary line
we can write: NB + ε ≥ NB′′ + ∆(Pε

B) ≥ NB′′ + κ(xB′′ − xB), because Pε
B is e-

opt, and then invoking Lemma 3. Now add, κ(xB − xA) to both sides and obtain:
NB +κ(xB−xA)+ ε ≥ NB′′ +κ(xB′′−xA) ≥ NA′′−κ(xB′′−xA′′)+κ(xB′′−xA) =
NA′′ + κ(xA′′ − xA) ≥ NA. This is our contradiction. [The first inequality is
algebraic; the second holds because condition (i) of Theorem 2, which applies on
the boundary, implies NB′′ ≥ NA′′−κ(xB′′−xA′′) since xB′′ ≥ xA′′ and tB′′ > tA′′ ;
and the last inequality holds because the term κ(xA′′−xA) is the cost of the minimal
path from A′′ to A, WA, which imposes the indicated capacity constraint on NA.]
If B is on the boundary line then the necessary consistency condition implies that
B′′ = B. Hence, the first inequality in the above string becomes a pure equality, and
the rest continue to hold.

Lemma 5b. (Strictly monotone problems without bottlenecks): If for an IVP with-
out bottlenecks the conditions of Lemma 5 are satisfied and N(0, x) decreases with
x, then N(t, x) decreases with x for any t > 0. This is also true for problems with
bottlenecks in the part of the solution domain upstream of the bottlenecks.

Proof. It suffices to prove that that NB < NA for two arbitrary points A and B in
the solution domain with coordinates: tA = tB and xB > xA. To this end, let UB

be the maximal path to B, and L∗A a linear optimal path to A. The latter exists
because there are no bottlenecks. Let A′ and B′ the beginning points of L∗A and
UB , respectively, and define vA = (xA − xA′)/(tA − tA′). This is the slope of L∗A.

If the paths do not intersect, NB ≤ NB′ < NA′ ≤ NA; i.e., NB < NA. [The
first inequality holds because a maximal (zero-cost) path goes from B′ to B; the
second is implied by boundary condition (i) of Theorem 2; and the third because
an optimal path with non-negative cost goes from A′ to A.] Something similar
happens if the paths intersect. Then there is a common point C and a portion of
the optimal linear path L∗CA goes from C to A. Hence, NB ≤ NC = NA−∆(L∗CA) =
NA−R(vA)(tA− tC) < NA; i.e., NB < NA. [The first inequality holds because B is
on a maximal (zero cost) path from C; the second by virtue of Lemma 4, with ε = 0;
the third because L∗CA is linear; and the fourth because an intersection point can
only exist if vA < u and tA > tC , which imply R(vA) > 0 and R(vA)(tA − tC) > 0.]
Thus, NB < NA whether or not the paths intersect.
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If there are bottlenecks but points A and B are upstream of the bottlenecks, the
previous arguments continue to hold.

Lemma 6. (Bounded flows): If the conditions of Theorem 1 (or Theorem 2) hold
for an IVP (or FHP) with bottlenecks, then its solution satisfies (7) in S ∪D.

Proof. Since paths with x′ = 0 are valid and satisfy RB ≤ R = qmax, it follows that
N(tB , x) − N(tA, x) ≤ (tB − tA)qmax if tA < tB . This is true for an FHP even if
x = 0 or x = xo. Thus, the upper bound part of (7) holds for the IVP and FHP.

We now prove the lower bound part for the IVP. If the lower bound is false there
should be two points A and B with coordinates (tA, x) and (tB , x), with tA < tB ,
such that NA > NB + ε for some ε > 0. Consider too an ε-opt path to B Pε

B (rooted
at B′). If we consider a maximal path to A, UA (rooted at A′), we can write (for
obvious reasons):

NA ≤ NC ≤ NC +∆(Pε
CB) ≤ NB + ε, if ∃ a common C (A1)

NA ≤ NA′ ≤ NB′ ≤ NB′ +∆(Pε
B) ≤ NB + ε, otherwise. (A2)

This is the contradiction. The contradiction can also be derived using a minimal
path WA (rooted at A′′), instead of UA. The inequalities then are:

NA ≤ NC + κ(xC − x) ≤ NC + ∆(Pε
CB) ≤ NB + ε, if ∃ a common C (A3)

NA ≤ NA′′ + κ(xA′′ − x) ≤ NB′ + κ(xB′ − xA′′) + κ(xA′′ − x)
≤ NB′ + κ(xB′ − x) ≤ NB′ + ∆(Pε

B) ≤ NB + ε, otherwise. (A4)

We now prove the monotonicity condition for the FHP. The condition is satisfied
at the boundary, by construction. Thus, we only need to check it in S. We again
consider points A and B as above, and the contradiction involving an ε-opt path
to B. If this ε-opt path intersects UA or WA, we invoke (A1) or (A3) and the
contradiction follows. If it intersects neither, but intersects the initial boundary,
then again (A2) or (A4) establish it. If it intersects the upper boundary, x = 0,
we can use (A2) because the second inequality involving A′ and B′ still holds, since
N(t, 0) is non-decreasing. If it intersects the boundary x = xo we can use (A4)
– since the second equality involving A′′ and B′ still holds. Thus, a contradiction
arises independent of the location of B′.

Lemma 7. Theorem 3 of the text holds.

Proof. It suffices to show that conditions (i), (ii), (iii) of Theorem 3 imply the
conditions of Theorem 2. It is obvious that conditions (ii) and (iii) of Theorem
3 imply conditions (ii) and (iii) of Theorem 2. Thus, we only have to prove the
monotonicity of N(t, xb). We prove it first for t ≤ t∗ ≡ min{xo/u, xo/w}. This
restriction prevents valid paths from one boundary, x = xb, to reach the other.

Proof for the upper boundary, x = 0, when t ≤ t∗: At any point on this boundary
either: (a) N(t, 0) = U(t) (if U(t) ≤ nD(t, 0)); or (b) N(t, 0) = nD(t, 0) (if U(t) >
nD(t, 0) = N(t, 0)). Clearly, N(t, 0) can only decline where (b) holds. For this to
happen there must be an interval where (b) holds, with points A and B such that
tA < tB and NB + ε < NA for some ε > 0. But this cannot happen because it leads
to the usual contradiction with paths WA and Pε

B , as we now show.
If WA and Pε

B intersect then (A3) holds, with x = 0, which is a contradiction.
Note now that an ε-opt path that starts at or before tA must exist. (This is true
because where N(t, 0) = nD(t, 0), cost is determined from Dt; therefore, the cost
of any point in [tA, tB ] must be determined from DtA

.) Thus, if the paths do not
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cross Pε
B must start from a point A′′ on the initial line with xA′′ > xB′ . Therefore

(A4) must hold. This is also a contradiction. Thus, N(t, 0) cannot decline in [0, t∗].

Proof for the lower boundary, x = xo, when t ≤ t∗: The same logic, applied to
N(t, xo) using paths UA and Pε

B , reveals a contradiction involving either (A1) or
(A2) if N(t, xo) declines. Thus, N(t, xo) cannot decline in [0, t∗].

Proof for both boundaries and t > 0: An induction argument is used. Assume that
N(t, xb) is non-decreasing for t ∈ [0, jt∗], where j = 1, 2, 3... ; i.e., that condition
(i) of Theorem 2 is satisfied up to time jt∗. Note that the assumption is true for
j = 1. The monotonicity proof can now be repeated step by step for the boundary
points in (jt∗, (j +1)t∗]. The only difference is that paths WA, UA and Pε

B can now
be rooted in the opposite boundary. However, these paths must start at a point
with t ≤ jt∗ where N(t, xb) is already known to be non-decreasing. This ensures
that the second inequalities of (A2) and (A4) continue to hold. Hence, one of the 4
inequalities (A1)-(A4) will still hold and yield the desired contradiction.

Comment: For the FHP (and other problems with complex boundaries) valid
paths from the boundary to a point P in the solution domain may leave S and
return to it. The consistency condition (iii) implies that such paths cannot be
unique optima. Hence, they can be ignored when solving (5). This is recommended
for applications because sufficient networks for numerical solution then only have
to be defined in S . (The reader may want to verify that the proofs of Lemmas 5a
and 6 still hold if paths are not allowed to leave S .)

Appendix B: asynchronous cell transmission model. In this appendix primes
do not denote derivatives. The cell transmission model (CTM) [7] with time step
ε, cells of size δ = uε, and a triangular FD is:

Nlm −Nl−1,m = min{Nl−1,m−1 −Nl−1,m , εqmax ,

[κ− (Nl−1,m −Nl−1,m+1)/δ]wε}. (B1)

The LHS of (B1) is the flow advancing in one time step across the mth intercell
boundary. The RHS is a function of the vehicles currently in the upstream and
downstream cells. It is known [21] that the CTM formula is a streamlined version
of Godunov’s method. It is also known [7, 8] that the last term of the CTM
formula, which expresses the available capacity of the downstream cell, introduces
a first order numerical error when w 6= δ/ε, and that the error vanishes (the method
is exact) if w = δ/ε. Fortunately, these errors can be eliminated by changing the
time variable to asynchronous time as proposed in Sec. 5.2.2 of [13]. The resulting
procedure — no longer in Godunov’s family — was called the asynchronous cell
transmission model (ACTM) in this reference.

To summarize, imagine that clocks at each location have been synchronized
with the passage of a reference vehicle with negative speed, s, such that: 1/s =
1/u−1/w < 0. Thus, the new (asynchronous) time is t′ = t + x/s, and the new
lattice instants at x = xm are related to the old by: l′ = t′l/ε = tl/ε + xm/sε =
tl/ε + mδ/sε = tl/ε + m(uε)(1/u − 1/w)ε = l + m(1 − θ). If θ is an integer
then the lattice remains the same, since the lattice instants are displaced from
the old by an integer multiple of the time step. This leaves invariant the jam
density but changes speed as per: 1/v′ = 1/v + 1/w − 1/u. The advantage of
the new coordinate system is that the speed of the backward wave adopts the
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value −w′ such that: 1/(−w′) = 1/(−w) + 1/w − 1/u; i.e., w′ = u, and there-
fore w′ = δ/ε. Thus, the formula for available capacity in the new coordinate
system, which is [κ − (Nl′−1,m − Nl′−1,m+1)/δ]w′ε, is exact. In terms of the old
variables, l and w′, this expression becomes [κ − (Nl′−1,m−Nl′−1,m+1)/δ]w′ε = [κ -
(Nl−1,m−Nl−θ,m+1]/δ)uε = κδ - (Nl−1,m−Nl−θ,m+1). Substituting this expression
for the last term of (B1) we obtain the exact ACTM recipe:

Nlm −Nl−1,m = min{Nl−1,m−1 −Nl−1,m , εqmax ,

κδ − (Nl−1,m −Nl−θ,m+1)}, (B2)
or

Nlm = min{Nl−1,m−1 , Nl−1,m + εqmax , κδ + Nl−θ,m+1}. (B3)
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