Research article

High-order discontinuous Galerkin methods for the monodomain and bidomain models

  • These authors equally contributed to this work.
  • Received: 01 June 2024 Accepted: 24 December 2024 Published: 31 December 2024
  • This work aims at presenting a discontinuous Galerkin (DG) formulation employing a spectral basis for two important models employed in cardiac electrophysiology, namely the monodomain and bidomain models. The use of DG methods is motivated by the characteristic of the mathematical solution of such equations which often corresponds to a highly steep wavefront. Hence, the built-in flexibility of discontinuous methods in developing adaptive approaches, combined with the high-order accuracy, can well represent the underlying physics. The choice of a semi-implicit time integration allows for a fast solution at each time step. The article includes some numerical tests to verify the convergence properties and the physiological behaviour of the numerical solution. Also, a pseudo-realistic simulation turns out to fully reconstruct the propagation of the electric potential, comprising the phases of depolarization and repolarization, by overcoming the typical issues related to the steepness of the wave front.

    Citation: Federica Botta, Matteo Calafà, Pasquale C. Africa, Christian Vergara, Paola F. Antonietti. High-order discontinuous Galerkin methods for the monodomain and bidomain models[J]. Mathematics in Engineering, 2024, 6(6): 726-741. doi: 10.3934/mine.2024028

    Related Papers:

  • This work aims at presenting a discontinuous Galerkin (DG) formulation employing a spectral basis for two important models employed in cardiac electrophysiology, namely the monodomain and bidomain models. The use of DG methods is motivated by the characteristic of the mathematical solution of such equations which often corresponds to a highly steep wavefront. Hence, the built-in flexibility of discontinuous methods in developing adaptive approaches, combined with the high-order accuracy, can well represent the underlying physics. The choice of a semi-implicit time integration allows for a fast solution at each time step. The article includes some numerical tests to verify the convergence properties and the physiological behaviour of the numerical solution. Also, a pseudo-realistic simulation turns out to fully reconstruct the propagation of the electric potential, comprising the phases of depolarization and repolarization, by overcoming the typical issues related to the steepness of the wave front.



    加载中


    [1] P. C. Africa, lifex: a flexible, high performance library for the numerical solution of complex finite element problems, SoftwareX, 20 (2022), 101252. https://doi.org/10.1016/j.softx.2022.101252 doi: 10.1016/j.softx.2022.101252
    [2] R. R. Aliev, A. V. Panfilov, A simple two-variable model of cardiac excitation, Chaos Soliton. Fract., 7 (1996), 293–301. https://doi.org/10.1016/0960-0779(95)00089-5 doi: 10.1016/0960-0779(95)00089-5
    [3] P. F. Antonietti, P. Houston, A class of domain decomposition preconditioners for $hp$-discontinuous Galerkin finite element methods, J. Sci. Comput., 46 (2011), 124–149. https://doi.org/10.1007/s10915-010-9390-1 doi: 10.1007/s10915-010-9390-1
    [4] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2022), 1749–1779. https://doi.org/10.1137/S0036142901384162 doi: 10.1137/S0036142901384162
    [5] Y. Bourgault, Y. Coudiére, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal., 10 (2009), 458–482. https://doi.org/10.1016/j.nonrwa.2007.10.007 doi: 10.1016/j.nonrwa.2007.10.007
    [6] P. Colli Franzone, L. F. Pavarino, S. Scacchi, Mathematical cardiac electrophysiology, Springer-Verlag, 2014. https://doi.org/10.1007/978-3-319-04801-7
    [7] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, In: R. Glowinski, J. L. Lions, Computing methods in applied sciences, Springer, 58 (2008), 207–216. https://doi.org/10.1007/BFb0120591
    [8] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991), 345–390. https://doi.org/10.1007/BF01060030 doi: 10.1007/BF01060030
    [9] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6 doi: 10.1016/S0006-3495(61)86902-6
    [10] J. S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer Science & Business Media, 2008. https://doi.org/10.1007/978-0-387-72067-8
    [11] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764 doi: 10.1113/jphysiol.1952.sp004764
    [12] J. M. Hoermann, C. Bertoglio, M. Kronbichler, M. R. Pfaller, R. Chabiniok, W. A. Wall, An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology, Int. J. Numer. Methods Biomed. Eng., 34 (2018), e2959. https://doi.org/10.1002/cnm.2959 doi: 10.1002/cnm.2959
    [13] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235 doi: 10.1109/JRPROC.1962.288235
    [14] R. Piersanti, P. C. Africa, M. Fedele, C. Vergara, L. Dedè, A. F. Corno, et al., Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations, Comput. Methods Appl. Mech. Eng., 373 (2021), 113468. https://doi.org/10.1016/j.cma.2020.113468 doi: 10.1016/j.cma.2020.113468
    [15] A. Quarteroni, A. Manzoni, C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications, Acta Numer., 26 (2017), 365–590. https://doi.org/10.1017/S0962492917000046 doi: 10.1017/S0962492917000046
    [16] B. Rivière, M. F. Wheeler, V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39 (2001), 902–931. https://doi.org/10.1137/S003614290037174X doi: 10.1137/S003614290037174X
    [17] C. B. L. Saglio, S. Pagani, M. Corti, P. F. Antonietti, A high-order discontinuous Galerkin method for the numerical modeling of epileptic seizures, arXiv, 2024. https://doi.org/10.48550/arXiv.2401.14310
    [18] S. Sun, M. F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. Numer. Anal., 43 (2005), 195–219. https://doi.org/10.1137/S003614290241708X doi: 10.1137/S003614290241708X
    [19] G. Szego, Orthogonal polynomials, American Mathematical Society, 1939.
    [20] K. H. W. J. Ten Tusscher, D. Noble, P. J. Noble, A. V. Panfilov, A model for human ventricular tissue, Amer. J. Physiology-Heart Circ. Physiol., 286 (2004), 1573–1589. https://doi.org/10.1152/ajpheart.00794.2003 doi: 10.1152/ajpheart.00794.2003
    [21] K. H. W. J. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Amer. J. Physiology-Heart Circ. Physiol., 291 (2006), 1088–1100. https://doi.org/10.1152/ajpheart.00109.2006 doi: 10.1152/ajpheart.00109.2006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(170) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog