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Abstract: This work aims at presenting a discontinuous Galerkin (DG) formulation employing
a spectral basis for two important models employed in cardiac electrophysiology, namely the
monodomain and bidomain models. The use of DG methods is motivated by the characteristic of
the mathematical solution of such equations which often corresponds to a highly steep wavefront.
Hence, the built-in flexibility of discontinuous methods in developing adaptive approaches, combined
with the high-order accuracy, can well represent the underlying physics. The choice of a semi-implicit
time integration allows for a fast solution at each time step. The article includes some numerical tests
to verify the convergence properties and the physiological behaviour of the numerical solution. Also,
a pseudo-realistic simulation turns out to fully reconstruct the propagation of the electric potential,
comprising the phases of depolarization and repolarization, by overcoming the typical issues related to
the steepness of the wave front.
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1. Introduction

The heart activity is defined through the cardiac cycle which, at a first analysis, is characterized by
two alternating phases: the diastole, the period of relaxation, and the systole, the period of contraction.
The continuous sequence of contractions, formally called rhythmicity, is caused by the propagation
of bio-electrical signals through the cells resulting in an active contraction of the cardiac muscle.
Mathematical models are widely employed to understand and predicting the complex processes
underlying this phenomenon. The most popular ones are the monodomain and the bidomain models,
which mathematically correspond to systems of (non linear) reaction-diffusion equations coupled to a
system of ordinary differential equations for the ionic currents [6, 15].

The cardiac electrical propagation is represented by a wave characterized by a fast and steep
front. Therefore, in order to accurately capture the proper dynamics, Finite Element methods usually
require very refined computational grids. This clearly entails high computational costs to solve the
electrophysiology problem in real scenarios. On the other hand, high-order spectral methods have
become popular for their ability at capturing sharp parts such as shock waves. In this context,
discontinuous Galerkin (DG) methods may provide an effective alternative for the solution of the
electro-physiology problems, guaranteeing high-order accuracy and more flexibility, see [10, 17] and
for the problem at hand [12].

The objective of this work is to present and test in practice a high-order DG method to discretize
the monodomain and bidomain models. In particular, Section 2 is aimed at introducing the
electrophysiology problem and the associated mathematical models. The DG formulation is illustrated
in Section 3 while Section 4 provides the details of the high-order approximation. In order to obtain
the final numerical algorithm, Section 5 incorporates the semi-implicit time discretization. Finally,
Section 6 presents some numerical tests. Specifically, we perform a preliminary analysis in model
problems to highlight the feasibility of this approach showing some convergence tests refining the
mesh size and increasing the polynomial order. Then, the results of a realistic (although simplified)
simulation of the propagation of the electric potential is shown to highlight the effectiveness of the
proposed method. Final remarks are then discussed.

2. The physical problem and the mathematical formulation

In what follows we present a brief introduction to the monodomain and bidomain equations. For a
detailed derivation, we address the interested reader to [15].

The heart’s active mechanical contraction is triggered by the cardiac cell’s electrical activation.
Cardio-myocytes are activated and deactivated at each heartbeat following a characteristic electrical
cycle. The cell is initially at rest (−90 mV). At the beginning of the activation, its potential increases
rapidly (≈ 2 ms) and reaches the value of +20 mV . Later, a plateau near 0 mV is observed, followed by
a slow repolarization to the initial potential.

From a microscopical point of view, each single cell is involved in a passage of chemical ions
through specific channels, e.g., calcium Ca++, sodium Na+ and potassium K+. From a macroscopical
point of view, one can describe the dynamics as a continuous electrical diffusion over the entire cardiac
tissue driven by the directions of the muscle fibers [14].

Applying general electromagnetism laws, the bidomain model has been formulated for the
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macroscopic dynamics (see [6, 15] for more details). To complete the formulation, a mathematical
model for the ionic current is required. In such context, it is noteworthy to mention the original
formulation by Hodgkin and Huxley [11]. FitzHugh [9] and Nagumo [13] proposed later a
simplification of the latter and complex models successively followed such as the ones proposed
in [2, 20, 21]. In this work, the FitzHugh-Nagumo reduced ionic model (FHN) is considered. This
simple model represents only one ionic channel o describe the ionic currents.

Given an open and bounded domain Ω ∈ Rd, d = 2, 3, and a final time T > 0, the unknowns
of the bidomain model are: the trans-membrane potential Vm = φi − φe, where φi and φe are the
intracellular and extracellular potentials, respectively, and the gating variable w representing the
percentage of opening of the ionic channel. The model parameters include: the positive constants
χm,Cm , representing the surface area-to-volume ratio and the membrane capacitance, the permeability
tensors Σi,Σe in the internal and external cellular field, the external applied currents Iext

i , Iext
e , and

some known constants to tune the ionic model (κ, a, ε,Γ). In particular, Σi and Σe account for the
anisotropy given by the cardiac fibers. Furthermore, initial and Neumann boundary conditions are
imposed through some known functions φi,0, φe,0,w0, bi, be. The former conditions assign the initial
state of the system while the latter conditions prescribe the behaviour on the boundary of the domain
in terms of inward or outward currents.

Problem 1 (Bidomain model coupled with FitzHugh-Nagumo model). For each t ∈ (0,T ], find φi, φe

and w such that:

χmCm
∂Vm

∂t
− ∇ · (Σi∇φi) + χmIion(Vm,w) = Iext

i in Ω × (0,T ],

−χmCm
∂Vm

∂t
− ∇ · (Σe∇φe) − χmIion(Vm,w) = −Iext

e in Ω × (0,T ],

Vm = φi − φe in Ω × [0,T ],
Iion(Vm,w) = κVm(Vm − a)(Vm − 1) + w in Ω × [0,T ],
∂w
∂t

= ε(Vm − Γw) in Ω × (0,T ],

Σi∇φi · n = bi on ∂Ω × (0,T ],
Σe∇φe · n = be on ∂Ω × (0,T ],
φi = φi,0 in Ω × {t = 0},
φe = φe,0 in Ω × {t = 0},
w = w0 in Ω × {t = 0}.

Note that Problem 1 needs the following compatibility condition, which is necessary for the existence
of the solution: ∫

Ω

Iext
i −

∫
Ω

Iext
e = −

∫
∂Ω

bi −

∫
∂Ω

be. (2.1)

A simpler formulation can be derived assuming the intracellular and extracellular permeability
tensors to be proportional [6, 15]. This assumption is valid when the propagation is regular and no
chaotic processes such as fibrillation are taking place. In such a way, the unknowns reduce to Vm and
w. Therefore, the monodomain problem reads as follows:
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Problem 2 (Monodomain problem coupled with FitzHugh-Nagumo model). For each t ∈ (0,T ], find
Vm and w such that:

χmCm
∂Vm

∂t
− ∇ · (Σ∇Vm) + χmIion(Vm,w) = Iext in Ω × (0,T ],

Iion(Vm,w) = κVm(Vm − a)(Vm − 1) + w in Ω × [0,T ],
∂w
∂t

= ε(Vm − Γw) in Ω × (0,T ],

Σ∇Vm · n = b on ∂Ω × (0,T ],
Vm = Vm,0 in Ω × {t = 0},
w = w0 in Ω × {t = 0},

where
Σ = ξ/(1 + ξ)Σi, Iext = (ξIext

i + Iext
e )(1 + ξ),

ξ being the proportional factor: Σe = ξΣi, and for suitable initial and boundary conditions which derive
from the bidomain ones.

3. Semi-discrete discontinuous Galerkin approximation

Starting from the strong form given by Problems 1 and 2, the next step is the pursuit of a DG
semi-discrete formulation. Terms and symbols are defined similarly to the usual convention [3, 4].

3.1. Discontinuous Galerkin formulation

Let us introduce a shape-regular triangulation Th of Ω, where Fh = F I
h ∪F

B
h is the set of the faces of

the partition which includes the internal and boundary faces, respectively. Let the DG space be defined
as

Θh,p = {vh ∈ L2(Ω) : vh|K ∈ P
p(K) ∀K ∈ Th},

where Pp(K) is the space of polynomials of total degree less than or equal to p ≥ 1 over K ∈ Th

and ·|K is the restriction operator to the element K . Moreover, we define Nh = dim(Θh,p) < ∞ as the
dimension of the space Θh,p and the following bilinear forms.

〈uh, vh〉Θh,p :=
∑
K∈Th

∫
K

uhvh dx,

〈uh, vh〉F B
h

:=
∑
F ∈F B

h

∫
F

uhvh ds,

aΣ∗(uh, vh) :=
∑
K∈Th

∫
K

Σ∗∇uh · ∇vh dx −
∑
F∈F I

h

∫
F
{{Σ∗∇huh}} · [[vh]] ds

− θ
∑
F∈F I

h

∫
F
{{Σ∗∇hvh}} · [[uh]] ds +

∑
F∈F I

h

∫
F
γ(Σ∗)[[uh]] · [[vh]] ds.

Here Σ∗ is either Σi or Σe, θ ∈ {−1, 0, 1}, ∇h denotes the element-wise gradient and we set
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γ(Σ∗) = γ nT Σ∗n > 0, γ := αp2/h, (3.1)

where γ is a stability parameter defined edge-wise, with h > 0 the mesh size (supposed to be quasi
uniform) and α > 0 a fixed parameter, and n ∈ Rd is the outward normal unitary vector to the
corresponding face F. Moreover, the jump and average operators [[·]] and {{·}} are defined on F ∈ F I

h in
the standard way [4], i.e.,

[[u]] := u1n1 + u2n2,

{{v}} :=
v1 + v2

2
,

where the subscript {1, 2} indicates the evaluation of the variable u, the vector variable v or the normal
vector n with respect to the two adjacent elements K1 and K2 such that

F = K1 ∩ K2, K1,K2 ∈ Th.

Then, we can write the semi-discretized formulation for the bidomain problem.

Problem 3 (Bidomain model - semidiscrete DG formulation). For any t ∈ (0,T ], find
φh

i (t), φh
e(t),wh(t) ∈ Θh,p such that:

〈
χmCm

∂Vh
m

∂t
, vh

〉
Θh,p

+ aΣi

(
φh

i , vh

)
+

〈
Iion

(
Vh

m,w
h
)
, vh

〉
Θh,p

=
〈
Iext
i , vh

〉
Θh,p + 〈bi, vh〉F B

h〈
χmCm

∂Vh
m

∂t
, vh

〉
Θh,p

− aΣe

(
φh

e , vh

)
+

〈
Iion

(
Vh

m,w
h
)
, vh

〉
Θh,p

=
〈
Iext
e , vh

〉
Θh,p − 〈be, vh〉F B

h〈
∂wh

∂t
, vh

〉
Θh,p

=
〈
ε
(
Vh

m − Γwh
)
, vh

〉
Θh,p

,

φh
i (0) = φh

i,0,

φh
e(0) = φh

e,0,

wh(0) = wh
0,

for each vh ∈ Θh,p, where
Vh

m = φh
i − φ

h
e ,

Iion(·, ·) is defined in Problem 1, φh
i,0, φ

h
e,0,w

h
0 ∈ Θh,p are suitable projections onto Θh,p of φi,0, φe,0,w0.

Following the same notation, we also present the weak formulation for the monodomain problem.

Problem 4 (Monodomain model - DG semidiscrete formulation). For any t ∈ (0,T ], find Vh
m(t) ∈ Θh,p

and wh(t) ∈ Θh,p such that:

〈
χmCm

∂Vh
m

∂t
, vh

〉
Θh,p

+ aΣ

(
Vh

m, vh

)
+

〈
Iion

(
Vh

m,w
h
)
, vh

〉
Θh,p

=
〈
Iext, vh

〉
Θh,p + 〈b, vh〉F B

h
,〈

∂wh

∂t
, vh

〉
Θh,p

=
〈
ε
(
Vh

m − Γwh
)
, vh

〉
Θh,p

,

Vh
m(0) = Vh

m,0,

wh(0) = wh
0,

for every vh ∈ Θh,p, where Iion is defined in Problem 2 and Vh
m,0,w

h
0 ∈ Θh,p are suitable projections onto

Θh,p of Vm,0,w0.
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In Problems 3 and 4, three different methods are employed according to the choice of the
coefficient θ:

• θ = 1: Symmetric Interior Penalty method (SIP) [7];
• θ = 0: Incomplete Interior Penalty method (IIP) [18];
• θ = −1: Non Symmetric Interior Penalty method (NIP) [16].

Notice that α in the definition (3.1) needs to be large enough to guarantee coercivity of the SIP and IIP
formulations.

3.2. Algebraic formulation

Let {ϕ j}
Nh
j=1 be a basis of Θh,p and let Vh

m(t),φh
i (t),φh

e(t),wh(t) ∈ RNh be the vectors containing the
expansion coefficients of Vh

m(t), φh
i (t), φh

e(t),wh(t) with respect to such a basis for each instant of time
t ∈ (0,T ].

For i, j = 1, · · · ,Nh and z = {i, e, ∅}, we define the following matrices and right hand side vector:

[Kz] jk =
∑
K∈Th

∫
K

∇hϕk · Σz∇hϕ j,

[Wz] jk =
∑
F∈F I

h

∫
F
[[ϕk]] · {{Σk∇hϕ j}},

[S z] jk =
∑
F∈F I

h

∫
F
γ(Σz)[[ϕk]] · [[ϕ j]],

[Az] jk = [Kz] jk − [Wz]k j − θ[Wz] jk + [S z] jk stiffness matrix,

[M] jk =
∑
K∈Th

∫
K

ϕkϕ j mass matrix,

[C(Vh
m)] jk =

∑
K∈Th

∫
K

χmκ(Vh
m − 1)(Vh

m − a)ϕkϕ j non-linear reaction matrix,

[Rz] j =
∑
K∈Th

∫
K

Iext
z ϕ j +

∑
F∈F B

h

∫
F

bzϕ j forcing term.

The semi-discrete DG algebraic formulation of the bidomain problem leads to the following ODE
system:

Problem 5 (Algebraic formulation of the bidomain model). Find

Vh
m(t) = φh

i (t) − φh
e(t),wh(t) ∈ RNh

such that for any t ∈ (0,T ]:
χmCm

 M −M

−M M

 φ̇h
i (t)
φ̇h

e(t)

 +

Ai + C(Vh
m(t)) −C(Vh

m(t))
−C(Vh

m(t)) Ae + C(Vh
m(t))

 φh
i (t)
φh

e(t)

 + χm

M 0
0 −M

 wh(t)
wh(t)

 =

Ri(t)
Re(t)

 ,
Mẇh(t) = εM(Vh

m(t) − Γwh(t)),

together with initial conditions.
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The monodomain DG ODE system can be written similarly.

Problem 6 (Algebraic formulation of the monodomain model). Find Vh
m(t),wh(t) ∈ RNh such that for

any t ∈ (0,T ]: χmCmMV̇h
m(t) + AVh

m(t) + C(Vh
m(t))Vh

m(t) + χmMwh(t) = R(t),
Mẇh(t) = εM(Vh

m(t) − Γwh(t)),

together with initial conditions.

4. A note on the basis functions

The Dubiner spectral functions [8] are chosen as basis {ϕ j}
Nh
j=1 for the space Θh,p. The advantage of

using an L2 orthogonal basis on simplices rather than a nodal basis relies on the feasibility of applying
high-order discretizations without incurring in high costs constructing the discretized space and/or
ill-conditioned matrices. Moreover, the mass matrix is in this case diagonal.

On the other hand, the projection of known functions on the spectral space is certainly more involved
since it requires L2 scalar products. This issue can be overcome by implementing fast evaluations of
Jacobi polynomials and efficient quadrature formulae to be also used in the weak formulations of
Problems 3 and 4.

In d = 2, the Dubiner basis is defined on the reference simplex as follows [3]. This is possible by
collapsing the two-dimensional reference square

Q̂ = {(a, b) : −1 ≤ a ≤ 1, −1 ≤ b ≤ 1}

into the reference triangle
K̂ = {(ξ, η) : ξ, η ≥ 0, ξ + η ≤ 1}

applying the following transformation (Figure 1):

ξ =
(1 + a)(1 − b)

4
, η =

(1 + b)
2

. (4.1)

Q̂→ K̂

(a, b)→ (ξ, η)

−1 1
−1

1

a

b

1

0
0 1ξ

η

Figure 1. Color plot of the transformation (4.1) underlying the construction of the 2D
Dubiner spectral basis on simplices. The collapse of the square can be seen on the upper
edge of the triangle.
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Hence, the Dubiner basis functions are constructed as the transformations of suitable basis functions
initially defined on Q̂. More precisely, on the reference square Q̂ the basis functions are defined as
modified tensor products of Jacobi polynomials.

Definition 4.1 (Jacobi polynomials [19]). The n-th Jacobi polynomial of indices α, β ≥ −1 is
defined as:

Pα,β
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β

dn

dxn

[
(1 − x)α(1 + z)β(1 − z2)n

]
, n ≥ 0.

Definition 4.2 (2D Dubiner basis functions [3]). If d = 2, the Dubiner basis function indexed by
(i, j) ∈ N2, i + j ≤ p is defined as:

ϕi, j : K̂ → R,

ϕi, j(ξ, η) = ci, j(1 − η)iP0,0
i

(
2ξ

1 − η
− 1

)
P2i+1,0

j (2η − 1),

where
ci, j =

√
2(2i + 1)(i + j + 1).

Remark 4.1. Despite the great potentiality of an orthogonal spectral basis, it is often necessary to
pass to nodal representations. Let {ϕ j}

Nh
j=1 be the set of Dubiner basis functions and let

vh =

Nh∑
j=1

v jϕ j ∈ Θh,p.

A nodal evaluation of such solution can be performed through the linear combination

vh(x) =

Nh∑
j=1

v jϕ j(x), ∀x ∈ Ω, (4.2)

while the converse operation can be performed through a L2 scalar product thanks to the
orthonormality property:

v j =

∫
Ω

vh(x)ϕ j(x) dx, ∀ j = 1, . . . ,Nh. (4.3)

5. Fully discrete formulation

In this section a first order semi-implicit time discretization is presented in order to obtain a fully
discretized system of equations from Problems 3 and 4. Thus, we split the interval (0,T ] into N
uniform sub-intervals (tn, tn+1] of length ∆t such that tn = n∆t ∀n = 0, · · · ,N−1. Then, we define the
fully discretized solutions Vh,n

m ,wh,n, φh,n
i , φh,n

e ∈ Θh,p that are approximations of Vh
m(tn), wh(tn), φh

i (tn),
φh

e(tn), respectively, whose expansion coefficients vectors are denoted with Vh,n
m , wh,n, φh,n

i ,φh,n
e ∈ R

Nh ,
respectively.

In the semi-implicit scheme, only the non-linear term is treated in explicit in order to take advantage
of an implicit discretization while still having linearity in the time-step advancing scheme.
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Problem 7 (Fully discretized formulation of the Bidomain model). Given φh,0
i , φh,0

e ,wh,0 ∈ Θh,p, find

Vh,n+1
m = φh,n+1

i − φh,n+1
e , wh,n+1 ∈ RNh

for n = 0, . . . ,N − 1 such that:

χmCm

∆t

 M −M

−M M

 φh,n+1
i − φh,n

i

φh,n+1
e − φh,n

e

 +

Ai + C(Vh,n
m ) −C(Vh,n

m )
−C(Vh,n

m ) Ae + C(Vh,n
m )

 φh,n+1
i

φh,n+1
e


+χm

M 0
0 −M

 wh,n+1

wh,n+1

 =

Ri(tn+1)
Re(tn+1)

,
M

wh,n+1 − wh,n

∆t
= εM(Vh,n

m − Γwh,n+1).

Problem 8 (Fully discretized formulation of the Monodomain model). Given Vh,0
m ,wh,0 ∈ Θh,p, find

Vh,n+1
m ,wh,n+1 ∈ RNh for n = 0, . . . ,N − 1 such that:

χmCmM
Vh,n+1

m − Vh,n
m

∆t
+ AVh,n+1

m + C(Vh,n
m )Vh,n+1

m + χmMwh,n+1 = R(tn+1),

M
wh,n+1 − wh,n

∆t
= εM(Vh,n

m − Γwh,n+1).

Remark 5.1. Problems 1 and 2 are known to be well-posed in the sense of existence, uniqueness and
regularity of the solutions under suitable assumptions [5, 6]. More precisely, Vm(t) is unique in H1(Ω)
∀t ∈ (0,T ] while φi(t) and φe(t) are unique in H1(Ω)/R, i.e., up to an additive constant. Since Vm is
defined as the difference between the two potentials, this constant is necessarily the same for both φi

and φe. Therefore, the numerical solution of Problem 7 requires to fix the constant, e.g., by imposing
the value of φi or φe in a particular point of the domain or by imposing its mean value. In the former
case, the condition

φi(x, tn) = c or φe(x, tn) = c

is applied for arbitrary x ∈ Ω, c ∈ R, ∀n = 1, . . . ,N. We opt instead for the latter strategy which
is more consistent with the variational formulation of the problem in H1(Ω) and is represented by the
condition

Nh∑
j=1

φh,n
i, j d j = c

or
Nh∑
j=1

φh,n
e, j d j = c,

where d j :=
∫

Ω
ϕ j, for an arbitrary c ∈ R, ∀n = 1, . . . ,N.

6. Numerical results

This section is devoted to some numerical tests aimed at assessing the quality of the proposed
numerical strategies. Some convergence tests are discussed in Section 6.1 while a more realistic
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simulation is shown in Section 6.2. The code has been implemented in a small C++ library, called
DUBeat*, which is largely based on lifex [1].

6.1. Verification test cases

We consider a simple square domain Ω = (0, 1)2 ⊂ R2. We opt for the symmetric interior penalty
method (SIP, θ = 1) and the following parameters choices:

T = 3 · 10−3, ∆T = 10−4, χm = 105, Cm = 1,

κ = 19.5, ε = 1.2, Γ = 0.1, a = 1.3 · 10−2, α = 10.

Moreover,
Σ = Σi = Σe = 0.12I2,

where I2 ∈ M2,2(R) is the 2-dimensional identity matrix, i.e., we assume that the coordinate system is
already aligned with the principal fibers directions and there is no anisotropy.

Boundary conditions and applied currents are assigned assuming that the exact solutions are

φi(x, y, t) = 2 sin(2πx) sin(2πy)e−5t,

φe(x, y, t) = sin(2πx) sin(2πy)e−5t,

with φe being shown in Figure 2.
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1.00

Figure 2. Contour plot of the exact solution for φe in Section 6.1.

In the following tests, the errors are computed with respect to the standard L2(Ω) norms, the H1(Ω)
norm

‖v‖2H1(Ω) := ‖v‖2L2(Ω) + ‖|∇v|‖2L2(Ω)

and the DG norm
‖v‖2DG := ‖∇hv‖L2(Ω) + ‖γ1/2[[v]]‖2L2(Fh).

*https://matteocalafa.com/DUBeat/
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We tested the proposed formulations in two dimensions on a sequence of uniformly refined grids of
granularity h ≈ 2−σ, σ = 0, 1, . . . , 5, see Figure 3.

Figure 3. Sample of uniformly refined grids with granularity h ≈ 2−σ, σ = 0, 1, 2.

Figure 4 shows the computed errors obtained with the monodomain and bidomain problems in two
dimensions. Except for the pre-asymptotic regime when h ≈ 1, the errors for d = 2 shows the expected
theoretical convergence orders that are shown in the bottom triangles. If p ∈ N is the polynomial
degree, the order is indeed O(hp) for the H1 and DG errors and O(hp+1) for the L∞ and L2 errors. We
also observe that the curves are more flat for h � 1, p = 2 because the error due to the grid refinement
is very small and therefore comparable to the error caused by the time advancing scheme.

Correct convergence orders are also verified for p-refinements in Figure 5 where the grid size h =

2−3 is fixed and the polynomial degree varies from 1 to 5.

6.2. Towards a realistic simulation

In this section a first pseudo-realistic simulation is performed in order to assess the coherence
between the monodomain model, the numerical discretization and the physical phenomenon. We
aim at analysing the behaviour of a localized applied current on a bounded portion of heart tissue.
The domain Ω ⊂ R2 is defined as a reference square as in Section 6.1 and boundary conditions are
homogeneous so that the only source of potential is represented by Iext while the domain Ω is isolated
from the outer regions. The applied current is defined as

Iext(x, y, t) = 2 · 106I[0.4,0.6](x)I[0.4,0.6](y)I[0,10−3](t),

where I[a,b](x) is the indicator function, i.e., I[a,b](x) = 1 if x ∈ [a, b] and 0 otherwise. This definition
of Iext represents a temporary and localized electric shock in the center of the domain. Conductivity
and ionic model parameters are chosen as in Section 6.1 except for Cm = 10−2 and ε = 40. This latter
choice allows to obtain electric activation and repolarization in reasonable times. Then, the time step
is ∆t = 10−3, second order polynomials (p = 2) are employed as well as a uniformly refined grid with
h = 2−6.

Finally, results are shown in Figure 6 where the activation and subsequent propagation of the electric
potential are well visible. The maximum value Vm = 1 is achieved on the crest while the internal part
undergoes repolarization where the potential falls below the rest value and then slowly returns to zero.
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(b) Monodomain model, p = 2
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(c) Bidomain model, p = 1
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(d) Bidomain model, p = 2

Figure 4. Computed errors vs mesh size (log-log scale) for p = 1, 2: monodomain (top) and
bidomain (bottom) models.

1 2 3 4 5
10−4

10−3

10−2

10−1

100

Polynomial degree p

E
rr

or

L∞

L2

H1

DG

Figure 5. Computed errors vs polynomial degree p (semilogy scale) for monodomain model,
h ≈ 2−3.
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(a) t = 0.04 (b) t = 0.10

(c) t = 0.16 (d) t = 0.22

(e) t = 0.28 (f) t = 0.34

Figure 6. Snapshots from the pseudo-realistic simulation. An external current is applied in
the center of the domain initially at rest.

7. Conclusions

The numerical discretizations of the monodomain and bidomain models have been successfully
carried out through a high-order DG formulation and the use of the Dubiner spectral basis.
Furthermore, the space discretization has been complemented with a semi-implicit time integration.
Finally, the numerical tests in Section 6 have from one side verified the convergence properties of the
numerical solution and, on the other hand, compared the numerical simulation with the physiological
propagation of the electric potential. In particular, the space discretization error decreases very fast
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as the grid is refined, meeting the expected theoretical orders of convergence, and soon becoming
comparable with the time-step error. Also the physiological test, despite the anisotropy due to the
mesh orientation, exhibits good reconstruction of both the depolarization and repolarization phases so
that the electric wave propagation is correctly computed.
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