Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A guide to the design of the virtual element methods for second- and fourth-order partial differential equations

  • Received: 13 August 2023 Revised: 21 October 2023 Accepted: 24 October 2023 Published: 09 November 2023
  • We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by [1,2,3], we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use C0 and C1 virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.

    Citation: Yu Leng, Lampros Svolos, Dibyendu Adak, Ismael Boureima, Gianmarco Manzini, Hashem Mourad, Jeeyeon Plohr. A guide to the design of the virtual element methods for second- and fourth-order partial differential equations[J]. Mathematics in Engineering, 2023, 5(6): 1-22. doi: 10.3934/mine.2023100

    Related Papers:

    [1] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [2] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [3] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [4] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [5] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. AIMS Mathematics, 2021, 6(12): 13092-13118. doi: 10.3934/math.2021757
    [6] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [7] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
    [8] Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938
    [9] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [10] A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628
  • We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by [1,2,3], we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use C0 and C1 virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.



    The Sturm-Liouville problem arises within many areas of science, engineering and applied mathematics. It has been studied for more than two decades. Many physical, biological and chemical processes are described using models based on it (see [1,2,3], [8], [9] and [11]).

    For the homogeneous Sturm-Liouville problem with nonlocal conditions you can see [2], [9] and [11,12,13,14,15]. For the nonhomogeneous equation see [7]. In [7] the authors studied the nonhomogeneous Sturm-Liouville boundary value problem of the differential equation

    x(t)+m(t)=λ2x(t),t(0,π),

    with the conditions

    x(0)=0,x(ξ)+λx(ξ)=0,ξ(0,π].

    Here, we are concerned, firstly, with the nonlocal problem of the nonlinear differential inclusion

    x(t)F(t,λx(t)),a.e.t(0,π), (1.1)

    with the nonlocal conditions (η>ξ)

    x(0)λx(0)=0andηξx(τ)dτ=0,ξ[0,π),η(0,π]. (1.2)

    For

    h(t,λ)+λ2x(t)=f(t,λx(t))F(t,λx(t)),

    we study the existence of multiple solutions (eignevalues and eignefunctions) of the nonhomogeneous Sturm-Liouville problem of the differential equation

    x(t)+h(t,λ)=λ2x(t),t(0,π), (1.3)

    with the conditions (1.2).

    The special case of the nonlocal condition (1.2)

    x(0)λx(0)=0andπ0x(τ)dτ=0, (1.4)

    will be considered.

    Consider the nonlocal boundary value problem of the nonlinear differential inclusion (1.1)-(1.2) under the following assumptions.

    (ⅰ) The set F(t,x) is nonempty, closed and convex for all (t,x)[0,1]×R×R.

    (ⅱ) F(t,x) is measurable in t[0,1] for every x,yR.

    (ⅲ) F(t,x) is upper semicontinuous in x and y for every t[0,1].

    (ⅳ) There exist a bounded measurable function m:[0,1]R and a constant λ, such that

    F(t,x)=sup{|f|:fF(t,x)}|m(t)|+λ2|x|.

    Remark 1. From the assumptions (i)-(iv) we can deduce that (see [1], [5] and [6]) there exists fF(t,x), such that

    (v) f:I×RR is measurable in t for every x,yR and continuous in x for t[0,1] and there exist a bounded measurable function m:[0,π]R and a constant λ2 such that

    |f(t,x)||m(t)|+λ2|x|,

    and f satisfies the nonlinear differential equation

    x(t)=f(t,λx(t)),a.e.t(0,π). (2.1)

    So, any solution of (2.1) is a solution of (1.1).

    (ⅵ) λ(ηξ)2,λR.

    (ⅶ)

    2(1+|λ|π)π2+π|A|λ2π<1.

    For the integral representation of the solution of (2.1) and (1.2) we have the following lemma.

    Lemma 2.1. If the solution of the problem (2.1) and (1.2) exists, then it can be represented by the integral equation

    x(t)=2(1+λt)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t0(ts)f(s,λx(s))ds, (2.2)

    where A=(ηξ)[2+λ(ηξ)]0.

    Proof. Integrating both sides of Eq (2.1) twice, we obtain

    x(t)x(0)tx(0)=t0(ts)f(s,λx(s))ds (2.3)

    and using the assumption x(0)λx(0)=0, we obtain

    x(0)=1λx(0). (2.4)

    The assumption ηξx(τ)dτ=0 implies that

    x(0)ηξdτ+x(0)ηξτdτ=ηξτ0(τs)f(s,λx(s))dsdτ,(ηξ)x(0)+(ηξ)22λx(0)=ξ0ηξ(τs)dτf(s,λx(s))ds+ηξηs(τs)dτf(s,λx(s))ds,(ηξ)[2+λ(ηξ)]2x(0)=ξ0[(ηs)22(ξs)22]f(s,λx(s))ds+ηξ(ηs)22f(s,λx(s))ds=η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds

    and we can get

    x(0)=2(ηξ)[2+λ(ηξ)][η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]=2A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]. (2.5)

    Substituting (2.5) into (2.4), we obtain

    x(0)=2λA[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]. (2.6)

    Now from (2.3), (2.5) and (2.6), we obtain

    x(t)=2(1+λt)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t0(ts)f(s,λx(s))ds.

    To complete the proof, differentiate equation (2.2) twice, we obtain

    x(t)=2λA[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t0f(s,λx(s))ds,

    and

    x(t)=f(t,λx(t)),a.e.t(0,T).

    Now

    x(0)=2λA[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds],

    and

    λx(0)=2λA[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds].

    From that, we get x(0)λx(0)=0.

    Now, to ensure that ηξx(τ)dτ=0,

    we have

    ηξ2(1+λt)A=2(ηξ)+λ(η2ξ2)A=(ηξ)[2+λ(ηξ)]A=1,

    from that, we obtain as before

    ηξx(τ)dτ=ηξ2(1+λτ)Adτ[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]ηξτ0(τs)f(s,λx(s))dsdτ,=η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))dsη0(ηs)22f(s,λx(s))ds+ξ0(ξs)22f(s,λx(s))ds=0.

    This proves the equivalence between the integral equation (2.2) and the nonlocal boundary value problem (1.1)-(1.2).

    Now, for the existence of at least one continuous solution for the problem of the integral equation (2.2), we have the following theorem.

    Theorem 2.1. Let the assumptions (v)-(vii) be satisfied, then there exists at least one solution xC[0,π] of the nonlocal boundary value problem (2.1) and (1.2). Moreover, from Remark 1, then there exists at least one solution xC[0,π] of the nonlocal boundary value problem (1.1)-(1.2).

    Proof. Define the set QrC[0,π] by

    Qr={xC:∥x∥≤r},r2(1+|λ|π)π2+πmL1|A|[2(1+|λ|π)π2+π]λ2π.

    It is clear that the set Qr is nonempty, closed and convex.

    Define the operator T associated with (2.2) by

    Tx(t)=2(1+λt)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t0(ts)f(s,λx(s))ds.

    Let xQr, we have

    |Tx(t)|2(1+|λ|t)|A|[η0(ηs)22|f(s,λx(s))|ds+ξ0(ξs)22|f(s,λx(s))ds|]+t0(ts)|f(s,λx(s))|ds,2(1+|λ|π)π2|A|π0{|m(s)|+λ2|x(s)|}ds+ππ0{|m(s)|+λ2|x(s)|}ds,[2(1+|λ|π)π2|A|+π]{mL1+λ2πx},2(1+|λ|π)π2+π|A|{mL1+λ2πr}r,

    and we have

    2(1+|λ|π)π2+π|A|mL1r(12(1+|λ|π)π2+π|A|λ2π).

    Then T:QrQr and the class {Tx}Qr is uniformly bounded in Qr.

    In what follows we show that the class {Tx}, xQr is equicontinuous. For t1,t2[0,π],t1<t2 such that |t2t1|<δ, we have

    Tx(t2)Tx(t1)=2(1+λt2)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t20(t2s)f(s,λx(s))ds2(1+λt1)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t10(t2s)f(s,λx(s))ds,|Tx(t2)Tx(t1)|=|2(1+λt2)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t20(t2s)f(s,λx(s))ds2(1+λt1)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]+t10(t1s)f(s,λx(s))ds|,2|λ|(t2t1)A[η0(ηs)22|f(s,λx(s))|ds+ξ0(ξs)22|f(s,λx(s))|ds]+(t2t1)t10|f(s,λx(s))|ds+πt2t1|f(s,λx(s))|ds,2|λ|(t2t1)π2Aπ0|f(s,λx(s))|ds+(t2t1)π0|f(s,λx(s))|ds+πt2t1|f(s,λx(s))|ds,2|λ|(t2t1)π2A{mL1+λ2x}+(t2t1){mL1+λ2x}+πt2t1{|m(s)|+λ2|x(s)|}ds.

    Hence the class of function {Tx}, xQr is equicontinuous. By Arzela-Ascolis [4] Theorem, we found that the class {Tx} is relatively compact.

    Now we prove that T:QrQr is continuous.

    Let {xn}Qr, such that xnx0Qr, then

    Txn(t)=2(1+λt)A[η0(ηs)22f(s,λxn(s))dsξ0(ξs)22f(s,λxn(s))ds]t0(ts)f(s,λxn(s))ds,

    and

    limnTxn(t)=limn{2(1+λt)A[η0(ηs)22f(s,λxn(s))dsξ0(ξs)22f(s,λxn(s))ds]t0(ts)f(s,λxn(s))ds}.

    Now, we have

    f(s,xn(s))f(s,x0(s))asn,

    and

    |f(s,λxn(s))|m(s)+λ2|xn|L1[0,π],

    then applying Lebesgue Dominated convergence theorem [4], we obtain

    limnTxn(t)=2(1+λt)A[η0(ηs)22limnf(s,λxn(s))dsξ0(ξs)22limnf(s,λxn(s))ds]t0(ts)limnf(s,λxn(s))ds,=2(1+λt)A[η0(ηs)22f(s,λx0(s))dsξ0(ξs)22f(s,λx0(s))ds]t0(ts)f(s,λx0(s))ds=F(x0).

    Then Txn(t)Tx0(t). Which means that the operator T is continuous.

    Since all conditions of Schauder theorem [4] are hold, then T has a fixed point in Qr, then the integral equation (2.2) has at least one solution xC[0,π].

    Consequently the nonlocal boundary value problem (2.1)-(1.2) has at least one solution xC[0,π]. Moreover, from Remark 1, then there exists at least one solution xC[0,π] of the nonlocal boundary value problem (1.1)-(1.2).

    Now, we have the following corollaries

    Corollary 1. Let λ2x(t)=f(t,λx(t))F(t,λx(t)). Let the assumptions of Theorem 2.1 be satisfied. Then there exists at lease one solution xC[0,π] of

    x(t)=λ2x(t),t(0,T).

    with the nonlocal condition (1.2). Moreover, from Remark 1, there exists at lease one solution xC[0,π] of the problem (1.1)-(1.2).

    Corollary 2. Let the assumptions of Theorem 2.1 be satisfied. Then there exists a solution xC[0,π] of the problem (2.1) and (1.4).

    Proof. Putting ξ=0 and η=π and applying Theorem 2.1 we get the result.

    Taking J=(0,π). Here, we study the existence of maximal and minimal solutions of the problem (2.1) and (1.2) which is equivalent to the integral equation (2.2).

    Definition 3.1. [10] Let q(t) be a solution x(t) of (2.2) Then q(t) is said to be a maximal solution of (2.2) if every solution of (2.2) on J satisfies the inequality x(t)q(t),tJ. A minimal solution s(t) can be defined in a similar way by reversing the above inequality i.e. x(t)s(t),tJ.

    We need the following lemma to prove the existence of maximal and minimal solutions of (2.2).

    Lemma 3.2. Let f(t,x) satisfies the assumptionsin Theorem 2.1 and let x(t),y(t) be continuous functions on J satisfying

    x(t)2(1+λt)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t0(ts)f(s,λx(s))ds,y(t)2(1+λt)A[η0(ηs)22f(s,λy(s))dsξ0(ξs)22f(s,λy(s))ds]t0(ts)f(s,λy(s))ds

    where one of them is strict.

    Suppose f(t,x) is nondecreasing function inx. Then

    x(t)<y(t),tJ. (3.1)

    Proof. Let the conclusion (3.1) be false; then there exists t1 such that

    x(t1)=y(t1),t1>0

    and

    x(t)<y(t),0<t<t1.

    From the monotonicity of the function f in x, we get

    x(t1)2(1+λt1)A[η0(ηs)22f(s,λx(s))dsξ0(ξs)22f(s,λx(s))ds]t10(ts)f(s,λx(s))ds,<2(1+λt1)A[η0(ηs)22f(s,λy(s))dsξ0(ξs)22f(s,λy(s))ds]t10(ts)f(s,λy(s))ds<y(t1).

    This contradicts the fact that x(t1)=y(t1);then

    x(t)<y(t),tJ.

    Theorem 3.2. Let the assumptions of Theorem 2.1 besatisfied. Furthermore, if f(t,x) is nondecreasing function inx, then there exist maximal and minimal solutions of (2.2).

    Proof. Firstly, we shall prove the existence of maximal solution of (2.2). Let ϵ>0 be given. Now consider the integral equation

    xϵ(t)=2(1+λt)A[η0(ηs)22fϵ(s,λxϵ(s))dsξ0(ξs)22fϵ(s,λxϵ(s))ds]t0(ts)fϵ(s,λxϵ(s))ds, (3.2)

    where

    fϵ(t,xϵ(t))=f(t,xϵ(t))+ϵ.

    Clearly the function fϵ(t,xϵ) satisfies assumption (v) and

    |fϵ(t,xϵ)||m(t)|+λ2|x|+ϵ|m1(t)|+λ2|x|,|m1(t)|=|m(t)|+ϵ.

    Therefore, Equation (3.2) has a continuous solution xϵ(t) according to Theorem 2.1.

    Let ϵ1 and ϵ2 be such that 0<ϵ2<ϵ1<ϵ. Then

    xϵ1(t)=2(1+λt)A[η0(ηs)22fϵ1(s,λxϵ1(s))dsξ0(ξs)22fϵ1(s,λxϵ1(s))ds]t0(ts)fϵ1(s,λxϵ1(s))ds,=2(1+λt)A[η0(ηs)22(f(s,λxϵ1(s))+ϵ1)dsξ0(ξs)22(f(s,λxϵ1(s))+ϵ1)ds]t0(ts)(f(s,λxϵ1(s))+ϵ1)ds,>2(1+λt)A[η0(ηs)22(f(s,λxϵ1(s))+ϵ2)dsξ0(ξs)22(f(s,λxϵ1(s))+ϵ2)ds]t0(ts)(f(s,λxϵ1(s))+ϵ2)ds, (3.3)
    xϵ2(t)=2(1+λt)A[η0(ηs)22(f(s,λxϵ2(s))+ϵ2)dsξ0(ξs)22(f(s,λxϵ2(s))+ϵ2)ds]t0(ts)(f(s,λxϵ2(s))+ϵ2)ds. (3.4)

    Applying Lemma 3.2, then (3.3) and (3.4) imply that

    xϵ2(t)<xϵ1(t)fortJ.

    As shown before in the proof of Theorem 2.1, the family of functions xϵ(t) defined by Eq (3.2) is uniformly bounded and of equi-continuous functions. Hence by the Arzela-Ascoli Theorem, there exists a decreasing sequence ϵn such that ϵn0 as n, and limnxϵn(t) exists uniformly in I. We denote this limit by q(t). From the continuity of the function fϵn in the second argument, we get

    x(t)=limnxϵn(t)=2(1+λt)A[η0(ηs)22f(s,λq(s))dsξ0(ξs)22f(s,λq(s))ds]t0(ts)f(s,λq(s))ds,

    which proves that q(t) is a solution of (2.2).

    Finally, we shall show that q(t) is maximal solution of (2.2). To do this, let x(t) be any solution of (2.2). Then

    xϵ(t)=2(1+λt)A[η0(ηs)22fϵ(s,λxϵ(s))dsξ0(ξs)22fϵ(s,λxϵ(s))ds]t0(ts)fϵ(s,λxϵ(s))ds,=2(1+λt)A[η0(ηs)22(f(s,λxϵ(s))+ϵ)dsξ0(ξs)22(f(s,λxϵ(s))+ϵ)ds]t0(ts)(f(s,λxϵ(s))+ϵ)ds,>2(1+λt)A[η0(ηs)22f(s,λxϵ(s))dsξ0(ξs)22f(s,λxϵ(s))ds]t0(ts)f(s,λxϵ(s))ds. (3.5)

    Applying Lemma 3.2, then (2.2) and (3.5 imply that

    xϵ(t)>x(t)fortJ.

    From the uniqueness of the maximal solution (see [10]), it is clear that xϵ(t) tends to q(t) uniformly in tJasϵ0.

    In a similar way we can prove that there exists a minimal solution of (2.2).

    Here, we study the existence and some general properties of the eigenvalues and eigenfunctions of the problem of the homogeneous equation

    x(t)=λ2x(t),t(0,π), (4.1)

    with the nonlocal condition (1.2).

    Lemma 4.3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.2) are in the form of

    xn(t)=cn(sin(π+4πn)t2(η+ξ)+cos(π+4πn)t2(η+ξ)),n=1,2,. (4.2)

    Proof. Firstly, we prove that the eigenvalues are

    λn=π+4πn2(η+ξ),n=1,2,. (4.3)

    The general solution of the problem (4.1) and (1.2) is given by

    x(t)=c1sinλt+c2cosλt. (4.4)

    Differentiating equation (4.4), we obtain

    x(t)=λc1cosλtλc2sinλt.

    Using the first condition, when t=0, we obtain

    c1=c2. (4.5)

    Integrating both sides of (4.4) from ξ to η, we obtain

    c1λcosλξc1λcosλη+c2λsinληc2λsinλξ=0.

    Substituting c1=c2, we obtain

    c1λcosλξc1λcosλη+c1λsinληc1λsinλξ=0. (4.6)

    Multiplying (4.6) by λc1, we obtain

    cosλξcosλη+sinληsinλξ=0,2sinλ(ξ+η)2sinλ(ηξ)2+2sinλ(ηξ)2cosλ(η+ξ)2=0,sinλ(ξ+η)2+cosλ(η+ξ)2=0,tanλ(ξ+η)2=1,λ(ξ+η)2=π4+nπ. (4.7)

    From (4.7), we deduce that

    λn=π+4πn2(η+ξ),n=1,2,.....

    Therefore, from (4.4) we can get

    xn(t)=cn(sin(π+4πn)t2(η+ξ)+cos(π+4πn)t2(η+ξ)),n=1,2,....

    Corollary 3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.4) are in the form of

    xn(t)=cn(sin(1+4n)t2+cos(1+4n)t2),n=1,2,..... (4.8)

    Proof. Putting ξ=0 and η=π and applying Lemma 4.3 we obtain the result.

    Now, we study the existence of multiple solutions of the nonhomogeneous problem (1.3) and (1.2). Let x1,x2 be two solutions of the problem (1.3) and (1.2). Let u(t)=x1(t)x2(t), then the function u satisfy the Sturm-Liouville problem

    u(t)=λ2u(t)

    with the nonlocal conditions

    u(0)λu(0)=0andηξu(τ)dτ=0,ξ[0,π),η(0,π].

    So, the values of (eigenvalues) λn for the non zero solution of (4.1) and (1.2) is the same values (eigenvalues) of λn for the multiple solutions (eigenfunctions) of (1.3) and (1.2), i.e.

    λn=π+4πn2(η+ξ),n=1,2,.....

    Theorem 5.3. The multiple solutions (eigenfunctions) xn(t) of the problem (1.3) and (1.2) are given by

    xn(t)=An(sin(π+4πn)t2(η+ξ)+cos(π+4πn)t2(η+ξ))t0sin(π+4πn)(ts)2(η+ξ)π+4πn2(η+ξ)h(s,λ)ds. (5.1)

    Proof. Here we use the variation of parameter method to get the solution of (1.3) and (1.2). Assume that the solutions of (1.3) and (1.2) are given by

    xn(t)=A1cosλt+A2sinλt+xp(t). (5.2)

    So, we have

    x1(t)=cosλt,x2(t)=sinλt.

    Now, we can get W(x1,x2)=λ. Hence

    xp(t)=cosλtt0sinλsλh(s,λ)ds+sinλtt0cosλsλh(s,λ)ds,

    thus

    xp(t)=t0sinλ(ts)λh(s,λ)ds. (5.3)

    From (5.3) and (5.2), we obtain

    xn(t)=A1sin(π+4πn)t2(η+ξ)+A2cos(π+4πn)t2(η+ξ)t0sin(π+4πn)(ts)2(η+ξ)π+4πn2(η+ξ)h(s,λ)ds. (5.4)

    By using the first condition x(0)λx(0)=0, we get

    A1=A2,

    therefore the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by

    xn(t)=An(sin(π+4πn)t2(η+ξ)+cos(π+4πn)t2(η+ξ))t0sin(π+4πn)(ts)2(η+ξ)(π+4πn)2(η+ξ)h(s,λ)ds,n=1,2,.....

    To complete the proof and to ensure that xn(t) is the solution of (1.3) and (1.2), we firstly prove that

    xn(t)+h(t,λ)=λ2xn(t).

    Differentiating (5.4) twice, we get

    xn(t)=Anπ+4πn2(η+ξ)(cos(π+4πn)t2(η+ξ)sin(π+4πn)t2(η+ξ))t0cos(π+4πn)(ts)2(η+ξ)h(s,λ)ds

    and

    xn(t)=An(π+4πn2(η+ξ))2(sin(π+4πn)t2(η+ξ)cos(π+4πn)t2(η+ξ))g(t)+π+4πn2(η+ξ)t0sin(π+4πn)(ts)2(η+ξ)h(s,λ)ds

    and

    xn(t)+h(t,λ)=An(π+4πn2(η+ξ))2(sin(π+4πn)t2(η+ξ)cos(π+4πn)t2(η+ξ))h(t,λ)+π+4πn2(η+ξ)t0sin(π+4πn)(ts)2(η+ξ)h(s,λ)ds+h(t,λ)=λ2xn(t).

    Also we have x(0)λx(0)=0.

    Example 1. Let h(t,λ)=λ2. Then we find that

    xp(t)=t0sinλ(ts)λλ2ds=cosλt1

    and the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by

    xn(t)=A1sin(π+4πn)t2(η+ξ)+A2cos(π+4πn)t2(η+ξ)+cosλt1.

    Now consider the Riemann integral boundary condition (1.4).

    Corollary 4. The multiple solutions (eigenfunctions) xn(t) of the problem (1.3)-(1.4) are given by

    xn(t)=An(sin(1+4n)t2+cos(1+4n)t2)t0sin(1+4n)(ts)21+4n2h(s,λ)ds.

    Proof. In this special case, we put ξ=0 and η=π and applying Theorem 5.3 we get the result.

    Example 2. Let h(t,λ)=λ2. Then we find that

    xp(t)=t0sinλ(ts)λλ2ds=cosλt1,

    and the solution xn(t) of the problem (1.3)-(1.4) are given by

    xn(t)=An(sin(1+4n)t2+cos(1+4n)t2)+cosλt1.

    Here, we proved the existence of solutions xC[0,π] of the nonlocal boundary value problem of the differential inclusion (1.1) with the nonlocal condition (1.2).

    The maximal and minimal solutions of the problem (1.1)-(1.2) have been proved. The eigenvalues and eigenfunctions of the homogeneous and nonhomogeneous equations (4.1) and (1.3) with the nonlocal condition (1.2) have been obtained. Two examples have been studied to illustrate our results.

    We thank the referees for their constructive remarks and comments on our work which reasonably improved the presentation and the structure of the manuscript.

    The authors declare no conflict of interest.



    [1] F. Brezzi, L. D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Eng., 253 (2013), 455–462. https://doi.org/10.1016/j.cma.2012.09.012 doi: 10.1016/j.cma.2012.09.012
    [2] K. Berbatov, B. S. Lazarov, A. P. Jivkov, A guide to the finite and virtual element methods for elasticity, Appl. Numer. Math., 169 (2021), 351–395. https://doi.org/10.1016/j.apnum.2021.07.010 doi: 10.1016/j.apnum.2021.07.010
    [3] L. B. Da Veiga, F. Brezzi, L. D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), 794–812. https://doi.org/10.1137/120874746 doi: 10.1137/120874746
    [4] P. F. Antonietti, G. Manzini, S. Scacchi, M. Verani, A review on arbitrarily regular conforming virtual element methods for second-and higher-order elliptic partial differential equations, Math. Mod. Meth. Appl. Sci., 31 (2021), 2825–2853. https://doi.org/10.1142/S0218202521500627 doi: 10.1142/S0218202521500627
    [5] L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element method, Math. Mod. Meth. Appl. Sci., 27 (2017), 2557–2594. https://doi.org/10.1142/S021820251750052X doi: 10.1142/S021820251750052X
    [6] S. C. Brenner, Q. Guan, L. Y. Sung, Some estimates for virtual element methods, Comput. Methods Appl. Math., 17 (2017), 553–574. https://doi.org/10.1515/cmam-2017-0008 doi: 10.1515/cmam-2017-0008
    [7] S. C. Brenner, L. Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Mod. Meth. Appl. Sci., 28 (2018), 1291–1336. https://doi.org/10.1142/S0218202518500355 doi: 10.1142/S0218202518500355
    [8] H. Chi, L. B. Da Veiga, G. H. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Eng., 318 (2017), 148–192. https://doi.org/10.1016/j.cma.2016.12.020 doi: 10.1016/j.cma.2016.12.020
    [9] L. B. Da Veiga, C. Lovadina, D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295 (2015), 327–346. https://doi.org/10.1016/j.cma.2015.07.013 doi: 10.1016/j.cma.2015.07.013
    [10] E. Artioli, L. B. Da Veiga, C. Lovadina, E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech., 60 (2017), 355–377. https://doi.org/10.1007/s00466-017-1404-5 doi: 10.1007/s00466-017-1404-5
    [11] A. Cangiani, E. H. Georgoulis, T. Pryer, O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857–893. https://doi.org/10.1007/s00211-017-0891-9 doi: 10.1007/s00211-017-0891-9
    [12] Y. Leng, L. Svolos, I. D. Boureima, J. N. Plohr, G. Manzini, H. M. Mourad, Virtual element methods for the solution of the fourth-order phase-field model of quasi-brittle fracture, unpublished work, 2023.
    [13] P. A. Raviart, J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise, Paris: Masson, 1983.
    [14] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, New York: Springer Science & Business Media, 2008. https://doi.org/10.1007/978-0-387-75934-0
    [15] N. M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div., 85 (1959), 67–94. https://doi.org/10.1061/JMCEA3.0000098 doi: 10.1061/JMCEA3.0000098
    [16] P. G. Ciarlet, The finite element method for elliptic problems, SIAM, 2002. https://doi.org/10.1137/1.9780898719208
    [17] F. Dassi, L. Mascotto, Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl., 75 (2018), 3379–3401. https://doi.org/10.1016/j.camwa.2018.02.005 doi: 10.1016/j.camwa.2018.02.005
    [18] T. R. Liu, F. Aldakheel, M. H. Aliabadi, Virtual element method for phase field modeling of dynamic fracture, Comput. Methods Appl. Mech. Eng., 411 (2023), 116050. https://doi.org/10.1016/j.cma.2023.116050 doi: 10.1016/j.cma.2023.116050
    [19] L. B. Da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker's guide to the virtual element method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X
    [20] O. J. Sutton, The virtual element method in 50 lines of MATLAB, Numer. Algor., 75 (2017), 1141–1159. https://doi.org/10.1007/s11075-016-0235-3 doi: 10.1007/s11075-016-0235-3
    [21] M. Mengolini, M. F. Benedetto, A. M. Aragón, An engineering perspective to the virtual element method and its interplay with the standard finite element method, Comput. Methods Appl. Mech. Eng., 350 (2019), 995–1023. https://doi.org/10.1016/j.cma.2019.02.043 doi: 10.1016/j.cma.2019.02.043
    [22] M. Frittelli, I. Sgura, Virtual element method for the Laplace-Beltrami equation on surfaces, ESAIM: Math. Modell. Numer. Anal., 52 (2018), 965–993. https://doi.org/10.1051/m2an/2017040 doi: 10.1051/m2an/2017040
    [23] L. Mascotto, The role of stabilization in the virtual element method: a survey, Comput. Math. Appl., 151 (2023), 244–251. https://doi.org/10.1016/j.camwa.2023.09.045 doi: 10.1016/j.camwa.2023.09.045
    [24] M. J. Borden, T. J. R. Hughes, C. M. Landis, C. V. Verhoosel, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Eng., 273 (2014), 100–118. https://doi.org/10.1016/j.cma.2014.01.016 doi: 10.1016/j.cma.2014.01.016
    [25] L. Svolos, H. M. Mourad, G. Manzini, K. Garikipati, A fourth-order phase-field fracture model: formulation and numerical solution using a continuous/discontinuous Galerkin method, J. Mech. Phys. Solids, 165 (2022), 104910. https://doi.org/10.1016/j.jmps.2022.104910 doi: 10.1016/j.jmps.2022.104910
    [26] P. F. Antonietti, G. Manzini, I. Mazzieri, H. M. Mourad, M. Verani, The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis, Int. J. Numer. Meth. Eng., 122 (2021), 934–971. https://doi.org/10.1002/nme.6569 doi: 10.1002/nme.6569
    [27] D. Adak, G. Manzini, H. M. Mourad, J. N. Plohr, L. Svolos, A C1-conforming arbitrary-order two-dimensional virtual element method for the fourth-order phase-field equation, arXiv, 2023. https://doi.org/10.48550/arXiv.2307.16068
    [28] R. A. Adams, J. J. F. Fournier, Sobolev spaces: pure and applied mathematics, 2 Eds., Academic Press, 2003.
    [29] P. Wriggers, B. D. Reddy, W. Rust, B. Hudobivnik, Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60 (2017), 253–268. https://doi.org/10.1007/s00466-017-1405-4 doi: 10.1007/s00466-017-1405-4
    [30] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elem. Anal. Des., 108 (2016), 41–53. https://doi.org/10.1016/j.finel.2015.09.008 doi: 10.1016/j.finel.2015.09.008
    [31] C. Chen, X. Huang, H. Wei, Hm-conforming virtual elements in arbitrary dimension, SIAM J. Numer. Anal., 60 (2022), 3099–3123. https://doi.org/10.1137/21M1440323 doi: 10.1137/21M1440323
  • This article has been cited by:

    1. Hameda Mohamed Alama, On some spectral properties of nonlocal boundary-value problems for nonlinear differential inclusion, 2024, 76, 1027-3190, 1427, 10.3842/umzh.v76i10.7772
    2. Gabriela Mihaylova, Petio Kelevedjiev, Existence of solutions to Sturm–Liouville boundary value problems , 2025, 14173875, 1, 10.14232/ejqtde.2025.1.1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2038) PDF downloads(242) Cited by(1)

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog