Citation: Merja Lusa, Jenna Knuutinen, Malin Bomberg. Uptake and reduction of Se(IV) in two heterotrophic aerobic Pseudomonads strains isolated from boreal bog environment[J]. AIMS Microbiology, 2017, 3(4): 798-814. doi: 10.3934/microbiol.2017.4.798
[1] | Helin J, Hjerpe T, Ikonen ATK (2010) Review of element specific data for biosphere assessment BSA-2009. Working Report 2010-37, Posiva Oy. |
[2] | Manceau A, Gallup DL (1997) Removal of selenocyanate in water by precipitation: characterization of copper-selenium precipitate by x-ray diffraction, infrared, and x-ray adsorption spectroscopy. Environ Sci Technol 31: 968–976. doi: 10.1021/es960138a |
[3] | de Souza MP, Chu D, Zhao M, et al. (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119: 565–573. doi: 10.1104/pp.119.2.565 |
[4] | Sharmasarkar S, Vance GF (2002) Soil and plant selenium at a reclaimed uranium mine. J Environ Qual 31: 1516–1521. doi: 10.2134/jeq2002.1516 |
[5] | Coppin F, Charboullet C, Martin-Garin A (2009). Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil. Eur J Soil Sci 60: 369–376. doi: 10.1111/j.1365-2389.2009.01127.x |
[6] | Deverel SJ, Fio JL, Dubrovsky NM (1994) Distribution and mobility of selenium in groundwater in the western San Joaquin Valley of California, In: Frankenberger WT, Benson S, Editors, Selenium in the environment, New York: Marcel Dekker, Inc., 157–184. |
[7] | Mayland HF (1994) Selenium in plant and animal nutrition, In: Frankenberger WT, Benson S, Editors, Selenium in the environment, New York: Marcel Dekker, Inc., 29–46. |
[8] | Tokunga TK, Zawislanski PT, Johannis PW, et al. (1994) Field investigations of selenium speciation, transformation and transport in soils from Kesterson Reservoir and Lahontan Valley, In: Frankenberger WT, Benson S, Editors, Selenium in the environment, New York: Marcel Dekker, 119–138. |
[9] | Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37: 145–172. |
[10] | Terry N, Zayed AM, de Souza MP, et al. (2000) Selenium in higher plants. Annu Rev Plant Physiol 51: 401–432. |
[11] | Bébien M, Chauvin JP, Adriano JM, et al. (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microb 67: 4440–4447. doi: 10.1128/AEM.67.10.4440-4447.2001 |
[12] | Tarze A, Dauplais M, Grigoras I, et al. (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces Cerevisiae. J Biol Chem 282: 8759–8767. doi: 10.1074/jbc.M610078200 |
[13] | Kramer GF, Ames BS (1988) Mechanisms of mutagenicity and toxicity of sodium selenite in Salmonella typhimurium. Mutat Res 201: 169–180. doi: 10.1016/0027-5107(88)90123-6 |
[14] | Oremland RS, Steinberg N, Maest AS, et al. (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Technol 32: 3749–3755. |
[15] | Zhang Y, Moore JM (1996) Selenium fractionation and speciation in a wetland system. Environ Sci Technol 30: 2613–2619. doi: 10.1021/es960046l |
[16] | Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23: 615–627. doi: 10.1111/j.1574-6976.1999.tb00416.x |
[17] | Charlet L, Scheinost AC, Tournassat C, et al. (2007) Electron transfer at the mineral/water interface: Selenium reduction on by ferrous iron sorbed on clay. Geochim Cosmochim Ac 71: 5731–5749. |
[18] | Macy JM, Michel TA, Kirsch DG (1989) Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol Lett 61: 195–198. doi: 10.1111/j.1574-6968.1989.tb03577.x |
[19] | Oremland RS, Hollibaugh JT, Maest AS, et al. (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microb 55: 2333– 2343. |
[20] | Kessi JM, Ramuz E, Wehrli M, et al. (1999) Reduction of selenite and detoxification of elemental selenium by the phototropic bacterium Rodospirillum rubrum. Appl Environ Microb 65: 4737–4740. |
[21] | Roux MG, Sarret I, Pignot-Paintrand M, et al. (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microb 67: 769–773. doi: 10.1128/AEM.67.2.769-773.2001 |
[22] | Oremland RS, Herbel MJ, Blum JS, et al. (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microb 70: 52–60. doi: 10.1128/AEM.70.1.52-60.2004 |
[23] | Sarret GL, Avoscan L, Carriere M, et al. (2005) Chemical forms of selenium in the metal resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microb 71: 2331–2337. doi: 10.1128/AEM.71.5.2331-2337.2005 |
[24] | Nelson DC, Casey WH, Sison JD, et al. (1996) Selenium uptake by sulphur-accumulating bacteria. Geochim Cosmochim Ac 60: 3531–3539. |
[25] | Li DB, Cheng YY, Wu C, et al. (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4: 3735. |
[26] | Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microb 63: 3079–3084. |
[27] | Yee N, Ma J, Dalia A, et al. (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microb 73: 1914–1920. doi: 10.1128/AEM.02542-06 |
[28] | Lusa M, Bomberg M, Aromaa H, et al. (2015) The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog. J Environ Radioactiv 147: 85–96. doi: 10.1016/j.jenvrad.2015.05.014 |
[29] | Lusa M, Lehto J, Aromaa H, et al. (2016) The uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodo-coccus sp. isolated from a boreal nutrient-poor bog. J Environ Sci 44: 26–37. |
[30] | Dereeper A, Guignon V, Blanc G, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–W469. |
[31] | Dereeper A, Audic S, Claverie JM, et al. (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10: 8. doi: 10.1186/1471-2148-10-8 |
[32] | Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11: 223–227. |
[33] | Heider J, Bröck A (1993) Selenium metabolism in microorganisms. Adv Microb Physiol 35: 71–109. doi: 10.1016/S0065-2911(08)60097-1 |
[34] | Macy JM, Rech S, Auling G, et al. (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Evol Micr 43: 135–142. |
[35] | Gharieb MM, Gadd GM (2004) The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. Mycol Res 108: 1415–1422. doi: 10.1017/S0953756204001418 |
[36] | Kari C, Nagy Z, Kovácz P, et al. (1971) Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68: 349–356. |
[37] | Harrison G, Curle C, Laishley EJ (1984) Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol 138: 72–78. doi: 10.1007/BF00425411 |
[38] | DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160: 241–247. |
[39] | Hudman JF, Glenn AR (1984) Selenite uptake and incorporation by Selenomonas ruminantium. Arch Microbiol 140: 252–256. doi: 10.1007/BF00454937 |
[40] | Brown TA, Shrift A (1980) Assimilation of selenate and selenite by Salmonella typhimurium. Can J Microbiol 26: 671–675. doi: 10.1139/m80-117 |
[41] | Smith FW, Hawkesford MJ, Prosser IM, et al. (1995) Isolation of cDNA from Saccharomyces cerevisiae that encodes a high-affinity sulfate transporter at the plasma membrane. Mol Gen Genet 247: 709–715. doi: 10.1007/BF00290402 |
[42] | Guzzo J, Dubow MS (2000) A novel selenite- and tellurite-inducible gene in Escherichia coli. Appl Environ Microb 66: 4972–4978. doi: 10.1128/AEM.66.11.4972-4978.2000 |
[43] | Yamada A, Miyashita M, Inoue K, et al. (1997) Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48: 367–372. doi: 10.1007/s002530051064 |
[44] | Bryant RD, Laishley EJ (1988) Evidence for two transporters of sulfur and selenium oxyanions in Clostridium pasteurianum. Can J Microbiol 34: 700–703. doi: 10.1139/m88-118 |
[45] | Hartke A, Bouche S, Laplace JM, et al. (1995) UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis. Arch Microbiol 163: 329–336. doi: 10.1007/BF00404205 |
[46] | Nepple BB, Bachofen R (1997) Induction of stress proteins in the phototrophic bacterium Rhodobacter sphaeroides. FEMS Microbiol Lett 153: 173–180. doi: 10.1111/j.1574-6968.1997.tb10479.x |
[47] | Keto-Timonen R, Hietala N, Palonen E, et al. (2016) Cold shock proteins: A minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbiol 7. |
[48] | Van FV, Chasteen TG, Pickering IJ, et al. (2000) Fate of selenate and selenite metabolized by Rhodobacter sphaeroides. Appl Environ Microb 66: 4849–4853. doi: 10.1128/AEM.66.11.4849-4853.2000 |