Citation: Chiaki Sugiura, Saki Miyaue, Yuka Shibata, Akiko Matsumoto, Sumio Maeda. Bacteriophage P1vir-induced cell-to-cell plasmid transformation in Escherichia coli[J]. AIMS Microbiology, 2017, 3(4): 784-797. doi: 10.3934/microbiol.2017.4.784
[1] | Bushman F (2002) Lateral DNA Transfer, New York: Cold Spring Harbor. |
[2] | Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural transformation in the environment. Microbiol Rev 58: 563–602. |
[3] | Richards TA, Archibald JM (2011) Cell evolution: gene transfer agents and the origin of mitochondria. Curr Biol 21: R112–R114. doi: 10.1016/j.cub.2010.12.036 |
[4] | Yaron S, Kolling GL, Simon L, et al. (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microb 66: 4414–4420. doi: 10.1128/AEM.66.10.4414-4420.2000 |
[5] | Ishimoto Y, Kato S, Maeda S (2008) Freeze-thaw-induced lateral transfer of non-conjugative plasmids by in situ transformation in Escherichia coli in natural waters and food extracts. World J Microbiol Biotechnol 24: 2731–2735. doi: 10.1007/s11274-008-9761-z |
[6] | Calender R (2006) The Bacteriophages, 2 Eds., New York: Oxford University Press. |
[7] | Dagert M, Jones I, Goze A, et al. (1984) Replication functions of pC194 are necessary for efficient plasmid transduction by M13 phage. EMBO J 3: 81–86. |
[8] | Schmidt C, Schmieger H (1984) Selective transduction of recombinant plasmids with cloned pac sites by Salmonella phage P22. Mol Gen Genet 196: 123–128. doi: 10.1007/BF00334103 |
[9] | Iida S, Meyer J, Arber W (1981) Cointegrates between bacteriophage P1 DNA and plasmid pBR322 derivatives suggest molecular mechanisms for P1-mediated transduction of small plasmids. Mol Gen Genet 184: 1–10. doi: 10.1007/BF00271186 |
[10] | Kittleson JT, DeLoache W, Cheng HY, et al. (2012) Scalable plasmid transfer using engineered P1-based phagemids. ACS Synth Biol 1: 583–589. doi: 10.1021/sb300054p |
[11] | Salmond GP, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13: 777–786. doi: 10.1038/nrmicro3564 |
[12] | Branda SS, Vik A, Friedman L, et al. (2005) Biofilms: the matrix revisited. Trends Microbiol 13: 20–26. doi: 10.1016/j.tim.2004.11.006 |
[13] | Ando T, Itakura S, Uchii K, et al. (2009) Horizontal transfer of non-conjugative plasmid in colony biofilm of Escherichia coli on food-based media. World J Microbiol Biotechnol 25: 1865–1869. doi: 10.1007/s11274-009-0070-y |
[14] | Maeda S, Ito M, Ando T, et al. (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255: 115–120. doi: 10.1111/j.1574-6968.2005.00072.x |
[15] | Etchuuya R, Ito M, Kitano S, et al. (2011) Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone. PLoS One 6: e16355. doi: 10.1371/journal.pone.0016355 |
[16] | Sobue R, Kurono N, Etchuya R, et al. (2011) Identification of a novel DNA element that promotes cell-to-cell transformation in Escherichia coli. FEBS Lett 585: 2223–2228. doi: 10.1016/j.febslet.2011.05.040 |
[17] | Kurono N, Matsuda A, Etchuya R, et al. (2012) Genome-wide screening of Escherichia coli genes involved in execution and promotion of cell-to-cell transfer of non-conjugative plasmids: rodZ (yfgA) is essential for plasmid acceptance in recipient cells. Biochem Bioph Res Co 421: 119–123. doi: 10.1016/j.bbrc.2012.03.127 |
[18] | Matsuda A, Kurono N, Kawano C, et al. (2012) Genome-wide screen for Escherichia coli genes involved in repressing cell-to-cell transfer of non-conjugative plasmids. Biochem Bioph Res Co 482: 445–450. |
[19] | Shibata Y, Matsumoto A, Horino M, et al. (2014) Genome-wide screen for Escherichia coli genes involved in repressing cell-to-cell transfer of a nonconjugative pSC101-derived plasmid. Am J Life Sci 2: 345–350. doi: 10.11648/j.ajls.20140206.13 |
[20] | Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580. doi: 10.1016/S0022-2836(83)80284-8 |
[21] | Bachmann BJ (1996) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12, In: Neidhardt FC, Curtiss R, Ingraham JL, et al., Escherichia coli and Salmonella: cellular and molecular biology, 2 Eds., Washington: ASM Press, 2460–2488. |
[22] | Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41: 459–472. doi: 10.1016/0022-2836(69)90288-5 |
[23] | Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104: 541–555. doi: 10.1016/0022-2836(76)90119-4 |
[24] | Singer M, Baker TA, Schnitzler G, et al. (1989) A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53: 6408–6411. |
[25] | Baba T, Ara T, Hasegawa M, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008. |
[26] | Takeshita S, Sato M, Toba M, et al. (1987) High-copy-number and low-copy-number plasmid vectors for lacZα-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61: 63–74. doi: 10.1016/0378-1119(87)90365-9 |
[27] | Cohen G, Zimmer Z (1974) Transfection of Escherichia coli by Bacteriophage P1 DNA. Mol Gen Genet 128: 183–186. doi: 10.1007/BF02654490 |
[28] | Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2 Eds., New York: Cold Spring Harbor. |
[29] | Ikeda H, Tomizawa JI (1965) Transducing fragments in generalized transduction by phage P1: I. Molecular origin of the fragments. J Mol Biol 14: 85–109. |
[30] | Matsumoto A, Sekoguchi A, Imai J, et al. (2016) Natural Escherichia coli strains undergo cell-to-cell plasmid transformation. Biochem Bioph Res Co 481: 59–62. doi: 10.1016/j.bbrc.2016.11.018 |
[31] | Shibata Y, Ugumori C, Takahashi A, et al. (2014) Survey of lysogenic phages in the 72 strains of Escherichia coli collection of reference (ECOR) and identification of a phage derived from the ECOR52 strain. Am J Biosci 2: 32–37. |