Obesity is a complex and multifactorial disease marker, which has become a major threat to cardiovascular health. We sought to assess the correlation of obesity and other cardio-metabolic risk factors in patients seen at the outpatient specialist clinic in Ghana.
A prospective cross-sectional study was conducted on 395 patients at Precise Specialist Clinic in Kumasi, Ghana. A standardized questionnaire was used to obtain demographic, anthropometric and clinical data of patients. Fisher's exact test for statistical significance at a 95% confidence interval was used to evaluate associations between categorical variables. The associations between obesity indices and cardiovascular disease risk factors were analyzed by Pearson's correlation.
Of the 395 participants, 187 were males and 208 were females. The mean (± standard deviation) age of study participants was 59.29 (± 13.93); more than half of the participants were between 50 and 69 years. The mean BMI of male participants was significantly lower than the mean BMI of female participants (28.18 kg/m2 vs 31.16 kg/m2, P-value < 0.0001). Gender was significantly associated with the weight categories (P = 0.0144). Obesity was seen more in females (49.0%) than in males (35.8%). The Pearson correlation analysis also showed a significant positive correlation between obesity, increasing systolic blood pressure (r = 0.1568, P-value = 0.0018) and increasing diastolic blood pressure (r = 0.2570, P-value < 0.0001).
Obesity was found to be significantly associated with female gender, increasing age, increasing systolic blood pressure, and increasing diastolic blood pressure. Efforts to step-up preventive measures to reduce the increasing prevalence of obesity in Ghana are highly recommended.
Citation: Isaac Kofi Owusu, Emmanuel Acheamfour-Akowuah, Lois Amoah-Kumi, Yaw Amo Wiafe, Stephen Opoku, Enoch Odame Anto. The correlation between obesity and other cardiovascular disease risk factors among adult patients attending a specialist clinic in Kumasi. Ghana[J]. AIMS Medical Science, 2023, 10(1): 24-36. doi: 10.3934/medsci.2023003
Obesity is a complex and multifactorial disease marker, which has become a major threat to cardiovascular health. We sought to assess the correlation of obesity and other cardio-metabolic risk factors in patients seen at the outpatient specialist clinic in Ghana.
A prospective cross-sectional study was conducted on 395 patients at Precise Specialist Clinic in Kumasi, Ghana. A standardized questionnaire was used to obtain demographic, anthropometric and clinical data of patients. Fisher's exact test for statistical significance at a 95% confidence interval was used to evaluate associations between categorical variables. The associations between obesity indices and cardiovascular disease risk factors were analyzed by Pearson's correlation.
Of the 395 participants, 187 were males and 208 were females. The mean (± standard deviation) age of study participants was 59.29 (± 13.93); more than half of the participants were between 50 and 69 years. The mean BMI of male participants was significantly lower than the mean BMI of female participants (28.18 kg/m2 vs 31.16 kg/m2, P-value < 0.0001). Gender was significantly associated with the weight categories (P = 0.0144). Obesity was seen more in females (49.0%) than in males (35.8%). The Pearson correlation analysis also showed a significant positive correlation between obesity, increasing systolic blood pressure (r = 0.1568, P-value = 0.0018) and increasing diastolic blood pressure (r = 0.2570, P-value < 0.0001).
Obesity was found to be significantly associated with female gender, increasing age, increasing systolic blood pressure, and increasing diastolic blood pressure. Efforts to step-up preventive measures to reduce the increasing prevalence of obesity in Ghana are highly recommended.
[1] | Gordon-Larsen P, Heymsfield SB (2018) Obesity as a disease, not a behavior. Circulation 137: 1543-1545. https://doi.org/10.1161/CIRCULATIONAHA.118.032780 |
[2] | Jastreboff AM, Kotz CM, Kahan S, et al. (2019) Obesity as a disease: The obesity society 2018 position statement. Obesity 27: 7-9. https://doi.org/10.1002/oby.22378 |
[3] | World Health OrganizationObesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight |
[4] | Valavanis IK, Mougiakakou SG, Grimaldi KA, et al. (2010) A multifactorial analysis of obesity as CVD risk factor: use of neural network based methods in a nutrigenetics context. BMC Bioinformatics 11: 453. https://doi.org/10.1186/1471-2105-11-453 |
[5] | van der Sande MAB, Ceesay SM, Milligan PJM, et al. (2001) Obesity and undernutrition and cardiovascular risk factors in rural and urban Gambian communities. Am J Public Health 91: 1641-1644. https://doi.org/10.2105/ajph.91.10.1641 |
[6] | Popkin BM (2003) Dynamics of the nutrition transition and its implications for the developing world. Forum Nutr 56: 262-264. |
[7] | Hall ME, do Carmo JM, da Silva AA, et al. (2014) Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renov Dis 7: 75-88. https://doi.org/10.2147/IJNRD.S39739 |
[8] | Eckel RH, Kahn SE, Ferrannini E, et al. (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized?. J Clin Endocrinol Metab 96: 1654-1663. https://doi.org/10.1210/jc.2011-0585 |
[9] | Farzadfar F, Finucane MM, Danaei G, et al. (2011) National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3·0 million participants. Lancet 377: 578-586. https://doi.org/10.1016/S0140-6736(10)62038-7 |
[10] | Lyall DM, Celis-Morales C, Ward J, et al. (2017) Association of body mass index with cardiometabolic disease in the UK Biobank: A mendelian randomization study. JAMA Cardiol 2: 882-889. https://doi.org/10.1001/jamacardio.2016.5804 |
[11] | Ofori-Asenso R, Agyeman AA, Laar A, et al. (2016) Overweight and obesity epidemic in Ghana—a systematic review and meta-analysis. BMC Public Health 16: 1239. https://doi.org/10.1186/s12889-016-3901-4 |
[12] | Unger T, Borghi C, Charchar F, et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 75: 1334-1357. https://doi.org/10.1161/HYPERTENSIONAHA.120.15026 |
[13] | Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15: 539-553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S |
[14] | Grundy SM, Stone NJ, Bailey AL, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol 73: e285-e350. https://doi.org/10.1016/j.jacc.2018.11.003 |
[15] | Ritchie SA, Connell JMC (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17: 319-326. https://doi.org/10.1016/j.numecd.2006.07.005 |
[16] | Kales SN, Polyhronopoulos GN, Aldrich JM, et al. (1999) Correlates of body mass index in hazardous materials firefighters. J Occup Environ Med 41: 589-595. |
[17] | Donkor N, Farrell K, Ocho O, et al. (2020) Correlates of obesity indices and cardiovascular disease risk factors among Trinidadian nurses. Int J Africa Nurs Sci 12: 100194. https://doi.org/10.1016/j.ijans.2020.100194 |
[18] | Cil H, Bulur S, Türker Y, et al. (2012) Impact of body mass index on left ventricular diastolic dysfunction. Echocardiography 29: 647-651. https://doi.org/10.1111/j.1540-8175.2012.01688.x |
[19] | Kossaify A, Nicolas N (2013) Impact of overweight and obesity on left ventricular diastolic function and value of tissue Doppler echocardiography. Clin Med Insights Cardiol 7: 43-50. https://doi.org/10.4137/CMC.S11156 |
[20] | Reynolds K, Gu D, Whelton PK, et al. (2007) Prevalence and risk factors of overweight and obesity in China. Obesity 15: 10-18. https://doi.org/10.1038/oby.2007.527 |
[21] | Gu D, Reynolds K, Wu X, et al. (2005) Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365: 1398-1405. https://doi.org/10.1016/S0140-6736(05)66375-1 |
[22] | An R, Xiang X (2016) Age–period–cohort analyses of obesity prevalence in US adults. Public Health 141: 163-169. https://doi.org/10.1016/j.puhe.2016.09.021 |
[23] | Yusuf S, Hawken S, Ounpuu S, et al. (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 366: 1640-1649. https://doi.org/10.1016/S0140-6736(05)67663-5 |
[24] | Liang X, Chen X, Li J, et al. (2018) Study on body composition and its correlation with obesity: A cohort study in 5121 Chinese Han participants. Medicine 97: e10722. https://doi.org/10.1097/MD.0000000000010722 |
[25] | Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: A meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev 16: 2533-2547. https://doi.org/10.1158/1055-9965.EPI-07-0708 |
[26] | Valdes AM, Andrew T, Gardner JP, et al. (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366: 662-664. https://doi.org/10.1016/S0140-6736(05)66630-5 |
[27] | Maltais ML, Desroches J, Dionne IJ (2009) Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact 9: 186-197. |
[28] | Crawford SL, Casey VA, Avis NE, et al. (2000) A longitudinal study of weight and the meno-pause transition: results from the Massachusetts Women's Health Study. Menopause 7: 96-104. https://doi.org/10.1097/00042192-200007020-00005 |
[29] | Sun J, Zhou W, Gu T, et al. (2018) A retrospective study on association between obesity and cardiovascular risk diseases with aging in Chinese adults. Sci Rep 8: 5806. https://doi.org/10.1038/s41598-018-24161-0 |
[30] | Abubakari AR, Lauder W, Agyemang C, et al. (2008) Prevalence and time trends in obesity among adult West African populations: A meta-analysis. Obes Rev 9: 297-311. https://doi.org/10.1111/j.1467-789X.2007.00462.x |
[31] | Benkeser RM, Biritwum R, Hill AG (2012) Prevalence of overweight and obesity and perception of healthy and desirable body size in Urban, Ghanaian women. Ghana Med J 46: 66-75. |
[32] | Aryeetey RNO (2016) Perceptions and experiences of overweight among women in the Ga East District, Ghana. Front Nutr 3: 13. https://doi.org/10.3389/fnut.2016.00013 |
[33] | Appiah CA, Steiner-Asiedu M, Otoo GE (2014) Predictors of overweight/obesity in Urban Ghanaian women. Int J Clin Nutr 2: 60-68. https://doi.org/10.12691/ijcn-2-3-3 |
[34] | Donkor N, Farrell K, Constable A, et al. (2015) Cardiovascular and type 2 diabetes risk factors in Liberian nurses. Int J Africa Nurs Sci 4: 1-6. https://doi.org/10.1016/j.ijans.2015.11.001 |
[35] | Akpa OM, Made F, Ojo A, et al. (2020) Regional patterns and association between obesity and hypertension in Africa. Evidence from the H3Africa CHAIR study. Hypertension 75: 1167-1178. https://doi.org/10.1161/HYPERTENSIONAHA.119.14147 |
[36] | Akil L, Ahmad HA (2011) Relationships between obesity and cardiovascular diseases in four Southern states and Colorado. J Health Care Poor Underserved 22: 61-72. https://doi.org/10.1353/hpu.2011.0166 |
[37] | Poston WSC, Haddock CK, Jahnke SA, et al. (2011) The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort. J Occup Environ Med 53: 266-273. https://doi.org/10.1097/JOM.0b013e31820af362 |
[38] | Sekokotla MA, Goswami N, Sewani-Rusike CR, et al. (2017) Prevalence of metabolic syndrome in adolescents living in Mthatha, South Africa. Ther Clin Risk Manag 13: 131-137. https://doi.org/10.2147/TCRM.S124291 |
[39] | Choi B, Steiss D, Garcia-Rivas J, et al. (2016) Comparison of body mass index with waist circumference and skinfold-based percent body fat in firefighters: adiposity classification and associations with cardiovascular disease risk factors. Int Arch Occup Environ Health 89: 435-448. https://doi.org/10.1007/s00420-015-1082-6 |
[40] | Soteriades ES, Hauser R, Kawachi I, et al. (2005) Obesity and cardiovascular disease risk factors in firefighters: A prospective cohort study. Obes Res 13: 1756-1763. https://doi.org/10.1038/oby.2005.214 |
[41] | Clark S, Rene A, Theurer WM, et al. (2002) Association of body mass index and health status in firefighters. J Occup Environ Med 44: 940-946. https://doi.org/10.1097/00043764-200210000-00013 |
[42] | Owusu IK, Acheamfour-Akowuah E (2018) Pattern of cardiovascular diseases as seen in an out-patient cardiac clinic in Ghana. World J Cardiovasc Dis 8: 70-84. https://doi.org/10.4236/wjcd.2018.81008 |
[43] | Acheamfour-Akowuah E, Owusu IK (2016) Prevalence and correlates of Electrocardiographic left ventricular hypertrophy in hypertensive patients at a specialist clinic in Techiman, Ghana. IOSR J Dent Med Sci 15: 100-109. https://doi.org/10.9790/0853-151103100109 |
[44] | Owusu IK, Boakye YA (2013) Prevalence and aetiology of heart failure in patients seen at a teaching hospital in Ghana. J Cardiovasc Dis Diagn 1: 131. https://doi.org/10.4172/2329-9517.1000131 |
[45] | da Silva AA, do Carmo J, Dubinion J, et al. (2009) The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep 11: 206-211. https://doi.org/10.1007/s11906-009-0036-3 |
[46] | Lambert GW, Straznicky NE, Lambert EA, et al. (2010) Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications. Pharma-col Ther 126: 159-172. https://doi.org/10.1016/j.pharmthera.2010.02.002 |
[47] | Aghamohammadzadeh R, Heagerty AM (2012) Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann Med 44: S74-84. https://doi.org/10.3109/07853890.2012.663928 |
[48] | Hall JE, da Silva AA, do Carmo JM, et al. (2010) Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285: 17271-17276. https://doi.org/10.1074/jbc.R110.113175 |
[49] | Byczek L, Walton SM, Conrad KM, et al. (2004) Cardiovascular risks in firefighters: implications for occupational health nurse practice. AAOHN J 52: 66-76. |
[50] | Tokgozoglu L, Orringer C, Ginsberg HN, et al. (2022) The year in cardiovascular medicine 2021: dyslipidaemia. Eur Heart J 43: 807-817. https://doi.org/10.1093/eurheartj/ehab875 |
[51] | McAloon CJ, Osman F, Glennon P, et al. (2016) Chapter 4—Global Epidemiology and Incidence of Cardiovascular Disease. Cardiovascular Diseases. Boston: Academic Press 57-96. https://doi.org/10.1016/B978-0-12-803312-8.00004-5 |