Review Special Issues

Image data augmentation techniques based on deep learning: A survey

  • Received: 09 February 2024 Revised: 19 May 2024 Accepted: 31 May 2024 Published: 12 June 2024
  • In recent years, deep learning (DL) techniques have achieved remarkable success in various fields of computer vision. This progress was attributed to the vast amounts of data utilized to train these models, as they facilitated the learning of more intricate and detailed feature information about target objects, leading to improved model performance. However, in most real-world tasks, it was challenging to gather sufficient data for model training. Insufficient datasets often resulted in models prone to overfitting. To address this issue and enhance model performance, generalization ability, and mitigate overfitting in data-limited scenarios, image data augmentation methods have been proposed. These methods generated synthetic samples to augment the original dataset, emerging as a preferred strategy to boost model performance when data was scarce. This review first introduced commonly used and highly effective image data augmentation techniques, along with a detailed analysis of their advantages and disadvantages. Second, this review presented several datasets frequently employed for evaluating the performance of image data augmentation methods and examined how advanced augmentation techniques can enhance model performance. Third, this review discussed the applications and performance of data augmentation techniques in various computer vision domains. Finally, this review provided an outlook on potential future research directions for image data augmentation methods.

    Citation: Wu Zeng. Image data augmentation techniques based on deep learning: A survey[J]. Mathematical Biosciences and Engineering, 2024, 21(6): 6190-6224. doi: 10.3934/mbe.2024272

    Related Papers:

  • In recent years, deep learning (DL) techniques have achieved remarkable success in various fields of computer vision. This progress was attributed to the vast amounts of data utilized to train these models, as they facilitated the learning of more intricate and detailed feature information about target objects, leading to improved model performance. However, in most real-world tasks, it was challenging to gather sufficient data for model training. Insufficient datasets often resulted in models prone to overfitting. To address this issue and enhance model performance, generalization ability, and mitigate overfitting in data-limited scenarios, image data augmentation methods have been proposed. These methods generated synthetic samples to augment the original dataset, emerging as a preferred strategy to boost model performance when data was scarce. This review first introduced commonly used and highly effective image data augmentation techniques, along with a detailed analysis of their advantages and disadvantages. Second, this review presented several datasets frequently employed for evaluating the performance of image data augmentation methods and examined how advanced augmentation techniques can enhance model performance. Third, this review discussed the applications and performance of data augmentation techniques in various computer vision domains. Finally, this review provided an outlook on potential future research directions for image data augmentation methods.



    加载中


    [1] P. Li, Y. Zhang, L. Yuan, H. X. Xiao, B. B. Lin, X. H. Xu, Efficient long-short temporal attention network for unsupervised video object segmentation, Pattern Recogn., 146 (2024), 110078. https://doi.org/10.1016/j.patcog.2023.110078 doi: 10.1016/j.patcog.2023.110078
    [2] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, D. Van Valen, Deep learning for cellular image analysis, Nat. Methods, 16 (2019), 1233–1246. https://doi.org/10.1038/s41592-019-0403-1 doi: 10.1038/s41592-019-0403-1
    [3] L. Chena, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, D. Rueckert, Self-supervised learning for medical image analysis using image context restoration, Med. Image Anal., 58 (2019). https://doi.org/10.1016/j.media.2019.101539 doi: 10.1016/j.media.2019.101539
    [4] Y. A. Nanehkaran, D. F. Zhang, J. D. Chen, Y. Tian, N. Al-Nabhan, Recognition of plant leaf diseases based on computer vision, J. Ambient Intell. Human. Comput., (2020), 1–18. https://doi.org/10.1007/s12652-020-02505-x doi: 10.1007/s12652-020-02505-x
    [5] M. Wankhade, A. C. S. Rao, C. Kulkarni, A survey on sentiment analysis methods, applications, and challenges, Artif. Intell. Rev., 55 (2022), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1 doi: 10.1007/s10462-022-10144-1
    [6] D. M. E. D. M. Hussein, A survey on sentiment analysis challenges, J. King Saud Univ. Eng. Sci., 30 (2018), 330–338. https://doi.org/10.1016/j.jksues.2016.04.002 doi: 10.1016/j.jksues.2016.04.002
    [7] K. R. Chowdhary, Natural language processing, in Fundamentals of Artificial Intelligence, Springer, (2020), 603–649. https://doi.org/10.1007/978-81-322-3972-7_19
    [8] V. Raina, S. Krishnamurthy, Natural language processing, in Building an Effective Data Science Practice, Springer, (2022), 63–73. https://doi.org/10.1007/978-1-4842-7419-4_6
    [9] M. Malik, M. K. Malik, K. Mehmood, I. Makhdoom, Automatic speech recognition: A survey, Multimed. Tools Appl., 80 (2021), 9411—9457. https://doi.org/10.1007/s11042-020-10073-7 doi: 10.1007/s11042-020-10073-7
    [10] D. Wang, X. D. Wang, S. H. Lv, An overview of end-to-end automatic speech recognition, Symmetry, 11 (2019), 1018. https://doi.org/10.3390/sym11081018 doi: 10.3390/sym11081018
    [11] L. Deng, X. Li, Machine learning paradigms for speech recognition: An overview, IEEE Trans. Audio, 21 (2013), 1060–1089. https://doi.org/10.1109/TASL.2013.2244083 doi: 10.1109/TASL.2013.2244083
    [12] X. Tan, T. Qin, F. Soong, T. Y. Liu, A survey on neural speech synthes, preprint, arXiv: 2106.15561.
    [13] V. Mario, G. Angiulli, P. Crucitti, D. D. Carlo, F. Laganà, D. Pellicanò, et al., A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects, Sensors, 22 (2022), 4232. https://doi.org/10.3390/s22114232 doi: 10.3390/s22114232
    [14] M. Versaci, G. Angiulli, P. D. Barba, F. C. Morabito, Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates, Open Phys., 18 (1) (2020), 230–240. https://doi.org/10.1515/phys-2020-0159 doi: 10.1515/phys-2020-0159
    [15] W. Zeng, H. L. Zhu, C. Lin, Z. Y. Xiao, A survey of generative adversarial networks and their application in text-to-image synthesis, Elect. Res. Arch., 31 (2023), 7142–7181. https://doi.org/10.3934/era.2023362 doi: 10.3934/era.2023362
    [16] I. Goodfellow, P. A. Jean, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial nets, in 2014 Advances in Neural Information Processing Systems (NIPS), 27 (2014), 1–9.
    [17] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., Microsoft COCO: Common objects in context, in 2014 European conference computer vision (ECCV), (2014), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
    [18] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, A. Telenti, A primer on deep learning in genomics, Nat. Genet., 51 (2019), 12–18. https://doi.org/10.1038/s41588-018-0295-5 doi: 10.1038/s41588-018-0295-5
    [19] A. Borji, S. Izadi, L. Itti, iLab-20M: A large-scale controlled object dataset to investigate deep learning, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 2221–2230. https://doi.org/10.1109/CVPR.2016.244
    [20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y
    [21] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
    [22] A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, et al., MobileNets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861.
    [23] X. Y. Zhang, X. Y. Zhou, M. X. Lin, J. Sun, ShuffleNet: An extremely efficient convolutional neural network for mobile devices, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2018), 6848–6856. https://doi.org/10.1109/CVPR.2018.00716
    [24] W. Zeng, Z. Y. Xiao, Few-shot learning based on deep learning: A survey, Math. Biosci. Eng., 21 (2024), 679–711. https://doi.org/10.3934/mbe.2024029 doi: 10.3934/mbe.2024029
    [25] J. Yang, X. M. Wang, Z. P. Luo, Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network, Inform. Sci., 653 (2024), 119795. https://doi.org/10.1016/j.ins.2023.119795 doi: 10.1016/j.ins.2023.119795
    [26] Y. Q. Wang, Q. M. Yao, J. T. Kwok, L. M. Ni, Generalizing from a few examples: A survey on few-shot learning, ACM Comput. Surveys, 53 (2020), 1–34. https://doi.org/10.1145/3386252 doi: 10.1145/3386252
    [27] C. Shorten, T. M. Khoshgoftaar, A survey on Image Data Augmentation for Deep Learning, J. Big Data, 6 (2019), 60. https://doi.org/10.1186/s40537-019-0197-0 doi: 10.1186/s40537-019-0197-0
    [28] N. E. Khalifa, M. Loey, S. Mirjalili, A comprehensive survey of recent trends in deep learning for digital images augmentation, Artif. Intell. Rev., 55 (2022), 2351-–2377. https://doi.org/10.1007/s10462-021-10066-4 doi: 10.1007/s10462-021-10066-4
    [29] K. Alomar, H. I. Aysel, X. H. Cai, Data augmentation in classification and segmentation: A survey and new strategies, J. Imaging, 9 (2023), 46. https://doi.org/10.3390/jimaging9020046 doi: 10.3390/jimaging9020046
    [30] T. DeVries, G. W. Taylor, Improved regularization of convolutional neural networks with cutout, preprint, arXiv: 1708.04552.
    [31] N. H. Li, S. J. Liu, Y. Q. Liu, S. Zhao, M. Liu, Random erasing data augmentation, in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 34 (2020), 13001–13008. https://doi.org/10.1609/aaai.v34i07.7000
    [32] K. K. Singh, Y. J. Lee, Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization, in 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, (2017), 3544–3553. https://doi.org/10.1109/ICCV.2017.381
    [33] P. G. Chen, S. Liu, H. S. Zhao, X. G. Wang, J. Y. Jia, GridMask data augmentation, preprint, arXiv: 2001.04086.
    [34] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, AutoAugment: Learning augmentation policies from data, preprint, arXiv: 1805.09501.
    [35] S. Lim, I. Kim, T. Kim, C. Kim, S. Kim, Fast autoaugment, in 2019 Advances in Neural Information Processing Systems (NIPS), (2019).
    [36] R. Hataya, J. Zdenek, K. Yoshizoe, H. Nakayama, Faster autoaugment: Learning augmentation strategies using backpropagation, in 2020 European conference computer vision (ECCV), (2022), 1–16. https://doi.org/10.1007/978-3-030-58595-2_1
    [37] E. D. Cubuk, B. Zoph, J. Shlens, Q. V. Le, Faster autoaugment: Learning augmentation strategies using backpropagation, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2020), 3008–3017. https://doi.org/10.1109/CVPRW50498.2020.00359
    [38] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, B. Lakshminarayanan, Augmix: A simple data processing method to improve robustness and uncertainty, preprint, arXiv: 1912.02781.
    [39] K. Baek, D. Bang, H. Shim, GridMix: Strong regularization through local context mapping, Pattern Recogn., 109 (2021), 107594. https://doi.org/10.1016/j.patcog.2020.107594 doi: 10.1016/j.patcog.2020.107594
    [40] S. Yun, D. Han, S. Chun, S. J. Oh, S. Chun, J. Choe, et al., CutMix: Regularization strategy to train strong classifiers with localizable features, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, (2019), 6022–6031. https://doi.org/10.1109/ICCV.2019.00612
    [41] M. Hong, J. Choi, G. Kim, StyleMix: Separating content and style for enhanced data augmentation, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2021), 14857–14865. https://doi.org/10.1109/CVPR46437.2021.01462
    [42] D. Walawalkar, Z. Q. Shen, Z. C. Liu, M. Savvides, Attentive cutmix: An enhanced data augmentation approach for deep learning based image classification, preprint, arXiv: 2003.13048.
    [43] H. Y. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, Mixup: Beyond empirical risk minimization, preprint, arXiv: 1710.09412.
    [44] E. Harris, A. Marcu, M. Painter, M. Niranjan, A. Prügel-Bennett, J. Hare, Fmix: Enhancing mixed sample data augmentation, preprint, arXiv: 2002.12047.
    [45] J. Qin, J. M. Fang, Q. Zhang, W. Y. Liu, X. G. Wang, X. G. Wang, Resizemix: Mixing data with preserved object information and true labels, preprint, arXiv: 2012.11101.
    [46] A. F. M. S. Uddin, M. S Monira, W. Shin, T. C. Chung, S. H. Bae, Saliencymix: A saliency guided data augmentation strategy for better regularization, preprint, arXiv: 2006.01791.
    [47] A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, Yolov4: Optimal speed and accuracy of object detection, preprint, arXiv: 2004.10934.
    [48] J. H. Liu, B. X. Liu, H. Zhou, H. S. Li, Y. Liu, Tokenmix: Rethinking image mixing for data augmentation in vision transformers, in 2022 European conference computer vision (ECCV), (2022), 455–471. https://doi.org/10.1007/978-3-031-19809-0_26
    [49] M. Z. Chen, M. B. Lin, Z. H. Lin, Y. X. Zhang, F. Chao, R. R. Ji, SMMix: Self-Motivated Image Mixing for Vision Transformers, in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2023), 17214–17224. https://doi.org/10.1109/ICCV51070.2023.01583
    [50] L. F. Yang, X. Li, B. Zhao, R. J. Song, J. Yang, RecursiveMix: Mixed Learning with History, in 2020 Advances in Neural Information Processing Systems (NIPS), (2022), 8427–8440.
    [51] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, et al., Manifold mixup: Better representations by interpolating hidden states., in Proceedings of the 36th International Conference on Machine Learning (ICML), 97 (2019), 6438–6447.
    [52] J. H. Kim, W. Choo, H. Jeong, H. O. Song, Co-mixup: Saliency guided joint mixup with supermodular diversity, preprint, arXiv: 2102.03065.
    [53] J. H. Kim, W. Choo, H. O. Song, Puzzle mix: Exploiting saliency and local statistics for optimal mixup, in Proceedings of the 37th International Conference on Machine Learning (ICML), 119 (2020), 5275–5285.
    [54] A. Dabouei, S. Soleymani, F. Taherkhani, N. M. Nasrabadi, SuperMix: Supervising the mixing data augmentation, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2021), 13789–13798. https://doi.org/10.1109/CVPR46437.2021.01358
    [55] C. Y. Gong, D. L. Wang, M. Li, V. Chandra, Q. Liu, KeepAugment: A simple information-preserving data augmentation approach, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2021), 1055–1064. https://doi.org/10.1109/CVPR46437.2021.00111
    [56] M. Kang, S. Kim, GuidedMixup: An efficient mixup strategy guided by saliency maps, in 2023 Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), (2023), 1096–1104. https://doi.org/10.1609/aaai.v37i1.25191
    [57] T. Hong, Y. Wang, X. W. Sun, F. Z. Lian, Z. H. Kang, J. W. Ma, GradSalMix: Gradient saliency-based mix for image data augmentation, in 2023 IEEE International Conference on Multimedia and Expo (ICME), IEEE, (2023), 1799–1804. https://doi.org/10.1109/ICME55011.2023.00309
    [58] M. Mirza, S. Osindero, Conditional generative adversarial nets, preprint, arXiv: 1411.1784v1.
    [59] A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier GANs, in 2017 Proceedings of the 34rd International Conference on International Conference on Machine Learning, PMLR, (2017), 2642–2651.
    [60] G. Douzas, F. Bacao, Effective data generation for imbalanced learning using conditional generative adversarial networks, Expert Syst. Appl., 91, (2018), 464–471. https://doi.org/10.1016/j.eswa.2017.09.030
    [61] A. Antoniou, A. Storkey, H. Edwards, Data augmentation generative adversarial networks, preprint, arXiv: 1711.04340.
    [62] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, C. Malossi, Bagan: Data augmentation with balancing gan, preprint, arXiv: 1803.09655.
    [63] S. W. Huang, C. T. Lin, S. P. Chen, Y. Y. Wu, P. H. Hsu, S. H. Lai, Auggan: Cross domain adaptation with gan-based data augmentation, in 2018 Proceedings of the European Conference on Computer Vision (ECCV), (2018), 731—744. https://doi.org/10.1007/978-3-030-01240-3_44
    [64] X. Y. Zhu, Y. F. Liu, J. H. Li, T. Wan, Z. H. Qin, Emotion classification with data augmentation using generative adversarial networks, in 2018 Advances in Knowledge Discovery and Data Mining (PAKDD), 10939 (2018), 349—360. https://doi.org/10.1007/978-3-319-93040-4_28
    [65] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, et al., Delta-encoder: An effective sample synthesis method for few-shot object recognition, in 2018 Advances in Neural Information Processing Systems (NIPS), 31 (2018).
    [66] A. Ali-Gombe, E. Elyan, MFC-GAN: Class-imbalanced dataset classification using multiple fake class generative adversarial network, Neurocomputing, 361 (2019), 212–221. https://doi.org/10.1016/j.neucom.2019.06.043 doi: 10.1016/j.neucom.2019.06.043
    [67] H. Yang, Y. Zhou, Ida-gan: A novel imbalanced data augmentation gan, in 2020 International Conference on Pattern Recognition (ICPR), IEEE, (2020), 8299-8305. https://doi.org/10.1109/ICPR48806.2021.9411996
    [68] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Master's thesis, University of Toronto, 2009.
    [69] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li, ImageNet: A large-scale hierarchical image database, in 2009 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2009), 248–255. https://doi.org/10.1109/CVPR.2009.5206848
    [70] D. Han, J. Kim, J. Kim, Deep pyramidal residual networks, in 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2017), 6307–6315. https://doi.org/10.1109/CVPR.2017.668
    [71] A. Mikołajczyk, M. Grochowski, Data augmentation for improving deep learning in image classification problem, in 2018 International Interdisciplinary PhD Workshop (IIPhDW), IEEE, (2018), 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338
    [72] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2016), 2818–2826. https://doi.org/10.1109/CVPR.2016.308
    [73] G. Ghiasi, T. Y. Lin, Q. V. Le, Dropblock: A regularization method for convolutional networks, in 2018 Advances in Neural Information Processing Systems (NIPS), 31 (2018).
    [74] G. Huang, Y. Sun, Z. Liu, D. Sedra, K. Q. Weinberger, Deep networks with stochastic depth, in 2016 European Conference Computer Vision (ECCV), (2016), 646–661. https://doi.org/10.1007/978-3-319-46493-0_39
    [75] J. J. Bird, C. M. Barnes, L. J. Manso, A. Ekárt, D. R. Faria, Fruit quality and defect image classification with conditional GAN data augmentation, Sci. Hortic., 293 (2022), 110684. https://doi.org/10.1016/j.scienta.2021.110684 doi: 10.1016/j.scienta.2021.110684
    [76] H. M. Gao, J. P. Zhang, X. Y. Cao, Z. H. Chen, Y. Y. Zhang, C. M. Li, Dynamic data augmentation method for hyperspectral image classification based on Siamese structure, J. Sel. Top. Appl. Earth Observ. Remote Sens., 14 (2021), 8063–8076. https://doi.org/10.1109/JSTARS.2021.3102610 doi: 10.1109/JSTARS.2021.3102610
    [77] O. A. Shawky, A. Hagag, E. S. A. El-Dahshan, M. A. Ismail, Remote sensing image scene classification using CNN-MLP with data augmentation, Optik, 221 (2020), 165356. https://doi.org/10.1016/j.ijleo.2020.165356 doi: 10.1016/j.ijleo.2020.165356
    [78] O. O. Abayomi-Alli, R. Damaševičius, S. Misra, R. Maskeliūnas, Cassava disease recognition from low-quality images using enhanced data augmentation model and deep learning, Expert Syst., 38 (2021), e12746. https://doi.org/10.1111/exsy.12746 doi: 10.1111/exsy.12746
    [79] Q. H. Cap, H. Uga, S. Kagiwada, H. Iyatomi, Leafgan: An effective data augmentation method for practical plant disease diagnosis, IEEE Trans. Autom. Sci. Eng., 19 (2022), 1258–1267. https://doi.org/10.1109/TASE.2020.3041499 doi: 10.1109/TASE.2020.3041499
    [80] W. Li, C. C. Gu, J. L. Chen, C. Ma, X. W. Zhang, B. Chen, et al., DLS-GAN: Generative adversarial nets for defect location sensitive data augmentation, IEEE Trans. Autom. Sci. Eng., (2023), 1–17. https://doi.org/10.1109/TASE.2023.3309629
    [81] S. Jain, G. Seth, A. Paruthi, U. Soni, G. Kumar, Synthetic data augmentation for surface defect detection and classification using deep learning, J. Intell. Manuf., 33 (2022), 1007–1020. https://doi.org/10.1007/s10845-020-01710-x doi: 10.1007/s10845-020-01710-x
    [82] Y. L. Wang, G. Huang, S. J. Song, X. R. Pan, Y. T. Xia, C. Wu, Regularizing deep networks with semantic data augmentation, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2021), 3733–3748. https://doi.org/10.1109/TPAMI.2021.3052951 doi: 10.1109/TPAMI.2021.3052951
    [83] B. Zoph, E. D. Cubuk, G. Ghiasi, T. Y. Lin, J. Shlens, Q. V. Le, Learning data augmentation strategies for object detection, in 2020 Proceedings of the European Conference on Computer Vision (ECCV), 12372 (2020), 566—583. https://doi.org/10.1007/978-3-030-58583-9_34
    [84] Y. Tang, B. P. Li, M. Liu, B. Y. Chen, Y. N. Wang, W. L. Ouyang, Autopedestrian: An automatic data augmentation and loss function search scheme for pedestrian detection, IEEE Trans. Image Process., 30 (2021), 8483–8496. https://doi.org/10.1109/TIP.2021.3115672 doi: 10.1109/TIP.2021.3115672
    [85] C. L. Wang, Z. F Xiao, Lychee surface defect detection based on deep convolutional neural networks with gan-based data augmentation, Agronomy, 11 (2021), 1500. https://doi.org/10.3390/agronomy11081500 doi: 10.3390/agronomy11081500
    [86] W. W. Zhang, Z. Wang, C. C. Loy, Exploring data augmentation for multi-modality 3D object detection, preprint, arXiv: 2012.12741.
    [87] C. W. Wang, C. Ma, M. Zhu, X. K. Yang, Pointaugmenting: Cross-modal augmentation for 3D object detection, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 11789–11798. https://doi.org/10.1109/CVPR46437.2021.01162
    [88] Y. W. Li, A. W. Yu, T. J. Meng, B. Caine, J. Ngiam, D. Y. Peng, et al., Deepfusion: Lidar-camera deep fusion for multi-modal 3d object detection, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 17161–17170. https://doi.org/10.1109/CVPR52688.2022.01667
    [89] S. Y. Cheng, Z. Q. Leng, E. D. Cubuk, B. Zoph, C. Y. Bai, J. Ngiam, et al., Improving 3d object detection through progressive population based augmentation, in 2020 Proceedings of the European Conference on Computer Vision (ECCV), 12366 (2020), 279–294. https://doi.org/10.1007/978-3-030-58589-1_17
    [90] X. K. Zhu, S. C. Lyu, X. Wang, Q. Zhao, TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios, in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), (2021), 2778–2788. https://doi.org/10.1109/ICCVW54120.2021.00312
    [91] X. M. Sun, X. C. Jia, Y. Q. Liang, M. G. Wang, X. B. Chi, A defect detection method for a boiler inner wall based on an improved YOLO-v5 network and data augmentation technologies, IEEE Access, 10 (2022), 93845–93853. https://doi.org/10.1109/ACCESS.2022.3204683 doi: 10.1109/ACCESS.2022.3204683
    [92] W. Y. Liu, G. F. Ren, R. S. Yu, S. Guo, J. K. Zhu, L. Zhang, Image-adaptive YOLO for object detection in adverse weather conditions, in 2022 Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 36 (2022), 1792–1800. https://doi.org/10.1609/aaai.v36i2.20072
    [93] Q. M. Chung, T. D. Le, T. V. Dang, N. D. Vo, T. V. Nguyen, K. Nguyen, Data augmentation analysis in vehicle detection from aerial videos, in 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), (2022), 1–3. https://doi.org/10.1109/RIVF48685.2020.9140740
    [94] D. Su, H. Kong, Y. L. Qiao, S. Sukkarieh, Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics, Comput. Electron. Agric., 190 (2021), 106418. https://doi.org/10.1016/j.compag.2021.106418 doi: 10.1016/j.compag.2021.106418
    [95] J. Choi, T. Kim, C. Kim, Self-ensembling with gan-based data augmentation for domain adaptation in semantic segmentation, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, (2019), 6829–6839. https://doi.org/10.1109/ICCV.2019.00693
    [96] J. L. Yuan, Y. F. Liu, C. H. Shen, Z. B. Wang, H. Li, A simple baseline for semi-supervised semantic segmentation with strong data augmentation, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, (2021), 8209–8218. https://doi.org/10.1109/ICCV48922.2021.00812
    [97] S. T. Liu, J. Q. Zhang, Y. X. Chen, Y. F. Liu, Z. C. Qin, T. Wan, Pixel level data augmentation for semantic image segmentation using generative adversarial networks, in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2019), 1902–1906. https://doi.org/10.1109/ICASSP.2019.8683590
    [98] I. Budvytis, P. Sauer, T. Roddick, K. Breen, R. Cipolla, Large scale labelled video data augmentation for semantic segmentation in driving scenarios, in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, (2017), 230–237. https://doi.org/10.1109/ICCVW.2017.36
    [99] V. Olsson, W. Tranheden, J. Pinto, L. Svensson, Classmix: Segmentation-based data augmentation for semi-supervised learning, in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, (2021), 1368–1377. https://doi.org/10.1109/WACV48630.2021.00141
    [100] J. W. Zhang, Y. C. Zhang, X. W. Xu, Objectaug: Object-level data augmentation for semantic image segmentation, in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, (2021), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1051) PDF downloads(96) Cited by(0)

Article outline

Figures and Tables

Figures(18)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog