With the increasing capacity of renewable energy generators, microgrid (MG) systems have experienced rapid development, and the optimal economic operation is one of the most important and challenging issues in the MG field. To reduce the overall generation cost of microgrids, a hybrid butterfly algorithm (HBOA) is proposed to address the optimal economic operation problem in MG systems. This algorithm uses adaptive switching thresholds to balance the global exploration capability and local exploitation capability of the algorithm. It introduces a diversity learning mechanism to enhance information exchange among populations to improve the algorithm's accuracy and proposes an elite-guided guidance strategy to accelerate the convergence speed of the algorithm. Numerical simulation experiments on 10 standard test functions validate that the HBOA algorithm has higher optimization accuracy and faster convergence speed. Simulation experiments are conducted on two operation modes of microgrids: Islanded and grid-connected, and compared with other algorithms. In islanded and grid-connected modes, HBOA can reduce operating costs by up to 11.7% and 17.7%, respectively. The experimental results confirm the applicability and superiority of the proposed algorithm for solving the optimal economic operation problem in microgrids.
Citation: Guohao Sun, Sen Yang, Shouming Zhang, Yixing Liu. A hybrid butterfly algorithm in the optimal economic operation of microgrids[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1738-1764. doi: 10.3934/mbe.2024075
With the increasing capacity of renewable energy generators, microgrid (MG) systems have experienced rapid development, and the optimal economic operation is one of the most important and challenging issues in the MG field. To reduce the overall generation cost of microgrids, a hybrid butterfly algorithm (HBOA) is proposed to address the optimal economic operation problem in MG systems. This algorithm uses adaptive switching thresholds to balance the global exploration capability and local exploitation capability of the algorithm. It introduces a diversity learning mechanism to enhance information exchange among populations to improve the algorithm's accuracy and proposes an elite-guided guidance strategy to accelerate the convergence speed of the algorithm. Numerical simulation experiments on 10 standard test functions validate that the HBOA algorithm has higher optimization accuracy and faster convergence speed. Simulation experiments are conducted on two operation modes of microgrids: Islanded and grid-connected, and compared with other algorithms. In islanded and grid-connected modes, HBOA can reduce operating costs by up to 11.7% and 17.7%, respectively. The experimental results confirm the applicability and superiority of the proposed algorithm for solving the optimal economic operation problem in microgrids.
[1] | R. Chedid, A. Sawwas, D. Fares, Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage, Energy, 200 (2020), 117510. https://doi.org/10.1016/j.energy.2020.117510 doi: 10.1016/j.energy.2020.117510 |
[2] | Y. Sun, Y. Meng, L. Ge, Y. Zhang, S. Wang, J. Wang, Application and prospects of artificial intelligence empowering operation optimization in microgrid, High Voltage Eng., 49 (2023), 2239–2252. |
[3] | M. M. Kamal, I. Ashraf, E. Fernandez, Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources, Sustainable Cities Soc., 88 (2023), 104298. https://doi.org/10.1016/j.scs.2022.104298 doi: 10.1016/j.scs.2022.104298 |
[4] | E. Chen, X. Wang, M. Jia, C. Sun, Emergency energy management strategy for cloud energy storage users during planned power outages, Electr. Power Constr., 43 (2022), 72–78. |
[5] | H. Wang, X. Wu, K. Sun, Y. He, Research on the optimal economic power dis-patching of a multi-microgrid cooperative operation, Energies, 15 (2022), 8194. https://doi.org/10.3390/en15218194 doi: 10.3390/en15218194 |
[6] | M. N. Hjelmeland, J. Zou, A. Helseth, S. Ahmed, Nonconvex medium-term hydropower scheduling by stochastic dual dynamic integer programming, IEEE Trans. Sustainable Energy, 10 (2018), 481–490. https://doi.org/10.1109/TSTE.2018.2805164 doi: 10.1109/TSTE.2018.2805164 |
[7] | W. Wei, D. Wu, Z. Wang, S. Mei, J. P. S. Catalão, Impact of energy storage on economic dispatch of distribution systems: A multi-parametric linear programming approach and its implications, IEEE Open Access J. Power Energy, 7 (2020), 243–253. https://doi.org/10.1109/OAJPE.2020.3006828 doi: 10.1109/OAJPE.2020.3006828 |
[8] | G. Cardoso, M. Stadler, A. Siddiqui, C. Marnay, N. DeForest, A. Barbosa-Póvoa, et al., Microgrid reliability modeling and battery scheduling using stochastic linear programming, Electr. Power Syst. Res., 10 (2013), 61–69. https://doi.org/10.1016/j.epsr.2013.05.005 doi: 10.1016/j.epsr.2013.05.005 |
[9] | M. Hong, X. Yu, N. Yu, K. A. Loparo, An energy scheduling algorithm supporting power quality management in commercial building microgrids, IEEE Trans. Smart Grid, 7 (2016), 1044–1056. https://doi.org/10.1109/TSG.2014.2379582 doi: 10.1109/TSG.2014.2379582 |
[10] | M. A. Hossain, H. R. Pota, S. Squartini, A. F. Abdou, Modified PSO algorithm for real-time energy management in grid-connected microgrids, Renewable Energy, 136 (2019), 746–757. https://doi.org/10.1016/j.renene.2019.01.005 doi: 10.1016/j.renene.2019.01.005 |
[11] | S. Leonori, M. Paschero, F. M. Frattale Mascioli, A. Rizzi, Optimization strategies for Microgrid energy management systems by Genetic Algorithms, Appl. Soft Comput., 86 (2020), 105903. https://doi.org/10.1016/j.asoc.2019.105903 doi: 10.1016/j.asoc.2019.105903 |
[12] | R. Torkan, A. Ilinca, M. Ghorbanzadeh, A genetic algorithm optimization approach for smart energy management of microgrids, Renewable Energy, 197 (2022), 852–863. https://doi.org/10.1016/j.renene.2022.07.055 doi: 10.1016/j.renene.2022.07.055 |
[13] | M. H. Saeed, F. Wang, S. Salem, Y. A. Khan, B. A. Kalwar, A. Fars, Two-stage intelligent planning with improved artificial bee colony algorithm for a microgrid by considering the uncertainty of renewable sources, Energy Rep., 7 (2021), 8912–8928. https://doi.org/10.1016/j.egyr.2021.10.123 doi: 10.1016/j.egyr.2021.10.123 |
[14] | Q. N. U. Islam, A. Ahmed, S. M. Abdullah, Optimized controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (NSWOA), Ain Shams Eng. J., 12 (2021), 3677–3689. https://doi.org/10.1016/j.asej.2021.01.035 doi: 10.1016/j.asej.2021.01.035 |
[15] | A. Almadhor, H. T. Rauf, M. A. Khan, S. Kadry, Y. Nam, A hybrid algorithm (BAPSO) for capacity configuration optimization in a distributed solar PV based microgrid, Energy Rep., 7 (2021), 7906–7912. https://doi.org/10.1016/j.egyr.2021.01.034 doi: 10.1016/j.egyr.2021.01.034 |
[16] | Y. Li, K. Li, Z. Yang, Y. Yu, R. Xu, M. Yang, Stochastic optimal scheduling of demand response-enabled microgrids with renewable generations: An analytical-heuristic approach, J. Cleaner Prod., 330 (2022), 129840. https://doi.org/10.1016/j.jclepro.2021.129840 doi: 10.1016/j.jclepro.2021.129840 |
[17] | W. Chen, Z. Shao, K. Wakil, N. Aljojo, S. Samad, A. Rezvani, An efficient day-ahead cost-based generation scheduling of a multi-supply microgrid using a modified krill herd algorithm, J. Cleaner Prod., 272 (2020), 122364. https://doi.org/10.1016/j.jclepro.2020.122364 doi: 10.1016/j.jclepro.2020.122364 |
[18] | Y. Liu, S. Yang, D. Li, S. Zhang, Improved whale optimization algorithm for solving microgrid operations planning problems, Symmetry, 15 (2023), 36. https://doi.org/10.3390/sym15010036 doi: 10.3390/sym15010036 |
[19] | S. Arora, S. Singh, Butterfly optimization algorithm: A novel approach for global optimization, Soft Comput., 23 (2019), 715–734. https://doi.org/10.1007/s00500-018-3102-4 doi: 10.1007/s00500-018-3102-4 |
[20] | W. Long, T. Wu, M. Xu, M. Tang, S. Cai, Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm, Energy, 229 (2021), 120750. https://doi.org/10.1016/j.energy.2021.120750 doi: 10.1016/j.energy.2021.120750 |
[21] | Z. Sadeghian, E. Akbari, H. Nematzadeh, A hybrid feature selection method based on information theory and binary butterfly optimization algorithm, Eng. Appl. Artif. Intell., 97 (2021), 104079. https://doi.org/10.1016/j.engappai.2020.104079 doi: 10.1016/j.engappai.2020.104079 |
[22] | A. Lberni, M. A. Marktani, A. Ahaitouf, A. Ahaitouf, Efficient butterfly inspired optimization algorithm for analog circuits design, Microelectron. J., 113 (2021), 105078. https://doi.org/10.1016/j.mejo.2021.105078 doi: 10.1016/j.mejo.2021.105078 |
[23] | W. Long, J. Jiao, X. Liang, T. Wu, M. Xu, S. Cai, Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection, Appl. Soft Comput., 103 (2021), 107146. https://doi.org/10.1016/j.asoc.2021.107146 doi: 10.1016/j.asoc.2021.107146 |
[24] | W. Long, M. Xu, J. Jiao, T. Wu, M. Tang, S. Cai, A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection, Expert Syst. Appl., 201 (2022), 117217. https://doi.org/10.1016/j.eswa.2022.117217 doi: 10.1016/j.eswa.2022.117217 |
[25] | X. Ma, Y. Mu, Y. Zhang, C. Zang, S. Li, X. Jiang, et al., Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm, Global Energy Interconnect., 5 (2022), 154–167. https://doi.org/10.1016/j.gloei.2022.04.013 doi: 10.1016/j.gloei.2022.04.013 |
[26] | C. Leng, H. Yang, Y. Song, Z. Yu, C. Shen, Expected value model of microgrid economic dispatching considering wind power uncertainty, Energy Rep., 9 (2023), 291–298. https://doi.org/10.1016/j.egyr.2023.05.092 doi: 10.1016/j.egyr.2023.05.092 |
[27] | H. Zhang, G. Li, S. Wang, Optimization dispatching of isolated island microgrid based on improved particle swarm optimization algorithm, Energy Rep., 8 (2022), 420–428. https://doi.org/10.1016/j.egyr.2022.10.199 doi: 10.1016/j.egyr.2022.10.199 |
[28] | N. B. Roy, D. Das, Probabilistic optimal power allocation of dispatchable DGs and energy storage units in a reconfigurable grid-connected CCHP microgrid considering demand response, J. Energy Storage, 72 (2023), 108207. https://doi.org/10.1016/j.est.2023.108207 doi: 10.1016/j.est.2023.108207 |
[29] | J. M. Raya-Armenta, N. Bazmohammadi, J. G. Avina-Cervantes, D. Sáez, J. C. Vasquez, J. M. Guerrero, Energy management system optimization in islanded microgrids: An overview and future trends, Renewable Sustainable Energy Rev., 149 (2021), 111327. https://doi.org/10.1016/j.rser.2021.111327 doi: 10.1016/j.rser.2021.111327 |
[30] | S. Hoseinzadeh, D. A. Garcia, L. Huang, Grid-connected renewable energy systems flexibility in Norway islands' Decarbonization, Renewable Sustainable Energy Rev., 185 (2023), 113658. https://doi.org/10.1016/j.rser.2023.113658 doi: 10.1016/j.rser.2023.113658 |
[31] | Y. Li, Z. Zhan, S. Lin, J. Zhang, X. Luo, Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems, Inf. Sci., 293 (2015), 370–382. https://doi.org/10.1016/j.ins.2014.09.030 doi: 10.1016/j.ins.2014.09.030 |
[32] | M. K. Naik, R. Panda, A. Wunnava, B. Jena, A. Abraham, A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding, Multimedia Tools Appl., 80 (2021), 35543–35583. https://doi.org/10.1007/s11042-020-10467-7 doi: 10.1007/s11042-020-10467-7 |
[33] | C. Qu, X. Peng, Memory-encapsulated group algorithm for information sharing, Pattern Recogni. Artif. Intell., 34 (2021), 605–618. |
[34] | Y. Bai, Z. Peng, Tunicate swarm algorithm based on adaptive inertial weight, Control Decis., 37 (2022), 237–246. |
[35] | M. Zhang, D. Long, T. Qin, J. Yang, A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems, Symmetry, 12 (2020), 1800. https://doi.org/10.3390/sym12111800 doi: 10.3390/sym12111800 |
[36] | A. Rezvani, M. Gandomkar, M. Izadbakhsh, A. Ahmadi, Environmental/economic scheduling of a micro-grid with renewable energy resources, J. Cleaner Prod., 87 (2015), 216–226. https://doi.org/10.1016/j.jclepro.2014.09.088 doi: 10.1016/j.jclepro.2014.09.088 |
[37] | G. R. Aghajani, H. A. Shayanfar, H. Shayeghi, Demand side management in a smart micro-grid in the presence of renewable generation and demand response, Energy, 126 (2017), 622–637. https://doi.org/10.1016/j.energy.2017.03.051 doi: 10.1016/j.energy.2017.03.051 |
[38] | S. Singh, P. Chauhan, N. Singh, Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm, Int. J. Hydrogen Energy, 45 (2020), 10070–10088. https://doi.org/10.1016/j.ijhydene.2020.02.018 doi: 10.1016/j.ijhydene.2020.02.018 |